1,370 research outputs found

    Ensemble learning with dynamic weighting for response modeling in direct marketing

    Get PDF
    Response modeling, a key to successful direct marketing, has become increasingly prevalent in recent years. However, it practically suffers from the difficulty of class imbalance, i.e., the number of responding (target) customers is often much smaller than that of the non-responding customers. This issue would result in a response model that is biased to the majority class, leading to the low prediction accuracy on the responding customers. In this study, we develop an Ensemble Learning with Dynamic Weighting (ELDW) approach to address the above problem. The proposed ELDW includes two stages. In the first stage, all the minority class instances are combined with different majority class instances to form a number of training subsets, and a base classifiers is trained in each subset. In the second stage, the results of the base classifiers are dynamically integrated, in which two factors are considered. The first factor is the cross entropy of neighbors in each subset, and the second factor is the feature similarity to the minority class instances. In order to evaluate the performance of ELDW, we conduct experimental studies on 10 imbalanced benchmark datasets. The results show that compared with other state-of-the-art imbalance classification algorithms, ELDW achieves higher accuracy on the minority class. Last, we apply the ELDW to a direct marketing activity of an insurance company to identify the target customers under a limited budget

    Modeling Customer Engagement with churn and upgrade prediction

    Get PDF
    Modeling customer engagement assists a business in identifying the high risk and high potential customers. A way to define high risk and high potential customers in a Software-as-a-Service (SaaS) business is to define them as customers with high potential to churn or upgrade. Identifying the high risk and high potential customers in time can help the business retain and grow revenue. This thesis uses churn and upgrade prediction classifiers to define a customer engagement score for a SaaS business. The classifiers used and compared in the research were logistic regression, random forest and XGBoost. The classifiers were trained using data from the case-company containing customer data such as user count and feature usage. To tackle class imbalance, the models were also trained with oversampled training data. The hyperparameters of each classifier were optimised using grid search. After training the models, performance of the classifiers on a test data was evaluated. In the end, the XGBoost classifiers outperformed the other classifiers in churn prediction. In predicting customer upgrades, the results were more mixed. Feature importances were also calculated, and the results showed that the importances differ for churn and upgrade prediction

    QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction Using Interpretable Hybrid Quantum - Classical Neural Network

    Full text link
    Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction. However, traditional machine-learning models struggle with large-scale datasets and complex relationships, hindering real-world data collection. This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets. Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets. Experimental evaluations on a benchmark dataset demonstrate QAmplifyNet's superiority over classical models, quantum ensembles, quantum neural networks, and deep reinforcement learning. Its proficiency in handling short, imbalanced datasets makes it an ideal solution for supply chain management. To enhance model interpretability, we use Explainable Artificial Intelligence techniques. Practical implications include improved inventory control, reduced backorders, and enhanced operational efficiency. QAmplifyNet seamlessly integrates into real-world supply chain management systems, enabling proactive decision-making and efficient resource allocation. Future work involves exploring additional quantum-inspired techniques, expanding the dataset, and investigating other supply chain applications. This research unlocks the potential of quantum computing in supply chain optimization and paves the way for further exploration of quantum-inspired machine learning models in supply chain management. Our framework and QAmplifyNet model offer a breakthrough approach to supply chain backorder prediction, providing superior performance and opening new avenues for leveraging quantum-inspired techniques in supply chain management

    Predicting Customer Retention of an App-Based Business Using Supervised Machine Learning

    Get PDF
    Identification of retainable customers is very essential for the functioning and growth of any business. An effective identification of retainable customers can help the business to identify the reasons of retention and plan their marketing strategies accordingly. This research is aimed at developing a machine learning model that can precisely predict the retainable customers from the total customer data of an e-learning business. Building predictive models that can efficiently classify imbalanced data is a major challenge in data mining and machine learning. Most of the machine learning algorithms deliver a suboptimal performance when introduced to an imbalanced dataset. A variety of algorithm level (cost sensitive learning, one class learning, ensemble methods ) and data level methods (sampling, feature selection) are widely used to address the class imbalance in the retention prediction problems. This research employs a quantitative and inductive approach to build a supervised machine learning model that addresses the class imbalance problem and efficiently predict the customer retention. The retention Precision is used as the evaluation metrics for this research. The research evaluates the performance of different sampling methods (Random Under – Sampling, Random Over – Sampling, SMOTE) on different single and ensemble machine learning models. The results show that Random Under-Sampling used along with XGBoost classifier yields the best precision in identifying the retention class. The best model evolved in the research was also used to predict retainable customers from the recent unknown customer data, and could attain a retention precision of 57.5%

    Negative Correlation Learning for Customer Churn Prediction: A Comparison Study

    Get PDF
    Recently, telecommunication companies have been paying more attention toward the problem of identification of customer churn behavior. In business, it is well known for service providers that attracting new customers is much more expensive than retaining existing ones. Therefore, adopting accurate models that are able to predict customer churn can effectively help in customer retention campaigns and maximizing the profit. In this paper we will utilize an ensemble of Multilayer perceptrons (MLP) whose training is obtained using negative correlation learning (NCL) for predicting customer churn in a telecommunication company. Experiments results confirm that NCL based MLP ensemble can achieve better generalization performance (high churn rate) compared with ensemble of MLP without NCL (flat ensemble) and other common data mining techniques used for churn analysis

    Modeling the Telemarketing Process using Genetic Algorithms and Extreme Boosting: Feature Selection and Cost-Sensitive Analytical Approach

    Full text link
    Currently, almost all direct marketing activities take place virtually rather than in person, weakening interpersonal skills at an alarming pace. Furthermore, businesses have been striving to sense and foster the tendency of their clients to accept a marketing offer. The digital transformation and the increased virtual presence forced firms to seek novel marketing research approaches. This research aims at leveraging the power of telemarketing data in modeling the willingness of clients to make a term deposit and finding the most significant characteristics of the clients. Real-world data from a Portuguese bank and national socio-economic metrics are used to model the telemarketing decision-making process. This research makes two key contributions. First, propose a novel genetic algorithm-based classifier to select the best discriminating features and tune classifier parameters simultaneously. Second, build an explainable prediction model. The best-generated classification models were intensively validated using 50 times repeated 10-fold stratified cross-validation and the selected features have been analyzed. The models significantly outperform the related works in terms of class of interest accuracy, they attained an average of 89.07\% and 0.059 in terms of geometric mean and type I error respectively. The model is expected to maximize the potential profit margin at the least possible cost and provide more insights to support marketing decision-making
    • …
    corecore