11,533 research outputs found

    Dynamic origin-destination demand estimation using automatic vehicle identification data

    Get PDF
    Journal ArticleAbstract-This paper proposes a dynamic origin-destination (OD) estimation method to extract valuable point-to-point splitfraction information from automatic vehicle identification (AVI) counts without estimating market-penetration rates and identification rates of AVI tags. A nonlinear ordinary least-squares estimation model is presented to combine AVI counts, link counts, and historical demand information into a multiobjective optimization framework. A joint estimation formulation and a one-sided linear-penalty formulation are further developed to take into account possible identification and representativeness errors, and the resulting optimization problems are solved by using an iterative bilevel estimation procedure. Based on a synthetic data set, this study shows the effectiveness of the proposed estimation models under different market-penetration rates and identification rates

    Advanced traffic data for dynamic OD demand estimation: the state of the art and benchmark study

    No full text
    In this paper, the use of advanced traffic data is discussed to contribute to the ongoing debate about their applications in dynamic OD estimation. This is done by discussing the advantages and disadvantages of traffic data with support of the findings of a benchmark study. The benchmark framework is designed to assess the performance of the dynamic OD estimation methods using different traffic data. Results show that despite the use of traffic condition data to identify traffic regime, the use of unreliable prior OD demand has a strong influence on estimation ability. The greatest estimation occurs when the prior OD demand information is aligned with the real traffic state or omitted and using information from AVI measurements to establish accurate and meaningful values of OD demand. A common feature observed by methods in this paper indicates that advanced traffic data require more research attention and new techniques to turn them into usable information.Peer ReviewedPostprint (author's final draft

    Origin–destination matrices from smartphone apps for bus networks

    Get PDF
    The knowledge of passenger flows between each origin–destination (OD) pair is a main requirement in public transport for service planning, design, operation, and monitoring, and is represented by OD matrices. Although they can be determined by traditional approaches (e.g., surveys, ride-check counts, and/or smartcard-based methods), the availability of new technologies and the proliferation of portable devices triggers an emerging interest in building OD matrices from the apps of bus operators. This research proposes the first framework for the estimation of OD matrices on transit networks by processing smartphone app call detail records (SACDRs). The framework is experimentally tested on a sample of 30 workdays of an Italian bus operator. The results are represented by easy-to-read control dashboards based on maps, which help quantify and visualise the OD matrices in the metropolitan area of Cagliari (Italy). The experimentation shows that the framework can properly estimate the number of trips for both origin and destination w.r.t. OD matrices built from household surveys: the mean absolute error is on average lower than five movements for 90% of the origins and 85% of the destinations

    A Primal-Dual Algorithm for Link Dependent Origin Destination Matrix Estimation

    Full text link
    Origin-Destination Matrix (ODM) estimation is a classical problem in transport engineering aiming to recover flows from every Origin to every Destination from measured traffic counts and a priori model information. In addition to traffic counts, the present contribution takes advantage of probe trajectories, whose capture is made possible by new measurement technologies. It extends the concept of ODM to that of Link dependent ODM (LODM), keeping the information about the flow distribution on links and containing inherently the ODM assignment. Further, an original formulation of LODM estimation, from traffic counts and probe trajectories is presented as an optimisation problem, where the functional to be minimized consists of five convex functions, each modelling a constraint or property of the transport problem: consistency with traffic counts, consistency with sampled probe trajectories, consistency with traffic conservation (Kirchhoff's law), similarity of flows having close origins and destinations, positivity of traffic flows. A primal-dual algorithm is devised to minimize the designed functional, as the corresponding objective functions are not necessarily differentiable. A case study, on a simulated network and traffic, validates the feasibility of the procedure and details its benefits for the estimation of an LODM matching real-network constraints and observations

    Origin-Destination Estimation Using Probe Vehicle Trajectory and Link Counts

    Get PDF

    Enhanced Methods for Utilization of Data to Support Multi-Scenario Analysis and Multi-Resolution Modeling

    Get PDF
    The success of analysis and simulation in transportation systems depends on the availability, quality, reliability, and consistency of real-world data and the methods for utilizing the data. Additional data and data requirements are needed to support advanced analysis and simulation strategies such as multi-resolution modeling (MRM) and multi-scenario analysis. This study has developed, demonstrated, and assessed a systematic approach for the use of data to support MRM and multi-scenario analysis. First, the study developed and examined approaches for selecting one or more representative days for the analysis, considering the variability in travel conditions throughout the year based on cluster analysis. Second, this study developed and analyzed methods for using crowdsourced data vii to estimate origin-destination demands and link-level volumes for use as part of an MRM with consideration of the modeling scenario(s). The assessment of the methods to select the representative day(s) utilizes statistical measures, in addition to measures and visualization techniques that are specific to traffic operations. The results of the assessment indicate that the utilization of the K-means clustering algorithm with four clusters and spatio-temporal segregation of the variables demonstrated superior performance over other tested approaches, such as the use of the Gaussian Mixture clustering algorithm and the use of different segregation levels. The study assessed methods for the use of third-party crowdsourced data from StreetLight (SL) as part of the Origin-Destination Matrix Estimation (ODME), which identifies the method resulting in the closest origin-destination demands to the original seed matrices and real-world link counts. The results of the study indicate that Method 3(b) produced the best performance, which utilized combined data from demand forecasting models, crowdsourced data, and traffic counts. Additionally, this study examined regression models between crowdsourced data and count station data developed for link-level estimation of the volumes. This study also examined the accuracy and transferability of the link-level estimation of the volumes to determine if the crowdsourced data combined with available volume data at several locations can be used to predict missing or unavailable volumes in different locations on different days and times within the network. Regression models produced low errors than the default SL estimates when hourly or daily traffic volumes were taken into account. For similar traffic conditions, the models predicted directional traffic volume close to the real-world value

    Effectiveness of link and path information on simultaneous adjustment of dynamic O-D demand matrix

    Get PDF
    Introduction The paper deals with the adjustment of time-dependent Origin–destination (O-D) demand matrix, which is the fundamental input of ITS application for traffic predictions. The usual problem is to search for temporal O-D matrices that are "near" an a priori estimate (seed matrices) and that best fit traffic counts. However information on link flows is not fully effective in describing the state of the network; recent technologies for tracking vehicles provide a new kind of information on route travel times that can integrate usual information on traffic flows at count sections
    • …
    corecore