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Abstract Characterization of the mechanical properties of arterial tissues is
highly relevant. In this work, we apply an inverse modelling approach to a
model accounting for an aneurysm and the distal part of the circulation which
can be modified using two independent stiffness parameters. For given values
of these parameters, the position of the arterial wall as a function of time is cal-
culated using a forward simulation which takes the fluid-structure interaction
(FSI) into account. Using this forward simulation, the correct values of the
stiffness parameters are obtained by minimizing a cost function, which is de-
fined as the difference between the forward simulation and a measurement. The
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minimization is performed by means of surrogate-based optimization using a
Kriging model combined with the expected improvement infill criterion. The
results show that the stiffness parameters converge to the correct values, both
for a zero-dimensional and for a three-dimensional model of the aneurysm.

Keywords Fluid-structure interaction · Aneurysm · Parameter identifica-
tion · Inverse problem · Surrogate model · Expected improvement

1 Introduction

The arterial system is a large and complex three-dimensional network play-
ing a vital role in human well-being. Recent advances in the field of numerical
analysis and the increase in computer power enable detailed, three-dimensional
(3D) fluid-structure interaction (FSI) simulations of, for example, heart valves
[2] and aneurysms in large arteries [13,19]. In these FSI simulations, the inter-
action between the blood flow and the surrounding tissue is taken into account.
However, patient-specific data such as the initial shape, initial stresses, bound-
ary conditions and constitutive data for the tissue are required as input for
these simulations. Non-invasive imaging techniques can provide geometrical
data but it is difficult to directly determine the stiffness parameters of the
tissue. This is of particular interest within the context of (aortic) aneurysms,
where modelling simulations are thought to contribute to a better assessment
of the aneurysm’s risk of rupture.

The goal of this work is to test the feasibility of assessing the stiffness
parameters of an aneurysm in a large artery using inverse modelling. To that
end, two stiffness parameters are defined: one for the aneurysm itself and one
for the distal part of the arterial system. For given values of these parameters,
a forward simulation of the arterial system can be performed, resulting in the
position of the arterial wall as a function of time, information that is easily
available from medical images. A cost function is then defined to quantify the
difference between the wall position in this simulation and in a measurement.
Ideally, this measurement should originate from non-invasive imaging tech-
niques but in this work synthetic data from a simulation is used to provide
the proof of principle. Future work will discuss the difficulties due to the noise
in real measurement data. Yet, the parameter identification technique used
in this work is expected to function well in that case [31]. The values of the
stiffness parameters that minimize the cost function are then determined by
means of surrogate-based optimization [15] (SBO).

Previous parameter identification studies on arteries used one-dimensional
models and adjoint techniques for the optimization [20,21]. In this work, the
physics of the 3D aneurysm model are fully nonlinear. The geometry of the
model is however simplified and not patient-specific. The fluid-structure inter-
action is simulated by coupling [9,11] a black-box computational fluid dynam-
ics (CFD) solver with a black-box computational structural dynamics (CSD)
solver. Consequently, adjoint techniques are not applicable.
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The remainder of this work is organized as follows. Section 2 describes
the surrogate-based optimization technique. In Section 3, the models for the
forward simulation are introduced, followed by the results in Section 4. Finally,
Section 5 presents the conclusions.

2 Surrogate-based optimization

Surrogate-based optimization techniques are applied to expedite the optimiza-
tion of computationally expensive problems [26]. In these optimization tech-
niques, the surrogate model provides a cheap approximation to an expensive
calculation with the simulation code. Surrogate models have been incorporated
in the optimization process in several ways. They can guide the global search
and/or serve as local model for evolutionary optimization algorithms [24,33].
Surrogate models can also be applied in a trust region model-management
framework to optimize systems with complex local behaviour [1]. Moreover,
models with different levels of accuracy can be combined in multi-fidelity tech-
niques [16,14,28].

Another approach to surrogate-based optimization is applying adaptive
sampling strategies, also known as infill criteria, to improve the surrogate
models. The infill criterion is a figure of merit that indicates how interesting
each point in the design space is. Additional sample points are then selected by
optimizing this criterion. The Expected Improvement (EI) infill criterion [18,
23,5] effectively balances between enhancing the global accuracy of the surro-
gate model (exploration) and improving its accuracy near the current optimum
(exploitation). Surrogate-based optimization with the expected improvement
as infill criterion is also known as the Efficient Global Optimization (EGO)
algorithm [18]. This technique requires that the surrogate model provides a
Gaussian probability density function (PDF) at each point in the design space.
For example, Gaussian Process (GP) surrogate methods provide a normal dis-
tribution at each point x, determined by the mean µ(x) and variance σ2(x).

The expected improvement infill criterion is explained graphically in Fig-
ure 1. The cost function f(x), which is calculated with the simulation code,
has been sampled at 7 points. The value of f at each point x is treated as
a random variable Y (x). Assuming that Y (x) is normally distributed with
mean µ(x) and variance σ2(x), the probability density function φ is depicted
for x = 1 and x = 3. The value predicted by the surrogate model is equal to
the mean of this distribution, so ŷ(x) = µ(x). The shaded area corresponds
with the Probability of Improvement (PoI) of Y (x) over the current minimum
fmin, given by

PoI(x) = P (Y (x) ≤ fmin) =
∫ fmin

−∞
φ(Y (x))dY (1)

with φ the normal probability density function. However, this criterion does
not take into account how large the improvement will be. Therefore, the Ex-
pected Improvement (EI) is the first moment of the shaded area, calculated
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Fig. 1: The cost function f(x), which is calculated using the simulation code, together
with a Gaussian process surrogate model. The probability of improvement over the current
optimum fmin is shown for x = 1 and x = 3.
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Fig. 2: Schematic of the complete surrogate-based optimization strategy.

as

EI(x) = E [I(x)] =
∫ fmin

−∞
I(x)φ(Y (x))dY (2a)

for continuous functions with the improvement defined as

I(x) = max(fmin − Y (x), 0). (2b)

Equation (2a) corresponds with every possible improvement I(x) over fmin,
multiplied with the associated likelihood.

In this work, the parameter identification is performed using the SUrro-
gate MOdelling (SUMO) toolbox [15]. The interested reader can certainly find
other packages, e.g. those available at http://www.kernel-machines.org, the
free companion code of [12], the SURROGATES Toolbox [32], and the DiceK-
riging and DiceOptim packages [29]. The complete optimization strategy is
summarized in Figure 2.
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Two parameters (x1 and x2) are identified. They can both vary from -1 to
1, so the parameter space is given by

{(x1, x2)| − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}. (3)

First, an initial set of samples is generated by an optimal maximin Latin hy-
percube design [7], together with the corner points of the parameter space.
Adding the corner points improves the accuracy of the Kriging model in the
vicinity of those points. The cost function value f at all initial sample points
is evaluated using the simulation code before the first surrogate model is con-
structed.

The surrogate model of the relation between the stiffness parameters and
the cost function is a Kriging model. Kriging is part of the broader class of
Gaussian process methods. For a description of Kriging, the reader is referred
to the extensive literature on this topic [30,6]. The model has a constant re-
gression term and uses the Matérn covariance function with ν = 3/2 and
isotropic distance measure [22]. The Matérn covariance function has been cho-
sen because it yields a smooth surrogate model, whereas surrogate models us-
ing several other functions displayed unphysical wiggles. The Kriging model’s
hyperparameters are determined by Maximum Likelihood Estimation (MLE)
using a Sequential Quadratic Programming (SQPLab) method which takes
into account derivative information [3].

Once the Kriging surrogate model has been constructed, the maximum
of the expected improvement is calculated using the DIviding RECTangles
(DIRECT) algorithm [17]. At the point in the parameter space where the ex-
pected improvement is maximal, a new sample point is added. Subsequently,
the value of the cost function f at this new sample point is evaluated with
the simulation code. When this new sample has been calculated, a new Krig-
ing surrogate model is constructed and the process is repeated. The Kriging
surrogate model is thus only used to calculate the expected improvement and
thus to determine the location of the following sample point in the parameter
space.

As the cost function has been defined as the difference between the forward
simulation and a measurement, the values of the parameters for which f is close
to zero have to be determined. The optimization is halted when a sample point
with a cost function value f lower than the optimization tolerance ε has been
calculated by the simulation code (or when 100 samples have been calculated).

3 Simulation code

In this section, the physical models used by the simulation code are described.
The boundary conditions for the artery with the aneurysm are provided by
an inlet model (Section 3.1) and an outlet model (Section 3.2). The artery
itself is first modelled using a lumped parameter zero-dimensional model (Sec-
tion 3.3), resulting in fast forward simulations to allow for extensive validation
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Fig. 3: Schematic of the inlet model, the zero-dimensional model of the artery with the
aneurysm and the outlet model. In a second step, the zero-dimensional model of the artery
with the aneurysm is replaced by a three-dimensional model.

of the parameter identification strategy and analysis of the influence of its pa-
rameters. The complete model is depicted in Figure 3. In a second step, this
zero-dimensional model is replaced by a detailled three-dimensional model
(Section 3.4). The parameter identification studies with the zero-dimensional
model and with the three-dimensional model are thus completely independent.

3.1 Inlet model

At the inlet of the artery, the blood flow rate Qh coming from the heart is
prescribed as a periodic function of the time t [25]. Therefore, the time since
the beginning of the current heartbeat is defined as t̃ = mod(t, Tb), with mod
indicating the modulo operation and Tb the period of one heartbeat. With this
definition, the blood flow rate is given by

Qh(t) =

{
At̃2 + Bt̃ : t̃ < Ts

0 : t̃ ≥ Ts.
(4)

The parameters A and B are calculated from the stroke volume SV and the
duration of the systole Ts, which is approximated as

√
Tb/3.

A = −6SV

T 3
s

and B =
6SV

T 2
s

. (5)

An example of this function for two periods is displayed in Figure 4.

3.2 Outlet model

At the outlet of the artery, a modified windkessel model (Figure 3) determines
the relation between the pressure and the blood flow rate. This model divides
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Fig. 4: The blood flow rate Qh coming from the inlet model as a function of time t for
SV = 8·10−5 m3 and Tb = 1 s.

the arterial tree into a proximal region (subscript p) with the arteries close
to the heart and a distal region (subscript d) with the arteries further away
as the arterial properties differ between those regions. The compliance of the
large proximal arteries is referred to as Cp, while the compliance of the distal
arteries is named Cd. The inductor L represents the inertia of the blood flow.
Finally, R and Pv are the peripheral resistance and the mean venous pressure,
respectively [27,25].

Using Kirchhoff’s voltage and current laws, this modified windkessel model
is characterized as

Cp
dPp(t)

dt
= Qp(t) − Qpd(t) (6a)

Cd
dPd(t)

dt
= Qpd(t) −

Pd(t) − Pv

R
(6b)

L
dQpd(t)

dt
= Pp(t) − Pd(t). (6c)

These equations are discretized in time with the first-order backward Euler
scheme. The resulting linear equations

Cp

∆t
Pn+1

p + Qn+1
pd =

Cp

∆t
Pn

p + Qn+1
p (7a)(

Cd

∆t
+

1
R

)
Pn+1

d − Qn+1
pd =

Cd

∆t
Pn

d +
Pv

R
(7b)

−Pn+1
p + Pn+1

d +
L

∆t
Qn+1

pd =
L

∆t
Qn

pd (7c)

can be solved in every time step, yielding Pn+1
p if Qn+1

p is known. The super-
script n indicates the time t = n∆t with ∆t the time step size. The variables
Pp, Pd and Qpd are all initialized to zero.
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Table 1: Parameters of the inlet and outlet models [25].

Cd 1.125·10−9 m3/Pa 0.15ml/mmHg
L 3.333·106 Pa/(m3·s) 0.025mmHg/(ml·s)
R 1.333·108 Pa·s/m3 1mmHg·s/ml
Pv -8·103 Pa -60 mmHg
SV 8·10−5 m3 80ml
Tb 1 s

The distention of the artery with the aneurysm is significantly influenced
by the pressure at its outlet. In turn, this pressure depends on the compliance
of the proximal and distal arteries. Therefore, the compliance Cp is determined
by the first stiffness parameter x1. As x1 increases from -1 to 1, the value of Cp

decreases from 2 to 1/2 times its nominal value of 1.45 ml/mmHg according
to

Cp =
1.45

5
4 + 3

4x1

. (8)

All other parameters of the inlet and outlet models are listed in Table 1.
The mean venous pressure Pv is manually adjusted so that Pp(t) is positive
throughout the simulation but with a minimal value close to zero since a
linear elastic constitutive equation is applied. Consequently, all pressures in the
simulation are relative to the minimal pressure in a heartbeat. It is thus also
assumed that the initial, stressless geometry corresponds with this minimal
pressure. In this case, the manual adjustment of Pv results in a negative value.

3.3 Zero-dimensional aneurysm model

The zero-dimensional model of the artery with the aneurysm consists of a
compliance Ca in combination with a resistance Ra (see Figure 3). It is char-
acterized by

Ca
dPa(t)

dt
= Qh(t) − Pa(t) − Pp(t)

Ra
, (9)

which becomes (
Ca

∆t
+

1
Ra

)
Pn+1

a =
Ca

∆t
Pn

a + Qn+1
h +

Pn+1
p

Ra
(10)

after time discretization. This lumped parameter model is coupled with the
inlet model through Qh and to the outlet model through Pp. In a forward sim-
ulation with this zero-dimensional aneurysm model, Equations (7) and Equa-
tion (10) are combined into a linear system in the unknowns Pn+1

a , Pn+1
p ,

Pn+1
d and Qn+1

pd . As Qn+1
h can simply be calculated from Equation (4), it is

not treated as an unknown.
The nominal values of Ra and Ca are calculated by assuming the artery is

a straight tube with a length ` and a uniform circular cross section a = πr2
o
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Table 2: Parameters of the zero-dimensional and three-dimensional model of the artery with
the aneurysm.

ro 0.005m h 0.003 m
` 0.06m E 7.5·105 Pa

µf 0.003Pa·s ν 0.45
ρf 103 kg/m3 ρs 1.2·103 kg/m3

with ro the initial radius. The resistance Ra is then obtained from Poiseuille’s
equation

Ra =
8µf `

πr4
o

(11)

with µf the dynamic viscosity of blood. The compliance Ca is defined as

Ca =
V

ρfc2
, (12)

with V the volume of the artery, ρf the density of blood and c the wave speed.
Using the Moens-Korteweg approximation, the pulse wave speed is given by

c =

√
Eh

2ρfro
, (13)

with E the Young’s modulus of the arterial wall and h its thickness. Using
the values listed in Table 2, the nominal values of Ra and Ca are respectively
4.125·10−11 Pa·s/m3=0.0055mmHg·s/ml and 3.733·105 m3/Pa=0.0028ml/mmHg.
The wave speed c is approximately 15 m/s, which is rather high.

The distention of the artery depends on its compliance, so Ca is modified
using the second stiffness parameter x2. This is achieved by multiplying the
nominal value of E with a factor containing x2

E = 750000
(

1 +
1
3
x2

)
. (14)

As x2 increases from -1 to 1, the value of Ca thus decreases from 3/2 to 3/4
times its nominal value.

The initial value of the artery’s inner radius is listed in Table 2. After each
time step, this radius is calculated from the artery’s volume

rn+1 =

√
V n+1

π`
(15)

which is in turn obtained by integrating the net blood inflow

V n+1 = V n +
(
Qn+1

h − Qn+1
p

)
∆t. (16)

For given inputs x1 and x2, the output of this aneurysm model combined with
the inlet and outlet models is the value of r in all time steps. Each forward
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Fig. 5: Schematic of the geometry (left), together with the grid in the fluid (middle) and
structure (right) domain in the three-dimensional model of the artery with the aneurysm.
The geometry is axisymmetric around the x-axis and symmetric around a plane through the
origin with the x-axis as normal.

simulation continues for 10 heartbeats with a time step ∆t = 0.01 s. This time
step size has been selected based on a time step convergence study.

To mimic the measurement from an imaging technique, a reference simu-
lation is performed with x∗

1 and x∗
2, yielding r∗ in all time steps. Of course,

the values of x∗
1 and x∗

2 are further assumed unknown as they have to be
determined by the inverse modelling. The cost function is finally defined as

f0D(x1, x2) =
∆t

Tb

∑
n |rn(x1, x2) − rn∗|

maxn(rn∗) − minn(rn∗)
. (17)

In the above equation, the index n is limited to the last heartbeat of the
simulation.

3.4 Three-dimensional aneurysm model

In the three-dimensional model, the artery with the aneurysm is divided into
a fluid domain Ωf and a structure domain Ωs (Figure 5). Initially, the radius
at the inlet and outlet is ro, the radius at the aneurysm is 2ro. This simplified
geometry is axisymmetric around the x-axis and symmetric around a plane
through the origin with the x-axis as normal. The boundaries of the fluid and
structure domain are indicated as Γf and Γs, respectively. The fluid-structure
interface Γi = Γf ∩ Γs is the common boundary of these domains.

The unsteady blood flow is governed by the conservation of mass and the
Navier-Stokes equations, given by

∂ρf

∂t
+ ∇ · (ρfv) = 0 (18a)
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∂ρfv
∂t

+ ∇ · (ρfvv) −∇ · σ̄f = 0 (18b)

for each point in Ωf . In these equations, ρf is the blood density and v the
flow velocity. Blood is modelled as an incompressible, Newtonian fluid with
dynamic viscosity µf , so the stress tensor σ̄f is defined as

σ̄f = −pĪ + 2µf ε̄f (19a)

with p the pressure and Ī the unit tensor. The rate of strain tensor ε̄f is given
by

ε̄f =
1
2

[
∇v + (∇v)T

]
. (19b)

The deformation u of the arterial wall is determined by the conservation
of momentum

ρs
d2u
dt2

−∇ · σ̄s = 0 (20)

for each point in Ωs with ρs the density of the arterial wall and σ̄s the Cauchy
stress tensor. In these large displacement calculations, the relation between
the second Piola-Kirchhoff stress tensor S̄s and the Green-Lagrange strain
tensor Ēs is imposed by the constitutive equation of the material. The second
Piola-Kirchhoff stress tensor combines forces in the reference configuration
with areas in the reference configuration, whereas the Cauchy stress tensor
combines forces in the deformed configuration with areas in the deformed
configuration. The relation between these tensors is given by

S̄ = JF̄−1σ̄sF̄
−T (21)

with F̄ the deformation gradient tensor and J = det(F̄ ). The Green-Lagrange
strain tensor for large displacements is given by

Ēs =
1
2

[
∇u + (∇u)T + (∇u)T ∇u

]
. (22)

All displacements are relative to the initial (reference) geometry.
The equilibrium conditions on the fluid-structure interface are the kine-

matic condition

v =
du
dt

(23a)

and the dynamic condition

σ̄f · nf = −σ̄s · ns, (23b)

which stipulate that the velocity and the stress have to be the same on both
sides of the interface. The vector nf,s is the unit normal that points out-
wards from the domain Ωf,s. A Dirichlet-Neumann decomposition of the fluid-
structure interaction problem is applied, so the flow equations are solved with
a given displacement of the fluid-structure interface and the structural equa-
tions are solved with a given stress on the interface.
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The flow equations (Equations (18)) and the structural equations (Equa-
tion (20)) are solved by coupling a flow solver (Fluent 12.1, Ansys Inc.) with a
structural solver (Abaqus 6.7, Dassault Systèmes). This is the so-called parti-
tioned approach to the simulation of fluid-structure interaction. In every time
step, coupling iterations are performed between these solvers to enforce the
equilibrium conditions (Equations (23)). A simple scheme for these coupling
iterations would be to solve the flow equations for a given interface displace-
ment, followed by solving the structural equations using the resulting stress
on the interface and finally giving the resulting interface displacement back
to the flow solver. However, this so-called Gauss-Seidel scheme does not con-
verge for this case, which is well understood [4,10,8]. Instead, the Interface
Quasi-Newton algorithm with an approximation for the Inverse of the Jaco-
bian from a Least-Squares model (IQN-ILS) has been applied [9,11]. This
coupling scheme uses the displacement and stress on the fluid-structure in-
terface during the coupling iterations to accelerate the convergence of these
iterations. Moreover, it treats both solvers as black boxes.

At the inlet of the fluid domain, the blood flow rate Qh from the inlet model
is imposed. The pressure level in the incompressible fluid is only known up to
an arbitrary constant which is fixed by applying a zero-pressure boundary
condition at the outlet. After each flow calculation, the blood flow rate Qp at
the outlet is calculated and given to the outlet model which then determines
Pp. The physically correct pressure level is then obtained by adding Pp to the
pressure in the entire fluid domain. The structure is clamped at both ends
in the axial and circumferential direction. Both the fluid and the structure
domain are initially at rest and stressless.

The finite volume flow solver solves the Navier-Stokes equations in Arbi-
trary Lagrangian-Eulerian (ALE) formulation using the Pressure-Implicit with
Splitting of Operators (PISO) pressure-velocity coupling. The time discretiza-
tion is first-order backward Euler. The momentum equations are discretized
in space using the second-order upwind scheme, while the pressure is interpo-
lated from the cells to the faces using momentum equation coefficients. The
grid throughout the fluid domain is adapted to the displacement of the fluid-
structure interface by replacing the cell edges with springs. The finite element
structural solver uses implicit Hilber-Hughes-Taylor time integration with a
numerical dissipation factor of αs = −0.15. It takes into account the geomet-
ric nonlinearities due to the large deformation of the structure. However, the
deformations are in the order of 5 %, so small deformation stress-strain mea-
sures would have been sufficient. The constitutive equation for the structure is
a linear elastic material law with Young’s modulus E and Poisson’s coefficient
ν.

All parameters have the same value as for the zero-dimensional model
(Table 2). The fluid grid consists of 4160 triangular prisms and the structural
grid contains 240 brick elements with 8 nodes. The time step is ∆t = 0.005 s,
which is divided into smaller increments in the structural solver.

As in Equation (14) for the zero-dimensional model, the stiffness of the
aneurysm is modified by multiplying the nominal value of E with the same
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Fig. 6: The radius r (left) and blood flow rate Qpd (right) as a function of time t in a
simulation with the zero-dimensional aneurysm model and nominal parameter values (x1 =
x2 = 0).

factor containing x2. However, the stiffness is only modified in the light grey
part of the structure as depicted in Figure 5. The cost function is also identical
to the one for the zero-dimensional model in Equation (17). The radius r
is measured at the intersection between the y-axis and the fluid-structure
interface.

4 Results

4.1 Zero-dimensional aneurysm model

The inlet and outlet models are first coupled to the zero-dimensional aneurysm
model. The radius r and blood flow rate Qpd as a function of time t for nominal
parameter values (x1 = x2 = 0) are depicted in Figure 6. It can be observed
that the distention and flow rate become periodic after a few heartbeats; the
same is true for the other variables.

The dependence of the total number of samples to reach the optimum
on the location of the optimum in the design space is depicted in Figure 7.
The optimization has been performed for 121 positions of the optimum, uni-
formly distributed in the design space. Therefore, x∗

1 and x∗
2 are increased

independently from -1 to 1 in steps of 0.2. For each position of the optimum,
a parameter identification has been performed and the number of samples has
been counted. Each of these calculations has been performed with the same
11 initial samples. If x∗

1 and x∗
2 are equal to ±1, then the criterion f0D < ε

is satisfied immediately once all initial samples have been calculated as the
corners of the design space are included in the set of initial samples. The max-
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of the optimum for tolerance ε = 1% (left) and 0.1% (right). All these optimizations have
been performed with 11 initial samples and the zero-dimensional model.

imal difference in total number of samples throughout the design space is 11
for ε = 1 % and 43 for ε = 0.1 %, so decreasing the optimization tolerance
increases the dependence of the total number of samples on the location of
the optimum. Decreasing the optimization tolerance ε from 1% (Figure 7a) to
0.1% (Figure 7b) approximately causes an increase in the number of samples
(averaged over all values of x∗

1 and x∗
2) from 14.5 to 19.6.

Figure 8 shows the influence of the number initial samples on the total num-
ber of samples before the criterion f0D < ε is reached. For each combination
of ε and the number of initial samples, the optimization has been performed
for 121 positions of the optimum, uniformly distributed in the design space.
Therefore, x∗

1 and x∗
2 are again increased independently from -1 to 1 in steps

of 0.2. If at least 11 initial samples are generated, the optimizer finds the
minimum of f0D after about 2 or 3 samples once the evaluation of the initial
samples is complete if ε = 1 % and after about 10 samples if ε = 0.1%. If fewer
than 11 initial samples are used, the total number of samples remains more
or less constant. The standard deviation increases significantly as the opti-
mization tolerance ε is reduced from 1 % to 0.1%, which means that the total
number of samples becomes more sensitive to the location of the optimum.
This confirms the information obtained from Figure 7.

As mentioned before, the initial set of samples is generated by a Latin
hypercube design, together with the corner points of the parameter space.
Because the Latin hypercube design can contain one of the corners of the
design space and duplicate samples are removed, not every number of initial
samples in the range 4 to 24 can be realized. Consequently, the total number
of samples cannot be shown for each number of initial samples in that range.
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Fig. 8: The total number of samples to reach the optimum as a function of the number of
initial samples for tolerance ε = 1 % (left) and 0.1% (right). For each combination of ε and
the number of initial samples, the optimization has been performed for a range of x∗

1 and
x∗
2. The mean±standard deviation from all these optimizations with the zero-dimensional

model is depicted.

The difference between x∗
i and xi (i = 1, 2) during a representative op-

timization is shown in Figure 9a. In this optimization, there were 11 initial
samples, ε = 1%, x∗

1 = −0.2 and x∗
2 = −0.4. The evolution of f0D during

the same optimization is depicted in Figure 9b. It can be observed that the
convergence is not monotonic as the surrogate-based optimization balances
between exploration and exploitation. Nevertheless, the difference between x∗

i

and xi is small when f0D is small, which gives confidence for situations where
x∗

i is really unknown.
Figure 9a shows that the error on the parameters is smaller than 10−2 at

convergence. To identify the parameters with a similar accuracy using uniform
sampling of the parameter space, a step size no larger than 10−2 should be
applied. If the parameter space Equation (3) were uniformly sampled with this
step size, then 40000 calculations with the simulation code would have to be
performed. By contrast, the surrogate model only requires approximately 50
calculations. Moreover, the computational cost of the surrogate model itself
is low compared to the simulation code. As a result, the surrogate model
drastically reduces the computational cost compared to uniform sampling.

The convergence path for this optimization can be seen in Figure 10a. Only
the additional samples (i.e. the samples added after the initial samples) are
indicated. It can be observed that the optimization algorithm has not only
added a cluster of samples in the neighbourhoud of the optimum but also
individual samples in other parts of the design space. Figure 10b shows the
final Kriging model that is constructed with all samples. The coloured surface
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Fig. 9: The evolution of |x∗
i − xi| (left) and f0D (right) in an optimization with the zero-

dimensional model using 11 initial samples, ε = 1 %, x∗
1 = −0.2 and x∗

2 = −0.4.

in this figure is the surrogate model. Despite the non-uniform distribution of
the samples, this surrogate model does not display wiggles or peaks in between
the samples. This figure also shows that the maximal cost function value is
approximately 0.3, which means that the difference between the simulation
and the measurement is up to 30 %. This percentage is an average over all
time steps and with respect to the maximal displacement in the measurement.

4.2 Three-dimensional aneurysm model

As the results in the previous section became periodic quickly, only 3 heart-
beats are simulated with the three-dimensional model. Also, 11 initial sam-
ples are used as this resulted in a low total number of samples with the
zero-dimensional model. The optimum that needs to be found is located at
x∗

1 = −0.2 and x∗
2 = −0.4. The radius r and blood flow rate Qpd as a function

of time t at the optimum are depicted in Figure 11.
Each forward simulation takes approximately 6 hours on 3 cores of an Intel

Xeon X5355 2.66GHz processor. In each time step, on average 5.13 coupling
iterations per time step are required to reach the convergence criterion of
the fluid-structure interaction coupling iterations. Figure 12 depicts velocity
vectors in the fluid and contours of the von Mises stress in the structure at
three different instants in the last period for x∗

1 = −0.2 and x∗
2 = −0.4.

The difference between x∗
i and xi (i = 1, 2) is shown in Figure 13, together

with the evolution of f3D during the optimization. It can again be observed
that the convergence is not monotonic but that |x∗

i − xi| is small when f3D is
small. The convergence tolerance ε = 1 % is reached after 15 samples, while 42
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Fig. 12: Velocity vectors in the fluid and contours of the von Mises stress in the structure
at 2.00 s, 2.25 s and 2.50 s in a simulation with the three-dimensional model and parameter
values x∗

1 = −0.2 and x∗
2 = −0.4. The velocity range is 0 (blue) to 5m/s (red) and the stress

range is 5·102 Pa (blue) to 25·103 Pa (red).

samples are required to reach the tolerance ε = 0.1%. The minimum of f3D

over all samples is 8.92·10−4.
The convergence path for this optimization can be seen in Figure 14a, with

only the additional samples indicated. The optimization algorithm has posi-
tioned most additional samples near the optimum and the distance between
the samples increases further away from the optimum. Figure 14b shows the
final Kriging model that is constructed with all samples. Again, this Kriging
surrogate model is smooth in between the samples, despite the non-uniform
distribution of the samples. For the 3D model, the maximal cost function
value is approximately 0.2, which signifies a difference of up to 20% between
the simulation and the measurement. Despite the nonlinearities in the physics,
the relation between the parameters and the cost function has a cone shape,
which is straightforward to optimize.
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5 Conclusions

The increase in computer power and the use of surrogate-based optimization
make it feasible to identify an aneurysm’s stiffness using a three-dimensional
FSI simulation. Both the coupling algorithm for the three-dimensional parti-
tioned fluid-structure interaction simulations and the algorithm for the surrogate-
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based optimization treat the flow solver and structural solver as black boxes.
The influence of the parameters in the surrogate-based optimization has first
been analyzed using a zero-dimensional model.

However, the geometry and models in this work are simplified. It would also
be very expensive to identify a large number of parameters. Future work will be
to use patient-specific data for the geometry, input model and output model.
Subsequently, real measurements instead of synthetic measurement data from
a simulation will be incorporated, as the applied surrogate-based optimization
can cope with noisy data if a suitable surrogate model is used [31].
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