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Abstract

Introduction The paper deals with the adjustment of time-
dependent Origin—destination (O-D) demand matrix, which
is the fundamental input of ITS application for traffic predic-
tions. The usual problem is to search for temporal O-D matri-
ces that are “near” an a priori estimate (seed matrices) and that
best fit traffic counts. However information on link flows is
not fully effective in describing the state of the network; recent
technologies for tracking vehicles provide a new kind of
information on route travel times that can integrate usual
information on traffic flows at count sections.

Objective The object of the paper is to analyse the effective-
ness of different types of information in the off-line simulta-
neous adjustment of dynamic O-D demand, starting from seed
matrices with different degrees of reliability.

Keywords Demand adjustment - Dynamic assignment -
Probe data - SPSA algorithm

1 Introduction

Dynamic estimation of Origin—destination (O-D) matrix is a
fundamental input for ITS systems, which need to identify the
current traffic state and predict future traffic conditions at real-
time level. In fact, demand patterns vary from day to day and
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congested networks are heavily affected by even small changes
of O-D demand flows. So, high level of accuracy on demand
can lead to successful ITS systems [1] as well as to effective
strategies for implementing route guidance, congestion pricing
and network-based traffic signal control [2]. On the other hand,
knowledge of space-temporal structure of demand is the nec-
essary input for a dynamic traffic assignment model that simu-
lates congestion evolution. Without correcting errors in O-D
demand estimation, the inconsistency in O-D flows would
accumulate and propagate in the traffic simulation process,
making the network state estimation and prediction highly
unreliable [3].

Usual methods for O-D estimation combine some a priori
information, like historical O-D matrices, with real-time traffic
measurements. Since dynamic traffic assignment models for
ITS applications require a very detailed representation of O-D
matrix in time and space, the O-D estimation problem is highly
undetermined. So, any possible information on demand struc-
ture can be useful to reduce the complexity of the problem.

Information on prior O-D matrices (the so-called “seed
matrix”) are usually reported in any formulation, both static
and dynamic; however, differently from other measures, they
are not directly observable [4] and solution procedures for
demand adjustment are usually irrespective of their quality [5].

Current technologies can provide a great amount of traffic
data collected on links and nodes of the transportation net-
work: pavement-embedded sensors, roadside radars and cam-
eras provide measures of flows and speeds at nodes and along
links; Advanced Vehicle Identification (AVI), ground-based
radio navigation, cellular geo-location and GPS provide a new
kind of information about travel times and route choices that
integrate usual information on traffic flows at count sections.
Moreover, it is well known that traffic counts are not fully
effective in discerning between congested and uncongested
traffic state of a link, because of non-monotone flow-density
relationship. Thus, it is important to formulate effective
methods for O-D estimation combining several heterogeneous
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sources of information and to assess the relative importance of
each of them. On the other hand, optimization methods can
applied to individuate the best locations of measurement sec-
tions (see, for example, [6]).

Many authors dealt with the problem of increasing the
amount of information required by dynamic O-D estimation
problem and included, for example, speed and link occupancy
[7-9], probe data from vehicle equipped by AVI tags [10—14,
15,16], aggregate demand data such as traffic emissions and
attractions by zones [8,9,17], total demand for sub-networks, or
the temporal distribution of trips in some areas on the network.

In this paper we want to investigate the contribution of
different kinds of information to improve the accuracy of
time-dependent O-D matrix estimation. Specifically, with re-
spect to previous studies, we introduce information on travel
times, which are assumed to be provided by a fleet of floating
cars. In order to focus on basic issues of the problem, we
tackle off-line simultaneous estimation of time-dependent O-
D demand, which is the basis for a suitable development of
ITS applications in on-line context.

The paper is organized into five sections including this
introduction: Section 2 reports different methodologies devel-
oped in the last years for the dynamic OD estimation and after
defines the one adopted in the study; in Section 3 the case
study is presented, while the results of the application are
reported in Section 4; finally Section 5 summarizes the main
conclusions.

2 Problem formulation

Different approaches and solution algorithms have been de-
veloped in the last years for both off-line and on-line dynamic
OD estimation: in the following the most recent contributes
are reported.

Zhou et al. [18] formulated the dynamic OD estimation
problem as a single level nonlinear optimization model,
solved with a relaxation algorithm of the lagrangian extension
of'the original one, taking into account route choice in order to
work in the path- flow dimension. Frederix et al. [23] adopted
a linear approximation of the relationship between O-D flows
and link flows, taking into account link flows being not
separable. This approximation has been obtained with the
marginal computation (MaC) method that performs a pertur-
bation analysis in a computationally efficient way, using the
kinematic wave theory principles for traffic simulation. Tole-
do and Kolechkina [19] proposed a method based on a linear
approximation of the assignment matrix; they apply different
iterative algorithms, performing a mesoscopic traffic simula-
tion to conduct network loadings. Djukic et al. [20] proposed
the reduction and approximation of OD demand variables
based on principal component analysis (PCA). The new
transformed set of variables (demand principal components)
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is then updated online from traffic counts in a novel reduced
state space model for real time estimation of OD demand.

The problem of off-line simultaneous estimation of tempo-
ral O-D matrices is tackled in this paper adopting a simulation
approach, which avoids introducing assignment matrices [9].
The O-D estimation problem is formulated as an optimization
problem aiming at minimizing a linear combination of the
distance between estimated and a priori O-D demand flows
and the errors between detected and estimated traffic measure-
ments in a dynamic (i.e., time-dependent) off-line context.
The objective function includes different kinds of data col-
lected with different types of techniques: simple traffic counts
and speed measurements detected at fixed road sections and
travel times measured on routes travelled, for example, by
floating cars equipped with a GPS receiver and a cellular
mobile transmitter. Adding speed measurement provides fur-
ther information on the traffic regime that enables to distin-
guish between congested and uncongested conditions. The
extent of such a congested condition can be grasped further
by adding travel time information.

Given:

a network B=[N,A], where:

N  nodes

A directed links

n,qg number of origin—destination pairs
R routes connecting each OD pair.

the period of analysis 7, divided into #,, intervals, a subset of
links S={1..ns} € A and nodes P={1..n,} € N equipped with
sensors, a subset of monitored routes p={1..n,} € R, the
problem is formulated as it follows:

[/ (x1...%,,d1...d,,) +
Zf‘l (yl "'yn,, 7?1 "'/yn/,>+
1

+th(z].‘.z,,hil...inh)+ (1)
t

-I-pr (wl...wnhﬁl ...VAV,,,I)
4

<d’1‘...dflh> = argmin(xlmxﬂh)

where:

/9 term of the objective function relative to the distance
with the seed matrix

X; estimated matrix for departing time interval i, i=1...n,

d, seed matrix for departing time interval i, i=1...n,

y;  simulated information on link set S for departing time
interval i, i=1...n,

y; collected measures on link set S for departing time
interval i, i=1...n,

/" term of the objective function relative to measures
collected on links

z;  simulated information on node set P for departing time
interval i, i=1...n,
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z; collected measures on node set P for departing time
interval i, i=1...n,

f"  term of the objective function relative to measures
collected on nodes

w; simulated information on route set r for departing time
interval i, i=1...n,

w;  collected measures on route set » for departing time
interval i, i=1...n,

1?7 term of the objective function relative to measures

collected on routes.

Dependence between simulated information in Eq. (1) and
estimated matrices is obtained directly by simulation
performing a dynamic traffic assignment (DTA), so that:

Yi---¥n, = F(X1..%,,) V[
2.2, = F(x1..x,,) V ¢ (2)
wi...W,, = F(X1..x,,) VYV p

with F=DTA.

Lower bound and upper bound constraints can be intro-
duced on demand to avoid infeasible solutions and to restrict
the search space:

vy (3)

Other aggregate demand data can be introduced in the
objective function or as a constraint. For example, Cipriani
et al. [9] introduce constraints on traffic emissions by zones in
order to prevent demand overestimation:

ny

Z G\<G: Voe{origins} (4)
i=1

with:

*® . . . . . .
G, apriori emission value for origin zone o
G, emission value for origin zone o of the demand matrix
X;.

In fact, overestimation of demand can produce a prolonged
loading period in simulation (i.e., the network takes longer to

Fig. 1 One dimension oO. Ft

Polynomial Interpolation (PI)

clear), without significant changes in observed link flows or in
the corresponding terms of the objective function. The con-
straint on generation balances for the insensitivity of the
objective function to these conditions.

Functions fdepend on the particular estimation framework,
on the type of estimator and on the available information [21].

Generalized Least Squares (GLS) framework exploits ad-
ditional information about the reliability of measurements;
this information can be incorporated as a set of internal
weights resulting in the variance—covariance matrix. In such
a case, the f 4 function, for instance, assumes the following
form:

fUxp.. Xy, d...d,,) = (x=d)V! (x—d) (5)

where V=variance—covariance matrix of the vector of sam-
pling errors affecting the estimate d.

If this information is not available, the different objective
function terms can be controlled using exogenous scalar
weights representing the relative confidence of the analyst
on measurements (that is: speeds, flows and travel times) or
on a priori direct observation (that is, the seed matrix).

Information such as flows and speeds measured on links as
well as travel times from probe vehicles has been reported in
this study inside the objective function (1). Data from links
and routes are considered with different types of grouping to
assess the impact of different network elements in the adjust-
ment process. Generated trips have been reported as an in-
equality constraint as in Eq. (4). Different seed matrices with
different degrees of reliability have been considered as inputs
of the procedure in order to analyze different levels of uncer-
tainty on a priori demand estimation.

The procedure adopted to solve the problem (1) is the
SPSA AD-PI (Simultaneous Perturbation Stochastic Approx-
imation, Asymmetric Design, Polynomial Interpolation) pro-
posed by Cipriani et al. [8]. SPSA AD-PI is a modification of
the gradient based path search optimization method that per-
mits to reduce the computational effort in regard to the usual
gradient-based methods, which is a basic issue to deal with a
simultaneous estimation of demand for real applications.

o. F}

Y
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At the generic iteration &, the algorithm computes the
dynamic matrix for the next iteration k+1 as:

Xit1 = X8 (Xp) (6)

where:

ay gain sequence at iteration k of the O-D estimation

3 algorithm

g(x;) the average approximated gradient at iteration £,
calculated as the average of m gradient
approximations:

& (xi) = average, (€, (x:)) (7)

Each gradient approximation g, (x;) is based on a simul-
taneous perturbation of each component; in case of one side
simultaneous perturbation (Asymmetric Design — AD), this is:

(al)
() = B OB | (a2,
(A

(8)

where the distribution of the n,-dimensional random pertur-
bation vector A (with n,=n;x OD) is subject to the condition
that the components {A/,,} of the perturbation vector are
independent and symmetrically distributed around 0 with
finite inverse moments E(|4,,,|) for all m, j.

The gain sequence a; is computed using a Polynomial
Interpolation (PI) of the objective function along the descen-
dent direction: at each iteration the minimum point of the
polynomial interpolation is considered as the sub-optimal
solution of the problem, as shown in Fig. 1.

O Traffic signals

Count sections

— Lanes

——————— » Path of the probe
vehicles

Fig. 2 Test network with count sections and paths of probe vehicles
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Fig. 3 Demand profile for the “true” matrix and for some seed matrices

3 Description of the experiments

Experiments have been conducted on the test-network report-
ed in Fig. 2, consisting of 8 links and 8 nodes, with three traffic
signals (same cycle time and green time equally split between
the incoming approaches) introduced to increase congestion.

In detail, the following information has been considered as
input of the estimation process:

1. information on links: counts and measured speeds collect-
ed at 5 count sections on the network (Fig. 2);

2. information on routes: path travel times for different de-
parture times of probe vehicles along one path connecting
origin 2 to destination 4 (Fig. 2);

3. information on demand: previous demand matrices (seed
matrices) with different degrees of reliability and aggre-
gate demand data (generated trips).

Counts, measured speeds and path travel times have been
collected performing a dynamic user equilibrium assignment
by DYNAMEQ [22], given a supposed “true”” demand matrix,
which is assumed to be unknown to the analyst. The total time
horizon of the assignment is 50 min. The demand is charac-
terized by three O-D components (between centroids 2 and 4,
6 and 4, 3 and 4, Fig. 2) for a total amount of about 4,400 veh/

Table 1 Relative Mean

Errors (RME) of the seed RME (seed vs real)
matrices used in the
experiments Seedl 0.16

Seed2 0.20

Seed3 0.25

Seed4 0.35

Seed5 0.40

Seed6 0.50

Seed? 0.60

Seed8 0.68
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Fig. 4 Objective Function (OF) 10084

improvements for different
degrees of reliability of the seed
matrix
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h and it has been divided into 5 time slices of 10 min each with
a variable profile (Fig. 3). Only one O-D component (from 2
to 4, Fig. 2) has a possible route choice. Information on links
(traffic counts and measured speeds) is collected every time
slice, while path travel times have been collected only for the
first three time slices.

Different seed matrices, representing possible a priori
knowledge of demand have been obtained by random pertur-
bations of the “true” matrix.

The distance between the “true’” matrix and the seed matrix,
which represents the reliability of the latter, has been comput-
ed using the Relative Mean Error (RME) statistic:

100%

Fig. 5 Link flow term
improvements for different o0%
degrees of reliability of the seed
matrix
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Xij
where:
d “seed” demand values
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i time interval
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Fig. 6 Link speed term 100% |
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In particular, 8 seed matrices have been generated with a
RME value ranging from 0.16 (high reliability) to 0.68 (low
reliability), as reported in Table 1.

In Fig. 3 the variable demand profiles of the “true” matrix
and of some of the adopted seed matrices are reported: the
differences between the profiles suggest the need to work not
only on the value of the total demand, but also on its distri-
bution between the time slices.

Four different objective functions (OF) have been defined,
grouping the collected information in the following way:

OF1: distance between simulated flows and link counts
plus distance between estimated demand and seed matrix;

Fig. 7 Path travel time term 100%

improvements for different
degrees of reliability of the seed
matrix
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50% -
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QOF2

mOF4

Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8

RME Levels

OF2: distance between simulated flows and link counts,
plus distance between simulated speeds and measured
link speeds, plus distance between estimated demand
and seed matrix;

OF3: distance between simulated flows and link counts,
plus distance between simulated path travel times and
measured path travel times from probe vehicles, plus
distance between estimated demand and seed matrix;
OF4: distance between simulated flows and link counts,
plus distance between simulated speeds and measured
link speeds, plus distance between simulated path travel
times and measured path travel times from probe vehicles,
plus distance between estimated demand and seed matrix.

mOF4

Seed 2 Seed 3 Seed 4 Seed 5

RME Levels
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4 Results

Results of the SPSA AD-PI, for different degrees of reliability
of the seed matrix and using different types of information
inside the objective function, demonstrate the effectiveness of
the procedure, with improvements of the objective function up
to 50 %. Smaller improvements are experienced if the seed
matrices have very low reliability (RME>0.6, Seed 7 and Seed
8), because of the large distance from the real demand.

The following figures highlight the effects of different
kinds of real-time information on the accuracy of O-D demand
estimation, for different degrees of reliability of a priori infor-
mation on O-D demand. The best improvements are obtained
using OF4; that is, when path travel times are considered
together with measures of speeds and flows on link sections.
In particular, objective function improvements higher than
40 % are obtained for seed matrix reliability ranging from
RME=0.2 to RME=0.5 (from Seed 2 to Seed 6 in Fig. 4).

Only when RME is lower than 0.2 (Seed 1) OF4 does not
present the best improvement: this due to the very high reli-
ability of the seed matrix, which makes useless additional
information to improve the solution.

Intermediate reliability levels (0.2<RME<0.4, Seed 2 to 4)
show similar behaviour in terms of sensitivity to information.

Analysing each term of the OFs, it can be underlined that
OF2 and OF4 usually imply the highest improvement for the
term relative to the distance between link flows and traffic
counts (Fig. 5).

It means that link speed measures and path travel time data
are very useful to obtain a better correspondence with traffic
counts. OF2 and OF4 show very similar improvements of the
term relative to the link speed (Fig. 6), a fact that demonstrates
the capability of the two types of information (link speeds and
path travel times) to represent the different levels of conges-
tion of the network.

Finally, regarding path travel time term, OF3 and OF4 have
similar improvements for low and medium degrees of reliabil-
ity (RME<0.4, Seeds 2—4, Fig. 7). However, if RME is greater
than 0.4, information on link speeds is no more sufficient to
reflect the experienced path travel times.

O.F.=counts+seed matrix
70%
60%-
50%
40%-
30%-
20%-
10%1 m
OO/O - T T T T T -

0,1 0,2 0,3 0,4 0,5 0,6 0,7

RME seed matrix vs real matrix

Fig. 8 Improvement of the solution for different degrees of reliability of
the seed matrix, in case of objective function taking into account the
closeness to link counts and to the seed matrix (OF1)

O.F.=counts+measured speeds+seed matrix

70%
60%
50%
40%
30%+
20%
10%-

0% T T T T T 1

0,1 0,2 0,3 0,4 0,5 0,6 0,7

RME seed matrix vs real matrix

Fig. 9 Improvement of the solution for different degrees of reliability of
the seed matrix, in case of objective function taking into account the
closeness to link counts, to measured link speeds and to the seed matrix
(OF2)

It is possible to deduce from the previous considerations
that for certain seed matrix reliability, the more information
we add inside the adjustment procedure, the more accurate is
the result. Of course, the accuracy of the estimation procedure
can be only evaluated in laboratory experiments, where the
true demand is known, while it is not possible in the real
world, where only traffic measures are known.

So, the accuracy of the resulting demand is evaluated in the
following pictures in terms of reduction of the distance be-
tween estimated and real demand, for the different OFs
adopted and for the different degrees of reliability of the seed
matrix (Figs. 8,9, 10 and 11).

When real-time information includes only link flows, as in
case of OF1 (Fig. 8), the improvement of the solution with
respect to a priori information is lower than 10 %; if also
measured link speeds are added inside the objective function
as in case of OF2 (Fig. 9), the improvement of initial estima-
tion exceeds the 50 %, except for poor reliability of the
boundary values of the seed matrix. This result highlights
the importance of speed data on dynamic demand adjustment,
as it allows to discriminate between congested or uncongested
traffic conditions.

If data on path travel times instead of link speed are added
to link counts (OF3, Fig. 10) strong improvements are still
obtained compared to using only link counts, even if lower
than those obtained by using measured speeds (Fig. 9) and

O.F.=counts+measured travel times+seed matrix
70%
60%
50%
40%
30%
20%
10%
0%
0,1 0,2 0,3 0,4 0,5 0,6 0,7
RME seed matrix vs real matrix

T T T T T 1

Fig. 10 Improvement of the solution for different degrees of reliability of
the seed matrix in case of objective function taking into account the
closeness to link counts, to path travel times and to the seed matrix (OF3)
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O.F.=counts+measured speeds+seed matrix+measured travel
times

70%
60%
50%
40%
30%
20%
10%
0% T T T T T |
0,1 0,2 0,3 0,4 0,5 0,6 0,7
RME seed matrix vs real matrix

Fig. 11 Improvement of the solution for different degrees of reliability of
the seed matrix, in case of objective function taking into account the
closeness to link counts, to measured link speeds, to path travel times and
to the seed matrix (OF4)

concentrated in a small range of seed matrix reliability (RME
from 0.2 to 0.35).

Finally, if both information on links (flows and speeds) and
information on path travel times are put together (OF4,
Fig. 11), an improvement is experienced increasing up to
66 % for RME equal to 0.35 and then decreasing to about
2 % when for RME equal to 0.68. So, speeds and path travel
times add information to the adjustment process in order to
reach a dynamic demand matrix closeness to the real one;
however, their effects do not seem to be additive.

In order to better understand this result, it is necessary to
explore the characteristics of the measures adopted inside the
adjustment procedure in detail:

— regarding link measurements, we assume measures of
flows and speeds on 5 count sections collected for 5 time
intervals, for a total number of 50 data, which cover
information related to all the origin—destination compo-
nents of the network (Fig. 2);

— regarding path travel times, we assume only one path
covered by probe vehicles, which cover information on
only one origin—destination pair, measured from the ori-
gin for the first 3 time slices (that is, we assume that only a
sample of vehicles are equipped with GPS devices and
can be exploited as probes).

Table 2 Difference between real and estimated O-D pair 2—4 [veh/h] for
different degrees reliability of the seed matrix and different objective
functions (O.F.)

RME (seed vs real) OF.1 O.F2 O.F3 O.F4
0.16 246 222 184 160
0.20 725 170 135 377
0.25 958 364 209 213
0.35 1,250 505 444 136
0.40 1,450 511 1,450 543
0.50 1,525 645 1,487 160
0.60 1,938 1,932 1,938 1,905
0.68 2,442 2,354 2,395 2,371
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Fig. 12 Convergence of the objective function OF2

Measures are then normalized inside the objective func-
tion; i.e., the information is not weighted for its cardinality;
however, link measures provide information on all the origin—
destination components, while path travel times only on one
origin—destination pair.

Table 2 shows how the error of estimation for the origin—
destination pair (2—4 in Fig. 2) followed by the probe vehicles
change for different levels of seed matrices reliability and for
different objective functions. It is interesting to notice that the
information on path travel times OF3 brings to the largest
improvements in the estimation of the flow on the O-D pair 2—
4 when the seed matrix is related to RME values up to 0.35
(Table 2). For RME greater than 0.35, information on path
travel times adds no improvement with respect to information
on only link flows (OF1): this is also confirmed by Fig. 10 for
the same range of RME. This last result can be explained
considering that when a priori information has very low
reliability, adding measurements on only one origin—destina-
tion pair and three departure time intervals is not sufficient to
achieve further information on the whole time-dependent O-D
demand matrix. In fact, path travel times on the last departure
times are lost and information on all the origin—destination
pairs can be obtained only if speed measurements for the
whole time period are added (OF4). Moreover, OF4 implies
best proximity (except in Seed 2) between real and estimated
demand values for the O-D pair 2—4 (Table 2).

Finally, some remarks are reported about the convergence
of the algorithm: SPSA AD-PI shows a good stability of the

OF

0.9

0.8

0.7

0.6

0 100 200 300 400 500 600
iteration (#)

Fig. 13 Convergence of the objective function OF4
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objective function after 200+300 iterations, as reported in
Figs. 12 and 13, relative to OF2 and OF4, respectively.

Each iteration takes about 1 min on a Dual Core, 2.2 GHz
machine; this means about 4 h are needed to solve the opti-
mization problem for the test network reported in this study. If
the dimension of the network increases, also computational
times increase because of the time needed by the DTA simu-
lator to generate simulated values of measures at each itera-
tion. As a result, the procedure can be used only in off-line
context. However, the solution found can be exploited as first
input for on-line applications in order to start with good initial
demand values and good traffic flow patterns on the network.

5 Conclusion

The paper has presented a preliminary analysis on the contri-
bution provided by different kinds of information to the esti-
mation of time-dependent O-D matrix demand. Numerical
experiments carried out on a test-network case demonstrated
the importance of type, quality and quantity of the information
in demand estimation.

The best improvements on demand adjustment are usually
obtained when a sample of path travel time measurements is
considered together with measures of speeds and flows on link
sections. In fact, link speeds and path travel times allow taking
into account traffic congestion, which affects the propagation
of flow on the network and then influences the time-dependent
relationship between link counts and O-D demand matrix.
Numerical experiments highlighted also the influence of the
reliability of a priori information on the accuracy of resulting
O-D estimation in combination with different information sets.

Further research will be addressed to investigate the influ-
ence of penetration rate of probe vehicles that provide infor-
mation on path travel times, considering also higher dimen-
sion networks; moreover the effect of other kinds of measure-
ments, like density and occupancy, as well as point-to-point
travel time data, which introduce additional information on
network congestion, will be analysed

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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