30,982 research outputs found

    Dynamic hybrid simulation of batch processes driven by a scheduling module

    Get PDF
    Simulation is now a CAPE tool widely used by practicing engineers for process design and control. In particular, it allows various offline analyses to improve system performance such as productivity, energy efficiency, waste reduction, etc. In this framework, we have developed the dynamic hybrid simulation environment PrODHyS whose particularity is to provide general and reusable object-oriented components dedicated to the modeling of devices and operations found in chemical processes. Unlike continuous processes, the dynamic simulation of batch processes requires the execution of control recipes to achieve a set of production orders. For these reasons, PrODHyS is coupled to a scheduling module (ProSched) based on a MILP mathematical model in order to initialize various operational parameters and to ensure a proper completion of the simulation. This paper focuses on the procedure used to generate the simulation model corresponding to the realization of a scenario described through a particular scheduling

    Nonlinear model predictive control for hydrogen production in an ethanol steam reformer with membrane separation

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents a new Nonlinear Model Predictive Control (NMPC) design for an Ethanol Steam Reformer with Pd-Ag membrane separation stage. The reformer is used to produce pure hydrogen able to feed a Proton Exchange Membrane Fuel Cell. Mass and energy balances are used to obtain the nonlinear dynamic model of both the reforming and the separation stages. Constraints, system nonlinearities and flexible cost function are the main reasons to select an NMPC controller, which is tested against the ordinary differential equations as simulation model, and has an internal model based on the sample data technique.Accepted versio

    Assessment of a gas-solid vortex reactor for SO2/NOx adsorption from flue gas

    Get PDF
    The feasibility of performing the SO2/NOx adsorption process in a gas-solid vortex reactor (GSVR) is examined and compared with the more traditional riser technology. The multiphase reacting flow is modeled using the Eulerian-Eulerian two-fluid model. Models of nonreacting flows were validated using data from a bench-scale experimental setup. The GSVR has the potential to significantly improved heat/mass transfer between phases, as compared to more conventional fluidization technologies. Process intensification opportunities are investigated. The model predicts continuous removal efficiencies greater than 99% for SO2 and approximately 80% for NOx. The gas-solid slip velocity and convective mass transfer coefficient for the riser were 0.2-0.5 and 0.06-0.12 m/s, respectively, whereas the values for the GSVR were 6-7 and 1.0-1.1 m/s, respectively. This order of magnitude increase in the external mass transfer coefficient highlights the potential intensification opportunities provided by the GSVR

    Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation

    Get PDF
    Syngas and biochar are two main products from biomass gasification. To facilitate the optimization of the energy efficiency and economic viability of gasification systems, a comprehensive fixed-bed gasification model has been developed to predict the product rate and quality of both biochar and syngas. A coupled transient representative particle and fix-bed model was developed to describe the entire fixed-bed in the flow direction of primary air. A three-region approach has been incorporated into the model, which divided the reactor into three regions in terms of different fluid velocity profiles, i.e. natural convection region, mixed convection region, and forced convection region, respectively. The model could provide accurate predictions against experimental data with a deviation generally smaller than 10%. The model is applicable for efficient analysis of fixed-bed biomass gasification under variable operating conditions, such as equivalence ratio, moisture content of feedstock, and air inlet location. The optimal equivalence ratio was found to be 0.25 for maximizing the economic benefits of the gasification process

    Predictive functional control for the temperature control of a chemical batch reactor

    Get PDF
    A predictive functional control (PFC) technique is applied to the temperature control of a pilot-plant batch reactor equipped with a mono-fluid heating/cooling system. A cascade control structure has been implemented according to the process sub-units reactor and heating/cooling system. Hereby differences in the sub-units dynamics are taken into consideration. PFC technique is described and its main differences with a standard model predictive control (MPC) technique are discussed. To evaluate its robustness, PFC has been applied to the temperature control of an exothermic chemical reaction. Experimental results show that PFC enables a precise tracking of the set-point temperature and that the PFC performances are mainly determined by its internal dynamic process model. Finally, results show the performance of the cascade control structure to handle different dynamics of the heating/cooling system

    Model based fault diagnosis for hybrid systems : application on chemical processes

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless, this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference
    corecore