
Genetic Algorithms with Elitism-based Immigrants
for Dynamic Load Balanced Clustering Problem in

Mobile Ad Hoc Networks
Hui Cheng

Department of Computer Science and Technology
University of Bedfordshire

Luton LU1 3JU
United Kingdom

Email: hui.cheng@beds.ac.uk

Shengxiang Yang
Department of Information Systems and Computing

Brunel University
Uxbridge, Middlesex UB8 3PH

United Kingdom
Email: shengxiang.yang@brunel.ac.uk

Abstract—Clustering can help aggregate the topology infor-
mation and reduce the size of routing tables in a mobile ad
hoc network (MANET). To achieve fairness and even energy
consumption, each clusterhead should ideally support the same
number of cluster members. Moreover, one of the most important
characteristics in MANETs is the topology dynamics, that is, the
network topology changes over time due to energy conservation
or node mobility. Therefore, for a dynamic and complex system
like MANET, an effective clustering algorithm should efficiently
adapt to each topology change and produce the new load balanced
solution quickly. The maintenance of the cluster structure should
be as stable as possible to reduce overhead. It requires that
the new solution should try to keep most of the good parts
in the previous solution. In this paper, we propose to use
elitism-based immigrants genetic algorithm (EIGA) to solve the
dynamic load balanced clustering problem in MANETs. Each
individual represents a feasible clustering structure and its fitness
is evaluated based on the load balance metric. Immigrants are
introduced to help the population to handle the topology dynamics
and produce new and closely related solutions. The experimental
results show that EIGA can quickly adapt to the environmental
changes (i.e., the network topology change) and produce high-
quality solutions after each change.

Index Terms—Mobile ad hoc networks, elitism-based immi-
grants, dynamic clustering

I. INTRODUCTION

A mobile ad hoc network (MANET) [8], [11], [7] is a
self-organizing wireless local area network without infrastruc-
ture and central administration. It has the advantages of low
cost, plug-and-play convenience, and flexibility. Just like the
Internet, the flat network infrastructure of MANETs encoun-
ters the scalability problem when the network size increases.
Scalability is more challenging in MANETs due to node mo-
bility. Therefore, efficient network management is extremely
important. Analogous to the IP subnet concept, a MANET can
also be organized into a hierarchical architecture by dividing
nodes into clusters. Each cluster maintains and aggregates the
information of the nodes within it. Each cluster can thus be
seen as a logical node at the cluster level. The network layer
only needs to maintain and manage the information of these
logical nodes. Clearly, the control overhead will be reduced

with the aid of clustering.
A clustering algorithm [19] is to find a feasible inter-

connected set of clusters covering the entire set of nodes
in a MANET. At any instant, one mobile node can only
belong to one cluster. A cluster may have a clusterhead or
not. Since the recruiting of clusterheads brings the advantage
of easy management, most of the prior research work is on
clustering with clusterhead. In this paper, our algorithm also
generates the clusters with clusterheads assigned. Furthermore,
clustering must be associated with at least one metric such
as node ID, node degree, and energy (battery power). The
metric is specified based on the application requirements. For
example, in the highest degree heuristic [4], the node with the
maximum number of neighbors (highest degree) is chosen as
the clusterhead.

In this paper, we consider the load balance as the clustering
metric since it is an important issue. The load balance means
that every clusterhead should ideally support the same number
of clustermembers. It can guarantee the fairness for all the
clusterheads in term of the load. Moreover, the load balanced
clustering can help prolong the lifetime of the clustering
structure since each clusterhead will evenly consume the
battery energy. It has been proved that finding an optimal
set of clusterheads with one or more clustering metrics is
NP-hard [2]. Conventional search techniques, such as hill
climbing [9], are often incapable of optimizing non-linear
multimodal functions. In such a case, a random search method
might be required. Evolutionary algorithms (EAs), e.g., genetic
algorithms (GAs), are well-known guided random search and
optimization techniques. They are based on the basic principles
of evolution: survival of the fittest and inheritance. Generally,
EAs are applied to find approximate optimal solutions with
respect to a fitness function for NP-hard problems.

However, since we consider the load balanced clustering
problem in a continuously changing network, it turns out to be
one of the dynamic optimization problems (DOPs). In recent
years, studying EAs for DOPs has attracted a growing interest
due to its importance in EA’s real world applications [16].

978-1-4244-9929-8/11/$26.00 ©2011 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/338231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Due to continuous topology changes, MANET is a typical
dynamic network. Therefore, a few traditional static network
optimization problems, e.g., routing and multicast, have be-
come dynamic network optimization problems in MANETs.
These problems urgently call for specialized algorithms which
are able to provide high-quality solutions to them. In pre-
vious works, we have successfully applied a few dynamic
genetic algorithms to solve a couple of representative DOPs in
MANETs, i.e., dynamic shortest path routing problem [18] and
dynamic multicast problem [3]. In this paper, we investigate
the dynamic clustering problem in MANETs.

The simplest way of addressing DOPs is to restart EAs
from scratch whenever an environmental change is detected.
Although the restart scheme really works for some cases [13],
for many DOPs it is more efficient to develop other approaches
that make use of knowledge gathered from old environments.
One of the possible approaches is to maintain and re-introduce
diversity during the run of EAs, i.e., the immigrants schemes
[14], [10], [17]. The random immigrants scheme is the simplest
one where randomly generated new individuals are introduced
into the population. The elitism-based immigrants scheme
[15] is a representative one among immigrants schemes for
EAs in dynamic environments. In the scheme, the elite from
previous generation is used as the base to create immigrants
via mutation to replace the worst individuals in the current
population. This way, the introduced immigrants are more
adapted to the changing environment.

In this paper, we implement and apply the GA with elitism-
based immigrants to solve the dynamic load balanced cluster-
ing problem. First, we design the specific genetic algorithm
for the dynamic clustering problem. Then, at each generation,
a certain number of elitism-based immigrants are generated
and added into the population to maintain the diversity. Once
the topology is changed, the new immigrants can help guide
the search of good solutions in the new environment. For
comparison purposes, we also implement a GA with random
immigrants (RIGA), standard GA (SGA), and the Restart
GA (RGA). By simulation experiments, we evaluate their
performance on the dynamic load balanced clustering problem.
The results show that the EIGA significantly outperforms the
other three GA methods. It is verified that EIGA works really
well in the dynamic real-world networks.

II. RELATED WORK

A typical cluster structure in a MANET is shown in Fig. 1.
Within one cluster, mobile nodes may play different roles,
such as clusterhead, clustergateway, or clustermember. A clus-
terhead normally serves as a local coordinator for its cluster,
performing intracluster transmission control, data forwarding,
and so on. A clustergateway is a non-clusterhead node with
inter-cluster links, so it can access neighboring clusters and
forward data between clusters. A clustermember is an ordinary
node, which is a non-clusterhead node without any inter-cluster
links.

The primary step in clustering is the selection of cluster-
heads. The clusterhead can be the leader node, for example,

Cl t h d

Clustermember
(ordinary mode)

Cl t h d

Clustermember
(ordinary mode)

ClusterheadClusterhead

S E MS E MS E MS E M

B
F

J
C

L
B

F

J
C

L
B

F

J
C

L
B

F

J
C

L

A

H

J

D

GA

H

J

D

GA

H

J

D

GA

H

J

D

G

H D

I

K
H D

I

K
H D

I

K
H D

I

K

N ON ON ON O

ClustergatewayClustergateway

Fig. 1. Illustration of a cluster structure in a MANET.

the node with the maximum power. The selection is based
on different criterion derived from specific communication
requirements. For one-hop clustering, the cluster structure
is determined once the clusterheads are determined. In the
following, we formalize the clusterhead selection problem. A
MANET is represented as an undirected graph 𝐺(𝑉,𝐸), where
𝑉 represents the set of mobile nodes and 𝐸 represents the set
of links between nodes. Let 𝑁(𝑣) be the neighborhood of node
𝑣, defined as:

𝑁(𝑣) =
∪

𝑣′∈𝑉,𝑣′ ∕=𝑣

{𝑣′∣𝑑𝑖𝑠𝑡(𝑣, 𝑣′) < 𝑟} . (1)

where 𝑟 is the transmission range of node 𝑣. The generalized
procedure for selecting the clusterhead is as follows.

Step 1: From 𝐺, select one mobile node 𝑣 as a clusterhead
according to a certain rule.

Step 2: Delete node 𝑣 and all its neighbors (i.e., all nodes
in 𝑁(𝑣)) from 𝐺.

Step 3: Repeat Steps 1 to 2 for the remaining nodes in 𝐺
until 𝐺 is empty.

The above three steps generate a set of clusterheads. In
Step 1, the rule determines which node is selected as the
clusterhead. Different clustering algorithms define different
rules, such as the lowest node-ID, the highest node-degree,
the least node-weight, etc.

III. MODEL

In this section, we first present our network model and then
formulate the problem of dynamic load balanced clustering.
We consider a MANET that operates within a fixed geo-
graphical region. We model it by a undirected and connected
topology graph 𝐺0(𝑉0, 𝐸0), where 𝑉0 represents the set of
wireless nodes (i.e., routers) and 𝐸0 represents the set of
communication links connecting two neighboring routers that
fall into the radio transmission range.

The dynamic load balanced clustering (DLBC) problem can
be informally described as follows. Initially, given a network
of wireless nodes, we wish to find a set of clusterheads from
the network and each clusterhead serves the same number of
clustermembers. Then, periodically or stochastically, due to
energy conservation or some other issues, some nodes are
scheduled to sleep or some sleeping nodes are scheduled to
wake up. Therefore, the network topology changes from time
to time. The objective of our problem is to quickly find the
new optimal set of clusterheads after each topology change.

More formally, consider a MANET 𝐺(𝑉,𝐸). The DLBC
problem is to find a series of clusterhead sets {𝐶𝐻𝑖∣𝑖 ∈
{0, 1, ...}} over a series of graphs {𝐺𝑖∣𝑖 ∈ {0, 1, ...}}. As-
sume that the clusterhead set 𝐶𝐻𝑖 = {𝐶1, 𝐶2, ..., 𝐶𝑚}, the
clusterhead degree of 𝐶𝑗 (i.e., the number of clustermembers
served by clusterhead 𝐶𝑗) is 𝑑𝑗 , and the average number of
clustermembers served by each clusterhead is 𝑑𝐶𝐻𝑖

. We aim
to minimize the standard deviation of {𝑑𝑗 ∣𝑗 ∈ {1, 2, ...,𝑚}}
as shown in Eq. (2).

𝜎𝐶𝐻𝑖
=

√√√⎷ 1

𝑚

𝑚∑
𝑗=1

(𝑑𝑗 − 𝑑𝐶𝐻𝑖
)2 . (2)

IV. DESIGN OF THE GA FOR THE DLBC PROBLEM

This section describes the design of the GA for the DLBC
problem. The GA operations consist of several key compo-
nents: genetic representation, population initialization, fitness
function, selection scheme, crossover, and mutation.

A. Genetic Representation

Each solution produced by our algorithm stands for a set
of clusterheads, which are selected from all the nodes in the
network. Hence, a random permutation of node IDs will result
in a random set of clusterheads. In this algorithm, we use
random permutation of node IDs to represent a chromosome.
It is important to guarantee that there is no duplicate node
ID in each chromosome. Each node ID in the chromosome is
called a gene. For example, in a MANET consisting of eight
nodes with IDs ranging from 1 to 8, a random permutation (4
3 8 7 1 6 2 5) represents a chromosome.

We need to derive a set of clusterheads from each chromo-
some. Let us explain this method with an example. Assume
that the chromosome is (4 3 8 7 1 6 2 5). First, we add the first
gene 4 into the clusterhead set. Then, all the 1-hop neighbors
of node 4 are no longer allowed to be clusterheads. Assume
that the neighbors of node 4 are nodes 5 and 6. We continue
to check the next gene and add node 3 into the clusterhead set.
The 1-hop neighbors of node 3 are nodes 1 and 2. So nodes 1,
2, 5, and 6 are not considered as clusterheads any more. Then,
we add node 8 into the clusterhead set. The available neighbors
of node 8 are node 7. Hence, node 7 is also forbidden to be a
clusterhead. Until now, all the nodes have been checked and
a clusterhead set {4, 3, 8} is generated. Table I illustrates the
procedure of clusterhead selection.

TABLE I
THE PROCEDURE FOR DERIVING A SET OF CLUSTERHEADS FROM A

CHROMOSOME

Step Candidate genes for clusterheads Set of clusterheads
1 (43871625) {}
2 (−3871 − 2−) {4}
3 (− − 87 − − − −) {4, 3}
4 (− − − − − − −−) {4, 3, 8}

B. Population Initialization

In the GA, each chromosome corresponds to a potential
solution. The initial population 𝑄 is composed of a certain
number, denoted as 𝑞, of chromosomes. To explore the
genetic diversity, in our algorithm, for each chromosome,
the corresponding permutation of node IDs is randomly
generated. The initial population is generated as follows.

Step 1: Start (𝑘 = 0).
Step 2: Generate chromosome 𝐶ℎ𝑟𝑘: create a random

permutation of all the node IDs and derive the corresponding
clusterhead set 𝐶𝐻𝑘;

Step 3: 𝑘 = 𝑘 + 1. If 𝑘 < 𝑞, go to Step 2, otherwise, stop.

Thus, the initial population 𝑄 = {𝐶ℎ𝑟0, 𝐶ℎ𝑟1, ..., 𝐶ℎ𝑟𝑞−1}
is obtained.

C. Fitness Function

Given a solution, we should accurately evaluate its quality
(i.e., the fitness value), which is determined by the fitness
function. In our algorithm, we aim to find the clusterhead set
which can build up the load balanced cluster structure, that is,
each clusterhead has the same clusterhead degree (i.e., serving
the same number of clustermembers). Our primary criterion
of solution quality is the standard deviation of the clusterhead
degrees. Therefore, among a set of candidate solutions, we
choose the one with the least standard deviation. The fit-
ness value of chromosome 𝐶ℎ𝑟𝑖 (representing the clusterhead
𝐶𝐻𝑖), denoted as 𝐹 (𝐶ℎ𝑟𝑖), is given by:

𝐹 (𝐶ℎ𝑟𝑖) = (𝜎𝐶𝐻𝑖
)−1 =

√√√⎷ 1

𝑚

𝑚∑
𝑗=1

(𝑑𝑗 − 𝑑𝐶𝐻𝑖
)2

−1

. (3)

D. Selection Scheme

Selection plays an important role in improving the average
quality of the population by passing the high quality chromo-
somes to the next generation. The selection of chromosome is
based on the fitness value. We adopt the scheme of pair-wise
tournament selection without replacement [6] as it is simple
and efficient. The tournament size is 2.

E. Crossover and Mutation

Crossover and mutation are two important genetic operators.
Crossover helps generate two offspring chromosomes from
two parent chromosomes. All the genes in each offspring
chromosome are inherited from different parts of the two
parent chromosomes. In this algorithm, we employ the well-
known X-Order1 method [12]. Mutation generates an offspring

chromosome from only one parent chromosome by changing
the values of some genes. We employ the simple and efficient
gene swapping method for mutation.

V. ELITISM-BASED IMMIGRANTS GA

In stationary environments, convergence at a proper pace
is really what we expect for GAs to locate the optimum
solutions for many optimization problems. However, for DOPs,
convergence usually becomes a big problem for GAs because
changing environments usually require GAs to keep a certain
population diversity level to maintain their adaptability. To
address this problem, the random immigrants approach is a
quite natural and simple way [5], [1]. It was proposed by
Grefenstette with the inspiration from the flux of immigrants
that wander in and out of a population between two generations
in nature. It maintains the diversity level of the population
through replacing some individuals of the current population
with random individuals, called random immigrants, every
generation. As to which individuals in the population should
be replaced, usually there are two strategies: replacing random
individuals or replacing the worst ones [20]. In order to avoid
that random immigrants disrupt the ongoing search progress
too much, especially during the period when the environment
does not change, the ratio of the number of random immigrants
to the population size is usually set to a small value, e.g., 0.2.

However, in a slowly changing environment, the introduced
random immigrants may divert the searching force of the
GA during each environment before a change occurs and
hence may degrade the performance. On the other hand, if
the environment only changes slightly in terms of severity of
changes, random immigrants may not have any actual effect
even when a change occurs because individuals in the previous
environment may still be quite fit in the new environment.
Based on the above consideration, an immigrants approach,
called elitism-based immigrants [15], is proposed for GAs to
address DOPs.

The pseudo-code for the EIGA is shown below. Within
EIGA, for each generation 𝑡, after the normal genetic
operations (i.e., selection and recombination), the elite
𝐸(𝑡 − 1) from previous generation is used as the base
to create immigrants. From 𝐸(𝑡 − 1), a set of 𝑟𝑒𝑖 × 𝑞
individuals are iteratively generated by mutating 𝐸(𝑡 − 1)
with a probability 𝑝𝑖𝑚, where 𝑞 is the population size and
𝑟𝑒𝑖 is the ratio of the number of elitism-based immigrants
to the population size. The generated individuals then act as
immigrants and replace the worst individuals in the current
population. It can be seen that the elitism-based immigrants
scheme combines the idea of elitism with traditional random
immigrants scheme. It uses the elite from previous population
to guide the immigrants toward the current environment,
which is expected to improve GA’s performance in dynamic
environments.

begin
𝑡 := 0 and initialize population 𝑄(0) randomly
evaluate population 𝑄(0)

repeat
𝑄′(𝑡) = 𝑠𝑒𝑙𝑒𝑐𝑡𝐹𝑜𝑟𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑄(𝑡))
crossover(𝑄′(𝑡), 𝑝𝑐) // 𝑝𝑐 is the crossover probability
mutate(𝑄′(𝑡), 𝑝𝑚) // 𝑝𝑚 is the mutation probability
evaluate the interim population 𝑄′(𝑡)

// perform elitism-based immigration
denote the elite in 𝑄(𝑡− 1) by 𝐸(𝑡− 1)
generate 𝑟𝑒𝑖 × 𝑛 immigrants by mutating 𝐸(𝑡− 1) with
𝑝𝑖𝑚
evaluate these elitism-based immigrants

replace the worst individuals in 𝑄′(𝑡) with the
generated immigrants
𝑄(𝑡+ 1) := 𝑄′(𝑡)

until the termination condition is met // e.g., 𝑡 > 𝑡𝑚𝑎𝑥

end

In our implementation of EIGA, if the mutation probability
𝑝𝑖𝑚 is satisfied, the elite 𝐸(𝑡 − 1) will be used to generate
the new immigrants by the mutation operation; otherwise,
𝐸(𝑡− 1) itself will be directly used as the new immigrants.

VI. EXPERIMENTAL STUDY

We implement EIGA, RIGA, SGA, and RGA for the
DLBC problem. By simulation experiments, we evaluate their
performance in a continuously changing MANET.

A. Experimental Design

The initial network topology is generated using the follow-
ing method. We first specify a square region with the area of
200 × 200 that has the width [0, 200] on the 𝑥 axis and the
height [0, 200] on the 𝑦 axis. Then we generate 100 nodes
and the position (𝑥, 𝑦) of each node is randomly specified
within the square area. If the distance between two nodes falls
into the radio transmission range 𝐷, a link will be added
to connect them and they are 1-hop neighbors. Finally, we
check if the generated topology is connected. If not, the above
process is repeated until a connected topology is generated. In
the experiments, 𝐷 is given a reasonable value 50.

All the algorithms start from the initial network topology.
Then, after a certain number (saying, 𝑅) of generations (i.e.,
the change interval), a certain number (saying, 𝑀) of nodes
are scheduled to sleep or wake up depending on their current
status. It means that the selected working nodes will be
turned off to sleep and the selected sleeping nodes will be
turned on to work. Therefore, the network topology is changed
accordingly since some links are lost and some other links
appear again. By this means, we create a series of network
topologies corresponding to the continuous network changes.
Furthermore, these adjacent topologies are highly related since
each time the changes affect only part of the nodes. We can see
that 𝑅 and 𝑀 determine the change frequency and severity,
respectively. The larger the value of 𝑅, the slower the changes.
The larger the value of 𝑀 , the more severe the changes.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

Fig. 2. Comparison of EIGA, RIGA, SGA, and RGA when M is set to 2
and R is set to 5.

As described in Section IV.D, the GA adopts pair-wise
tournament selection without replacement. In all the experi-
ments, the mutation probability is set to 0.1. For the random
immigrants scheme, 𝑟𝑖 is set to 0.2. For the elitism-based
immigrants scheme, 𝑟𝑒𝑖 is set to 0.2 and 𝑝𝑖𝑚 is set to 0.8.
In addition, we set the number of changes to 19 and therefore
the algorithms will work over 20 different but highly-related
network topologies (the initial topology plus the 19 changed
topologies).

In order to have fair comparisons among GAs, the popu-
lation size and immigrants ratios were set such that each GA
has 120 fitness evaluations per generation as follows:

(1 + 𝑟𝑖) ∗ 𝑞 = 120, (4)

where 𝑞 is the whole population size, which was set to 100 in
the experiments. Hence, we have 𝑞 = 120 for SGA and RGA,
and 𝑞 = 100 for RIGA and EIGA.

B. Experimental Results and Analysis

At each generation, for each algorithm, we select the best
individual from the current population and output the standard
deviation of the clusterhead degrees calculated from it. We
repeat each experiment 10 times and get the average values of
the best solutions at each generation. We vary 𝑀 from 2 to 4 to
see the effect of change severity on the algorithm performance.
We also set 𝑅 to 5, 10, and 15, respectively, to see the effect
of the change frequency on the algorithm performance.

Fig. 2 is the comparison results when the change severity
parameter 𝑀 is set to 2 and the change interval 𝑅 is 5. In
Fig. 3, we change 𝑅 to 10 and in Fig. 4, we change 𝑅 to
15. Therefore, Fig. 2 shows a rapidly changing environment,
Fig. 3 shows a relatively slowly changing environment, and
Fig. 4 shows a much slower changing environment than the
two others. In Fig. 5, the change interval 𝑅 is 10 while the
change severity parameter 𝑀 is increased to 4.

From Fig. 2, we can see that the first nine changes affect
the algorithms much more significantly than all the next
changes. This is due to that in the random dynamic topology

0 10 20 30 40 50 60 70 80 90 100
2.4

2.7

3

3.3

3.6

3.9

4.2

4.5

4.7

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(a)

100 110 120 130 140 150 160 170 180 190 200
3

3.2

3.4

3.6

3.8

4

4.2

4.3

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(b)

Fig. 3. Comparison of EIGA, RIGA, SGA, and RGA when M is set to 2
and R is set to 10: (a) generation 0 to 99; (b) generation 100 to 199.

generation, the first nine changes all schedule the nodes to
sleep. Therefore, each of these changes will result in re-search
the clusterheads. However, in the later changes, some nodes are
scheduled again to wake up and work. These changes affect
the current population in a less significant way. There is a
high probability that the corresponding good solutions already
exist in the population. Therefore, EIGA can handle them well
and no significant impact to the population is observed. From
Fig. 3 and Fig. 4, we can see the similar behaviors of EIGA.

In Fig. 2, the standard deviation of clusterhead degrees
achieved by EIGA ranges from 2.7 to 3.9. In Fig. 3, the
corresponding value ranges from 2.45 to 3.95. In Fig. 4, the
value ranges from 2.35 to 3.7. We can see that in a slowly
changing environment, EIGA shows a better performance than
in a rapidly changing environment since it has more time to
search good solutions before the next change occurs.

From the above three figures, another interesting point
observed is that when the changes have significant impact
to the population, RIGA performs better than SGA. While
when the changes show slight impact to the population, SGA
performs better than RIGA. In Fig. 5, the change severity

0 10 20 30 40 50 60 70 80 90 100
2.3

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(a)

100 110 120 130 140 150 160 170 180 190 200
3

3.2

3.4

3.6

3.8

4

4.2

4.3

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(b)

200 210 220 230 240 250 260 270 280 290 300
3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(c)

Fig. 4. Comparison of EIGA, RIGA, SGA, and RGA when M is set to 2 and
R is set to 15: (a) generation 0 to 99; (b) generation 100 to 199; (c) generation
200 to 299.

parameter 𝑀 is set to 4, which means that each time four
nodes will be scheduled to sleep or wake up. More nodes
involved in the change will bring a higher change severity. We
can see that RIGA performs better when 𝑀 is 4 than when 𝑀

0 10 20 30 40 50 60 70 80 90 100
2.7

3

3.3

3.6

3.9

4.2

4.5

4.6

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(a)

100 110 120 130 140 150 160 170 180 190 200
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.7

Generation

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
C

lu
s
te

rh
e
a
d
 D

e
g
re

e
s

EIGA
RIGA
SGA
RGA

(b)

Fig. 5. Comparison of EIGA, RIGA, SGA, and RGA when M is set to 4
and R is set to 10: (a) generation 0 to 99; (b) generation 100 to 199.

is 2. This shows that random immigrants can help preserve the
diversity of the population and thereby increase the capability
of the population in handling the dynamic environment. Fur-
thermore, in the environment with a higher change severity,
the random immigrants scheme is more powerful. However,
if the environment is relatively peaceful, random immigrants
adversely affect the population.

In all the figures, EIGA shows the best performance. The
reason is that EIGA exploits both the population diversity
brought by the immigrants scheme and the advantages of
the elitism scheme to enhance its search capability. On the
other hand, we can see that RGA always exhibits the worst
performance even when the changes have trivial impacts on the
current population. The reason is that RGA does not exploit
any useful information in the old environment and that the
frequent restart sacrifices its evolving capability. Therefore, for
a dynamic optimization problem where the problem dynamics
is at a reasonable level, to restart the whole population of GA
is not a good choice.

VII. CONCLUSIONS

The clustering problem has been extensively addressed in
MANETs. However, previous works do not pay much attention
to the continuous topology changes, which are actually the
inherent characteristics of MANETs. Intuitively, it is much
more challenging to deal with the dynamic clustering problem
in a continuously changing MANET than to solve the quasi-
static one in a quasi-static infrastructure where only local small
modification will be introduced after clustering.

In recent years, there has been a growing interest in studying
GAs for dynamic optimization problems. Among approaches
developed for GAs to deal with DOPs, immigrants schemes
for GAs on DOPs aim at maintaining the diversity of the
population throughout the run via introducing new individuals
into the current population. In this paper, we apply the elitism-
based immigrants scheme for the GA to solve the dynamic
load balanced clustering problem in a large scale MANET.
We well design the GA components for the clustering problem
and the elitism-based immigrants scheme. To encourage load
balance, we use the standard deviation of clusterhead degrees
to evaluate the performance of the clustering results. Simula-
tion experiments show that EIGA is a powerful technique for
solving the dynamic load balanced clustering problem and that
the elitism-based immigrants scheme outperforms the random
immigrants scheme, standard GA, and restart scheme for the
tested dynamic clustering problems.

ACKNOWLEDGMENT

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) of UK under Grant
EP/E060722/1 and Grant EP/E060722/2.

REFERENCES

[1] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” Proc. 5th Int. Conf. Genetic Algorithms, Urbana-
Champaign, IL, Jun. 1993, pp. 523–530.

[2] M. Chatterjee, S. K. Das and D. Turgut, “WCA: a weighted clustering
algorithm for mobile ad hoc networks,” Cluster Comput., vol. 5, no. 2,
pp. 193–204, Apr. 2002.

[3] H. Cheng and S. Yang, “Genetic algorithms with immigrants schemes for
dynamic multicast problems in mobile ad hoc networks,” Eng. Appl. AI,
vol. 23, no. 5, pp. 806–819, Aug. 2010.

[4] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio
network,” Wireless Netw., vol. 1, no. 3, pp. 255–265, Sep. 1995.

[5] J. J. Grefenstette, “Genetic algorithms for changing environments,” Proc.
2nd Int. Conf. Parallel Problem Solving from Nature, 1992, pp. 137–144.

[6] S. Lee, S. Soak, K. Kim, H. Park and M. Jeon, “Statistical proper-
ties analysis of real world tournament selection in genetic algorithms,”
Appl. Intell., vol. 28, no. 2, pp. 195–205, Apr. 2008.

[7] C. Siva Ram Murthy and B. S. Manoj, Ad Hoc Wireless Networks:
Architectures and Protocols, Prentice Hall PTR, 2004.

[8] C. E. Perkins, Editors, Ad Hoc Networking, London: Addison-Wesley,
2001.

[9] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, NJ:
Prentice Hall, 2003.

[10] R. Tinos and S. Yang, “A self-organizing random immigrants genetic
algorithm for dynamic optimization problems,” Genetic Programming
Evolvable Mach., vol. 8, no. 3, pp. 255–286, Sept. 2007.

[11] C.-K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems,
Prentice Hall PTR, 2002.

[12] D. Turgut, S. K. Das, R. Elmasri and B. Turgut, “Optimizing clustering
algorithm in mobile ad hoc networks using genetic algorithmic approach,”
Proc. IEEE Global Telecommun. Conf., Taipei, Taiwan, 2002, pp. 62–66.

[13] S. Yang and X. Yao, “Experimental study on population-based incremen-
tal learning algorithms for dynamic optimization problems,” Soft Comput.,
vol. 9, no. 11, pp. 815–834, Nov. 2005.

[14] S. Yang and R. Tinos, “A hybrid immigrants scheme for genetic
algorithms in dynamic environments,” Int. J. Autom. Comput., vol. 4, no.
3, pp. 243–254, Jul. 2007.

[15] S. Yang, “Genetic algorithms with elitism-based immigrants for changing
optimization problems,” Proc. EvoWorkshops 2007: Appl. Evol. Comput.,
2007, pp. 627–636.

[16] S. Yang and X. Yao, “Population-based incremental learning with asso-
ciative memory for dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 12, no. 5, pp. 542–561, Oct. 2008.

[17] S. Yang, “Genetic algorithms with memory- and elitism-based immi-
grants in dynamic environments,” Evol. Comput., vol. 16, no. 3, pp. 385–
416, Sept. 2008.

[18] S. Yang, H. Cheng and F. Wang, “Genetic algorithms with immigrants
and memory schemes for dynamic shortest path routing problems in
mobile ad hoc networks,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 40, no. 1, pp. 52–63, Jan. 2010.

[19] Y. Yu and H. J. Chong, “A survey of clustering schemes for mobile ad
hoc networks,” IEEE Commun. Surveys Tuts., vol. 7, no. 1, pp. 32–48,
Mar. 2005.

[20] F. Vavak and T. C. Fogarty, “A comparative study of steady state and
generational genetic algorithms for use in nonstationary environments,”
Proc. AISB Workshop Evol. Comput., Brighton, UK, Apr. 1996, pp. 297–
304.

