8 research outputs found

    Small Rodent Cardiac Phantom for Preclinical Ultrasound Imaging

    Get PDF

    Personalized dynamic phantom of the right and left ventricles based on patient-specific anatomy for echocardiography studies — Preliminary results

    Get PDF
    Dynamic phantoms of the heart are becoming a reality, with their use spread across both medical and research fields. Their purpose is to mimic the cardiac anatomy, as well as its motion. This work aims to create a dynamic, ultrasound-compatible, realistic and flexible phantom of the left and right ventricles, with application in the diagnosis, planning, treatment and training in the cardiovascular field for studies using echocardiography. Here, we focus on its design and production with polyvinyl alcohol cryogel (PVA-C), to be assembled with a pump and an electromechanical (E/M) system in a water tank. Based on a patient-specific anatomical model and produced using a 3D printing technique and molding, the PVA-C phantom mimics the ventricles' natural anatomy and material properties, while the pump and E/M systems mimic the natural movements and pressures. The PVA-C phantom was assessed by imaging and measuring it using a four-dimensional ultrasound machine. The PVA-C phantom demonstrated to be a versatile option to produce patient-specific biventricular models, preserving their shape after manufacturing and presenting good echogenic properties. Both chambers were clearly seen in the ultrasound images, together with the interventricular septum and the myocardial wall. Automated left ventricle measures revealed a decrease of its volume with regard to the designed model (98 ml to 74 ml). Overall, the preliminary results are satisfactory and encourage its use for the abovementioned purposesFEDER funds through the Competitiveness Factors Operational Programme (COMPETE), and by National funds through the Foundation for Science and Technology (FCT) under the project POCI -01-0145-FEDER-007038 and EXPL/BBB-BMD/2473/2013, and by the projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-024300, supported by the NORTE 2020, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). J. Gomes-Fonseca, P. Morais, S. Queirós, and F. Veloso were funded by FCT under the Ph.D. grants PD/BDE/113597/2015, SFRH/BD/95438/2013, SFRH/BD/93443/2013, and SFRH/BD/131545/2017info:eu-repo/semantics/publishedVersio

    Development of a patient-specific atrial phantom model for planning and training of inter-atrial interventions

    Get PDF
    Article is accepted for publicationBackgroundSeveral authors have presented cardiac phantoms to mimic the particularities of the heart, making it suitable for medical training and surgical planning. Although the initial models were mainly focused on the ventricles, personalized phantoms of the atria were recently presented. However, such models are typically rigid, the atrial wall is not realistic and they are not compatible with ultrasound (US), being sub-optimal for planning/training of several interventions. MethodsIn this work, we propose a strategy to construct a patient-specific atrial model. Specifically, the target anatomy is generated using a computed tomography (CT) dataset and then constructed using a mold-cast approach. An accurate representation of the inter-atrial wall (IAS) was ensured during the model generation, allowing its application for IAS interventions. Two phantoms were constructed using different flexible materials (silicone and polyvinyl alcohol cryogel, PVA-C), which were then compared to assess their appropriateness for US acquisition and for the generation of complex anatomies. ResultsTwo experiments were set up to validate the proposed methodology. First, the accuracy of the manufacturing approach was assessed through the comparison between a post-production CT and the virtual references. The results proved that the silicone-based model was more accurate than the PVA-C-based one, with an error of 1.680.79, 1.36 +/- 0.94, 1.45 +/- 0.77mm for the left (LA) and right atria (RA) and IAS, respectively. Second, an US acquisition of each model was performed and the obtained images quantitatively and qualitatively assessed. Both models showed a similar performance in terms of visual evaluation, with an easy detection of the LA, RA, and the IAS. Furthermore, a moderate accuracy was obtained between the atrial surfaces extracted from the US and the ideal reference, and again a superior performance of the silicone-based model against the PVA-C phantom was observed. ConclusionsThe proposed strategy proved to be accurate and feasible for the correct generation of complex personalized atrial models.The authors acknowledge "Fundacao para a Ciencia e a Tecnologia" (FCT), in Portugal, and the European Social Found, European Union, for funding support through the "Programa Operacional Capital Humano" (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P. Morais) and SFRH/BD/93443/2013 (S. Queiros).Authors gratefully acknowledge the funding of Projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000022, cofinanced by "Programa Operacional Regional do Norte" (NORTE2020), through "Fundo Europeu de Desenvolvimento Regional" (FEDER).info:eu-repo/semantics/publishedVersio

    A Patient-Specific Cardiac Phantom for Training and Pre-Procedure Surgical Planning

    Get PDF
    Minimally invasive cardiac procedures requiring a transseptal puncture are becoming increasingly common. For cases of complex or diseased anatomy, clinicians may benefit from using a patient-specific cardiac phantom for training, surgical planning, and the validation of devices or techniques. An imaging compatible cardiac phantom was developed to simulate a MitraClip ® procedure. The phantom contained a patient-specific cardiac model manufactured using tissue mimicking materials. To evaluate accuracy, the patient-specific model was imaged using CT, segmented, and the resulting point cloud data set was compared using absolute distance to the original patient data. The phantom was validated using a MitraClip ® device to ensure anatomical features and tools are identifiable under image guidance. Patient-specific cardiac phantoms may allow for surgical complications to be accounted for in pre-operative planning. The information gained by clinicians involved in planning and performing the procedure should lead to shorter procedural times and better outcomes for patients

    Exploiting Temporal Image Information in Minimally Invasive Surgery

    Get PDF
    Minimally invasive procedures rely on medical imaging instead of the surgeons direct vision. While preoperative images can be used for surgical planning and navigation, once the surgeon arrives at the target site real-time intraoperative imaging is needed. However, acquiring and interpreting these images can be challenging and much of the rich temporal information present in these images is not visible. The goal of this thesis is to improve image guidance for minimally invasive surgery in two main areas. First, by showing how high-quality ultrasound video can be obtained by integrating an ultrasound transducer directly into delivery devices for beating heart valve surgery. Secondly, by extracting hidden temporal information through video processing methods to help the surgeon localize important anatomical structures. Prototypes of delivery tools, with integrated ultrasound imaging, were developed for both transcatheter aortic valve implantation and mitral valve repair. These tools provided an on-site view that shows the tool-tissue interactions during valve repair. Additionally, augmented reality environments were used to add more anatomical context that aids in navigation and in interpreting the on-site video. Other procedures can be improved by extracting hidden temporal information from the intraoperative video. In ultrasound guided epidural injections, dural pulsation provides a cue in finding a clear trajectory to the epidural space. By processing the video using extended Kalman filtering, subtle pulsations were automatically detected and visualized in real-time. A statistical framework for analyzing periodicity was developed based on dynamic linear modelling. In addition to detecting dural pulsation in lumbar spine ultrasound, this approach was used to image tissue perfusion in natural video and generate ventilation maps from free-breathing magnetic resonance imaging. A second statistical method, based on spectral analysis of pixel intensity values, allowed blood flow to be detected directly from high-frequency B-mode ultrasound video. Finally, pulsatile cues in endoscopic video were enhanced through Eulerian video magnification to help localize critical vasculature. This approach shows particular promise in identifying the basilar artery in endoscopic third ventriculostomy and the prostatic artery in nerve-sparing prostatectomy. A real-time implementation was developed which processed full-resolution stereoscopic video on the da Vinci Surgical System

    Dynamic heart phantom with functional mitral and aortic valves

    No full text
    © 2015 SPIE. Cardiac valvular stenosis, prolapse and regurgitation are increasingly common conditions, particularly in an elderly population with limited potential for on-pump cardiac surgery. NeoChord©, MitraClip © and numerous stent-based transcatheter aortic valve implantation (TAVI) devices provide an alternative to intrusive cardiac operations; performed while the heart is beating, these procedures require surgeons and cardiologists to learn new imageguidance based techniques. Developing these visual aids and protocols is a challenging task that benefits from sophisticated simulators. Existing models lack features needed to simulate off-pump valvular procedures: functional, dynamic valves, apical and vascular access, and user flexibility for different activation patterns such as variable heart rates and rapid pacing. We present a left ventricle phantom with these characteristics. The phantom can be used to simulate valvular repair and replacement procedures with magnetic tracking, augmented reality, fluoroscopy and ultrasound guidance. This tool serves as a platform to develop image-guidance and image processing techniques required for a range of minimally invasive cardiac interventions. The phantom mimics in vivo mitral and aortic valve motion, permitting realistic ultrasound images of these components to be acquired. It also has a physiological realistic left ventricular ejection fraction of 50%. Given its realistic imaging properties and non-biodegradable composition-silicone for tissue, water for blood-the system promises to reduce the number of animal trials required to develop image guidance applications for valvular repair and replacement. The phantom has been used in validation studies for both TAVI image-guidance techniques1, and image-based mitral valve tracking algorithms2
    corecore