14 research outputs found

    Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating

    Get PDF
    AbstractSeizure activity in EEG recordings can persist for hours with seizure dynamics changing rapidly over time and space. To characterise the spatiotemporal evolution of seizure activity, large data sets often need to be analysed. Dynamic causal modelling (DCM) can be used to estimate the synaptic drivers of cortical dynamics during a seizure; however, the requisite (Bayesian) inversion procedure is computationally expensive. In this note, we describe a straightforward procedure, within the DCM framework, that provides efficient inversion of seizure activity measured with non-invasive and invasive physiological recordings; namely, EEG/ECoG. We describe the theoretical background behind a Bayesian belief updating scheme for DCM. The scheme is tested on simulated and empirical seizure activity (recorded both invasively and non-invasively) and compared with standard Bayesian inversion. We show that the Bayesian belief updating scheme provides similar estimates of time-varying synaptic parameters, compared to standard schemes, indicating no significant qualitative change in accuracy. The difference in variance explained was small (less than 5%). The updating method was substantially more efficient, taking approximately 5–10min compared to approximately 1–2h. Moreover, the setup of the model under the updating scheme allows for a clear specification of how neuronal variables fluctuate over separable timescales. This method now allows us to investigate the effect of fast (neuronal) activity on slow fluctuations in (synaptic) parameters, paving a way forward to understand how seizure activity is generated

    Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions

    Get PDF
    State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods is poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More generally, our study demonstrates that the combined use of optogenetics and fMRI provides a powerful new tool for evaluating computational methods designed to estimate causal interactions between distributed brain regions

    Dynamic causal modelling of seizure activity in a rat model

    Get PDF
    This paper presents a physiological account of seizure activity and its evolution over time using a rat model of induced epilepsy. We analyse spectral activity recorded in the hippocampi of three rats who received kainic acid injections in the right hippocampus. We use dynamic causal modelling of seizure activity and Bayesian model reduction to identify the key synaptic and connectivity parameters that underlie seizure onset. Using recent advances in hierarchical modelling (parametric empirical Bayes), we characterise seizure onset in terms of slow fluctuations in synaptic excitability of specific neuronal populations. Our results suggest differences in the pathophysiology – of seizure activity in the lesioned versus the non-lesioned hippocampus – with pronounced changes in excitation-inhibition balance and temporal summation on the lesioned side. In particular, our analyses suggest that marked reductions in the synaptic time constant of the deep pyramidal cells and the self-inhibition of inhibitory interneurons (in the lesioned hippocampus) are sufficient to explain changes in spectral activity. Although these synaptic changes are consistent over rats, the resulting electrophysiological phenotype can be quite diverse

    Dynamic causal modelling of fluctuating connectivity in resting-state EEG

    Get PDF
    Functional and effective connectivity are known to change systematically over time. These changes might be explained by several factors, including intrinsic fluctuations in activity-dependent neuronal coupling and contextual factors, like experimental condition and time. Furthermore, contextual effects may be subject-specific or conserved over subjects. To characterize fluctuations in effective connectivity, we used dynamic causal modelling (DCM) of cross spectral responses over 1- min of electroencephalogram (EEG) recordings during rest, divided into 1-sec windows. We focused on two intrinsic networks: the default mode and the saliency network. DCM was applied to estimate connectivity in each time-window for both networks. Fluctuations in DCM connectivity parameters were assessed using hierarchical parametric empirical Bayes (PEB). Within-subject, between-window effects were modelled with a second-level linear model with temporal basis functions as regressors. This procedure was conducted for every subject separately. Bayesian model reduction was then used to assess which (combination of) temporal basis functions best explain dynamic connectivity over windows. A third (betweensubject) level model was used to infer which dynamic connectivity parameters are conserved over subjects. Our results indicate that connectivity fluctuations in the default mode network and to a lesser extent the saliency network comprised both subject-specific components and a common component. For both networks, connections to higher order regions appear to monotonically increase during the 1- min period. These results not only establish the predictive validity of dynamic connectivity estimates - in virtue of detecting systematic changes over subjects - they also suggest a network-specific dissociation in the relative contribution of fluctuations in connectivity that depend upon experimental context. We envisage these procedures could be useful for characterizing brain state transitions that may be explained by their cognitive or neuropathological underpinnings

    Dynamic causal modelling of fluctuating connectivity in resting-state EEG

    Get PDF
    Functional and effective connectivity are known to change systematically over time. These changes might be explained by several factors, including intrinsic fluctuations in activity-dependent neuronal coupling and contextual factors, like experimental condition and time. Furthermore, contextual effects may be subject-specific or conserved over subjects. To characterize fluctuations in effective connectivity, we used dynamic causal modelling (DCM) of cross spectral responses over 1- min of electroencephalogram (EEG) recordings during rest, divided into 1-sec windows. We focused on two intrinsic networks: the default mode and the saliency network. DCM was applied to estimate connectivity in each time-window for both networks. Fluctuations in DCM connectivity parameters were assessed using hierarchical parametric empirical Bayes (PEB). Within-subject, between-window effects were modelled with a second-level linear model with temporal basis functions as regressors. This procedure was conducted for every subject separately. Bayesian model reduction was then used to assess which (combination of) temporal basis functions best explain dynamic connectivity over windows. A third (between-subject) level model was used to infer which dynamic connectivity parameters are conserved over subjects. Our results indicate that connectivity fluctuations in the default mode network and to a lesser extent the saliency network comprised both subject-specific components and a common component. For both networks, connections to higher order regions appear to monotonically increase during the 1- min period. These results not only establish the predictive validity of dynamic connectivity estimates - in virtue of detecting systematic changes over subjects - they also suggest a network-specific dissociation in the relative contribution of fluctuations in connectivity that depend upon experimental context. We envisage these procedures could be useful for characterizing brain state transitions that may be explained by their cognitive or neuropathological underpinnings

    Dynamic Causal Modelling of Dynamic Dysfunction in NMDA-Receptor Antibody Encephalitis

    Get PDF
    Using electroencephalography (EEG) dynamic brain function can be measured and its abnormalities identified and described. However, inferring pathological mechanisms from EEG recordings is an ill-posed, inverse problem. Here we illustrate the use of neural mass model based dynamic causal modelling to address this inverse problem. Using Bayesian model inversion and model comparison, DCM allows evaluation of different hypotheses regarding pathomechanisms leading to dynamic brain dysfunction in NMDA receptor encephalitis

    Dynamic effective connectivity in resting state fMRI

    Get PDF
    Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dynamic functional connectivity in terms of directed effective connectivity among brain regions, we introduce a novel method to identify dynamic effective connectivity using spectral dynamic causal modelling (spDCM). We used parametric empirical Bayes (PEB) to model fluctuations in directed coupling over consecutive windows of resting state fMRI time series. Hierarchical PEB can model random effects on connectivity parameters at the second (between-window) level given connectivity estimates from the first (within-window) level. In this work, we used a discrete cosine transform basis set or eigenvariates (i.e., expression of principal components) to model fluctuations in effective connectivity over windows. We evaluated the ensuing dynamic effective connectivity in terms of the consistency of baseline connectivity within default mode network (DMN), using the resting state fMRI from Human Connectome Project (HCP). To model group-level baseline and dynamic effective connectivity for DMN, we extended the PEB approach by conducting a multilevel PEB analysis of between-session and between-subject group effects. Model comparison clearly spoke to dynamic fluctuations in effective connectivity - and the dynamic functional connectivity these changes explain. Furthermore, baseline effective connectivity was consistent across independent sessions - and notably more consistent than estimates based upon conventional models. This work illustrates the advantage of hierarchical modelling with spDCM, in characterizing the dynamics of effective connectivity.ope

    The connected brain: Causality, models and intrinsic dynamics

    Get PDF
    Recently, there have been several concerted international efforts - the BRAIN initiative, European Human Brain Project and the Human Connectome Project, to name a few - that hope to revolutionize our understanding of the connected brain. Over the past two decades, functional neuroimaging has emerged as the predominant technique in systems neuroscience. This is foreshadowed by an ever increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. In this article, we summarize pedagogically the (deep) history of brain mapping. We will highlight the theoretical advances made in the (dynamic) causal modelling of brain function - that may have escaped the wider audience of this article - and provide a brief overview of recent developments and interesting clinical applications. We hope that this article will engage the signal processing community by showcasing the inherently multidisciplinary nature of this important topic and the intriguing questions that are being addressed

    Dynamics and network structure in neuroimaging data

    Get PDF
    corecore