16,987 research outputs found

    High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications

    Get PDF
    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration

    Multidisciplinary computational aerosciences

    Get PDF
    As the challenges of single disciplinary computational physics are met, such as computational fluid dynamics, computational structural mechanics, computational propulsion, computational aeroacoustics, computational electromagnetics, etc., scientists have begun investigating the combination of these single disciplines into what is being called multidisciplinary computational aerosciences (MCAS). The combination of several disciplines not only offers simulation realism but also formidable computational challenges. The solution of such problems will require computers orders of magnitude larger than those currently available. Such computer power can only be supplied by massively parallel machines because of the current speed-of-light limitation of conventional serial systems. Even with such machines, MCAS problems will require hundreds of hours for their solution. To efficiently utilize such a machine, research is required in three areas that include parallel architectures, systems software, and applications software. The main emphasis of this paper is the applications software element. Examples that demonstrate application software for multidisciplinary problems currently being solved at NASA Ames Research Center are presented. Pacing items for MCAS are discussed such as solution methodology, physical modeling, computer power, and multidisciplinary validation experiments

    T-infinity: The Dependency Inversion Principle for Rapid and Sustainable Multidisciplinary Software Development

    Get PDF
    The CFD Vision 2030 Study recommends that, NASA should develop and maintain an integrated simulation and software development infrastructure to enable rapid CFD technology maturation.... [S]oftware standards and interfaces must be emphasized and supported whenever possible, and open source models for noncritical technology components should be adopted. The current paper presents an approach to an open source development architecture, named T-infinity, for accelerated research in CFD leveraging the Dependency Inversion Principle to realize plugins that communicate through collections of functions without exposing internal data structures. Steady state flow visualization, mesh adaptation, fluid-structure interaction, and overset domain capabilities are demonstrated through compositions of plugins via standardized abstract interfaces without the need for source code dependencies between disciplines. Plugins interact through abstract interfaces thereby avoiding N 2 direct code-to-code data structure coupling where N is the number of codes. This plugin architecture enhances sustainable development by controlling the interaction between components to limit software complexity growth. The use of T-infinity abstract interfaces enables multidisciplinary application developers to leverage legacy applications alongside newly-developed capabilities. While rein, a description of interface details is deferred until the are more thoroughly tested and can be closed to modification

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    Inverse modelling of an aneurysm's stiffness using surrogate-based optimization and fluid-structure interaction simulations

    Get PDF
    Characterization of the mechanical properties of arterial tissues is highly relevant. In this work, we apply an inverse modelling approach to a model accounting for an aneurysm and the distal part of the circulation which can be modified using two independent stiffness parameters. For given values of these parameters, the position of the arterial wall as a function of time is calculated using a forward simulation which takes the fluid-structure interaction (FSI) into account. Using this forward simulation, the correct values of the stiffness parameters are obtained by minimizing a cost function, which is defined as the difference between the forward simulation and a measurement. The minimization is performed by means of surrogate-based optimization using a Kriging model combined with the expected improvement infill criterion. The results show that the stiffness parameters converge to the correct values, both for a zero-dimensional and for a three-dimensional model of the aneurysm

    D.2.1.2 First integrated Grid infrastructure

    No full text

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    • …
    corecore