4,257 research outputs found

    Genetic algorithms with elitism-based immigrants for dynamic load balanced clustering problem in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2011 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control

    Get PDF
    This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches

    Enhanced Load Balanced Clustering Technique for VANET Using Location Aware Genetic Algorithm

    Get PDF
    The vehicular Adhoc Network has unique charac-teristics of frequent topology changes, traffic rule-based node movement, and speculative travel pattern. It leads to stochastic unstable nature in forming clusters. The re-liable routing process and load balancing are essential to improve the network lifetime. Cluster formation is used to split the network topology into small structures. The reduced size network leads to accumulating the topology information quickly. Due to the absence of centralised management, there is a pitfall in network topology man-agement and optimal resource allocation, resulting in ineffective routing. Hence, it is necessary to develop an effective clustering algorithm for VANET. In this paper, the Genetic Algorithm (GA) and Dynamic Programming (DP) are used in designing load-balanced clusters. The proposed Angular Zone Augmented Elitism-Based Im-migrants GA (AZEIGA) used elitism-based immigrants GA to deal with the population and DP to store the out-come of old environments. AZEIGA ensures clustering of load-balanced nodes, which prolongs the network lifetime. Experimental results show that AZEIGA works appreciably well in homogeneous resource class VANET. The simulation proves that AZEIGA gave better perfor-mance in packet delivery, network lifetime, average de-lay, routing, and clustering overhead

    Load Balanced Clustering Technique in MANET using Genetic Algorithms

    Get PDF
    Mobile adhoc network (MANET) has characteristics of topology dynamics due to factors such as energy conservation and node movement that leads to dynamic load-balanced clustering problem (DLBCP). Load-balancing and reliable data transfer between all the nodes are essential to prolong the lifetime of the network. MANET can also be partitioned into clusters for maintaining the network structure. Generally, Clustering is used to reduce the size of topology and to accumulate the topology information. It is necessary to have an effective clustering algorithm for adapting the topology change. In this, we used energy metric in genetic algorithm (GA) to solve the DLBCP. It is important to select the energy- efficient cluster head for maintaining the cluster structure and balance the load effectively. In this work, we used genetic algorithms such as elitism based immigrants genetic algorithm (EIGA) and memory enhanced genetic algorithm (MEGA) to solve DLBCP. These schemes select an optimal cluster head by considering the distance and energy parameters. We used EIGA to maintain the diversity level of the population and MEGA to store the old environments into the memory. It promises the load -balancing in cluster structure to increase the lifetime of the network. Experimental results show that the proposed schemes increases the network lifetime and reduces the total energy consumption. The simulation results show that MEGA and EIGA give a better performance in terms of load-balancing

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research
    corecore