4,241 research outputs found

    Towards a Holistic Integration of Spreadsheets with Databases: A Scalable Storage Engine for Presentational Data Management

    Full text link
    Spreadsheet software is the tool of choice for interactive ad-hoc data management, with adoption by billions of users. However, spreadsheets are not scalable, unlike database systems. On the other hand, database systems, while highly scalable, do not support interactivity as a first-class primitive. We are developing DataSpread, to holistically integrate spreadsheets as a front-end interface with databases as a back-end datastore, providing scalability to spreadsheets, and interactivity to databases, an integration we term presentational data management (PDM). In this paper, we make a first step towards this vision: developing a storage engine for PDM, studying how to flexibly represent spreadsheet data within a database and how to support and maintain access by position. We first conduct an extensive survey of spreadsheet use to motivate our functional requirements for a storage engine for PDM. We develop a natural set of mechanisms for flexibly representing spreadsheet data and demonstrate that identifying the optimal representation is NP-Hard; however, we develop an efficient approach to identify the optimal representation from an important and intuitive subclass of representations. We extend our mechanisms with positional access mechanisms that don't suffer from cascading update issues, leading to constant time access and modification performance. We evaluate these representations on a workload of typical spreadsheets and spreadsheet operations, providing up to 20% reduction in storage, and up to 50% reduction in formula evaluation time

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    View Selection in Semantic Web Databases

    Get PDF
    We consider the setting of a Semantic Web database, containing both explicit data encoded in RDF triples, and implicit data, implied by the RDF semantics. Based on a query workload, we address the problem of selecting a set of views to be materialized in the database, minimizing a combination of query processing, view storage, and view maintenance costs. Starting from an existing relational view selection method, we devise new algorithms for recommending view sets, and show that they scale significantly beyond the existing relational ones when adapted to the RDF context. To account for implicit triples in query answers, we propose a novel RDF query reformulation algorithm and an innovative way of incorporating it into view selection in order to avoid a combinatorial explosion in the complexity of the selection process. The interest of our techniques is demonstrated through a set of experiments.Comment: VLDB201

    On Optimally Partitioning Variable-Byte Codes

    Get PDF
    The ubiquitous Variable-Byte encoding is one of the fastest compressed representation for integer sequences. However, its compression ratio is usually not competitive with other more sophisticated encoders, especially when the integers to be compressed are small that is the typical case for inverted indexes. This paper shows that the compression ratio of Variable-Byte can be improved by 2x by adopting a partitioned representation of the inverted lists. This makes Variable-Byte surprisingly competitive in space with the best bit-aligned encoders, hence disproving the folklore belief that Variable-Byte is space-inefficient for inverted index compression. Despite the significant space savings, we show that our optimization almost comes for free, given that: we introduce an optimal partitioning algorithm that does not affect indexing time because of its linear-time complexity; we show that the query processing speed of Variable-Byte is preserved, with an extensive experimental analysis and comparison with several other state-of-the-art encoders.Comment: Published in IEEE Transactions on Knowledge and Data Engineering (TKDE), 15 April 201

    Data Management and Mining in Astrophysical Databases

    Full text link
    We analyse the issues involved in the management and mining of astrophysical data. The traditional approach to data management in the astrophysical field is not able to keep up with the increasing size of the data gathered by modern detectors. An essential role in the astrophysical research will be assumed by automatic tools for information extraction from large datasets, i.e. data mining techniques, such as clustering and classification algorithms. This asks for an approach to data management based on data warehousing, emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Clustering and classification techniques, on large datasets, pose additional requirements: computational and memory scalability with respect to the data size, interpretability and objectivity of clustering or classification results. In this study we address some possible solutions.Comment: 10 pages, Late
    • …
    corecore