387 research outputs found

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Incremental embodied chaotic exploration of self-organized motor behaviors with proprioceptor adaptation

    Get PDF
    This paper presents a general and fully dynamic embodied artificial neural system, which incrementally explores and learns motor behaviors through an integrated combination of chaotic search and reflex learning. The former uses adaptive bifurcation to exploit the intrinsic chaotic dynamics arising from neuro-body-environment interactions, while the latter is based around proprioceptor adaptation. The overall iterative search process formed from this combination is shown to have a close relationship to evolutionary methods. The architecture developed here allows realtime goal-directed exploration and learning of the possible motor patterns (e.g., for locomotion) of embodied systems of arbitrary morphology. Examples of its successful application to a simple biomechanical model, a simulated swimming robot, and a simulated quadruped robot are given. The tractability of the biomechanical systems allows detailed analysis of the overall dynamics of the search process. This analysis sheds light on the strong parallels with evolutionary search

    Evolution of central pattern generators for the control of a five-link bipedal walking mechanism

    Get PDF
    Central pattern generators (CPGs), with a basis is neurophysiological studies, are a type of neural network for the generation of rhythmic motion. While CPGs are being increasingly used in robot control, most applications are hand-tuned for a specific task and it is acknowledged in the field that generic methods and design principles for creating individual networks for a given task are lacking. This study presents an approach where the connectivity and oscillatory parameters of a CPG network are determined by an evolutionary algorithm with fitness evaluations in a realistic simulation with accurate physics. We apply this technique to a five-link planar walking mechanism to demonstrate its feasibility and performance. In addition, to see whether results from simulation can be acceptably transferred to real robot hardware, the best evolved CPG network is also tested on a real mechanism. Our results also confirm that the biologically inspired CPG model is well suited for legged locomotion, since a diverse manifestation of networks have been observed to succeed in fitness simulations during evolution.Comment: 11 pages, 9 figures; substantial revision of content, organization, and quantitative result

    Autonomous Optimization of Swimming Gait in a Fish Robot With Multiple Onboard Sensors

    Get PDF
    Autonomous gait optimization is an essential survival ability for mobile robots. However, it remains a challenging task for underwater robots. This paper addresses this problem for the locomotion of a bio-inspired robotic fish and aims at identifying fast swimming gait autonomously by the robot. Our approach for learning locomotion controllers mainly uses three components: 1) a biological concept of central pattern generator to obtain specific gaits; 2) an onboard sensory processing center to discover the environment and to evaluate the swimming gait; and 3) an evolutionary algorithm referred to as particle swarm optimization. A key aspect of our approach is the swimming gait of the robot is optimized autonomously, equivalent to that the robot is able to navigate and evaluate its swimming gait in the environment by the onboard sensors, and simultaneously run a built-in evolutionary algorithm to optimize its locomotion all by itself. Forward speed optimization experiments conducted on the robotic fish demonstrate the effectiveness of the developed autonomous optimization system. The latest results show that our robotic fish attained a maximum swimming speed of 1.011 BL/s (40.42 cm/s) through autonomous gait optimization, faster than any of the robot's previously recorded speeds

    CPU-less robotics: distributed control of biomorphs

    Get PDF
    Traditional robotics revolves around the microprocessor. All well-known demonstrations of sensory guided motor control, such as jugglers and mobile robots, require at least one CPU. Recently, the availability of fast CPUs have made real-time sensory-motor control possible, however, problems with high power consumption and lack of autonomy still remain. In fact, the best examples of real-time robotics are usually tethered or require large batteries. We present a new paradigm for robotics control that uses no explicit CPU. We use computational sensors that are directly interfaced with adaptive actuation units. The units perform motor control and have learning capabilities. This architecture distributes computation over the entire body of the robot, in every sensor and actuator. Clearly, this is similar to biological sensory- motor systems. Some researchers have tried to model the latter in software, again using CPUs. We demonstrate this idea in with an adaptive locomotion controller chip. The locomotory controller for walking, running, swimming and flying animals is based on a Central Pattern Generator (CPG). CPGs are modeled as systems of coupled non-linear oscillators that control muscles responsible for movement. Here we describe an adaptive CPG model, implemented in a custom VLSI chip, which is used to control an under-actuated and asymmetric robotic leg

    Neurobiologically Inspired Control of Engineered Flapping Flight

    Get PDF
    This article presents a new control approach for engineered flapping flight with many interacting degrees of freedom. This paper explores the applications of neurobiologically inspired control systems in the form of Central Pattern Generators (CPG) to generate wing trajectories for potential flapping flight MAVs. We present a rigorous mathematical and control theoretic framework to design complex three dimensional motions of flapping wings. Most flapping flight demonstrators are mechanically limited in generating the wing trajectories. Because CPGs lend themselves to more biological examples of flight, a novel robotic model has been developed to emulate the flight of bats. This model has shoulder and leg joints totaling 10 degrees of freedom for control of wing properties. Results of wind tunnel experiments and numerical simulation of CPG-based flight control validate the effectiveness of the proposed neurobiologically inspired control approach

    Modeling, Control and Locomotion Planning of an Anguilliform Fish Robot

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore