15 research outputs found

    Predictive Dynamic Thermal and Power Management for Heterogeneous Mobile Platforms

    Get PDF
    abstract: Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms integrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When the MPSoC operates close to its peak performance, power dissipation easily increases the temperature, hence adversely impacts reliability. Since using a fan is not a viable solution for hand-held devices, there is a strong need for dynamic thermal and power management (DTPM) algorithms that can regulate temperature with minimal performance impact. This abstract presents a DTPM algorithm based on a practical temperature prediction methodology using system identification. The DTPM algorithm dynamically computes a power budget using the predicted temperature, and controls the types and number of active processors as well as their frequencies. Experiments on an octa-core big.LITTLE processor and common Android apps demonstrate that the proposed technique predicts temperature within 3% accuracy, while the DTPM algorithm provides around 6x reduction in temperature variance, and as large as 16% reduction in total platform power compared to using a fan.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Adaptive Task Migration Policies for Thermal control in MPSoCs

    Get PDF
    In deep submicron circuits, high temperatures have created critical issues in reliability, timing, performance, coolings costs and leakage power. Task migration techniques have been proposed to manage efficiently the thermal distribution in multi-processor systems but at the cost of important performance penalties. While traditional techniques have focused on reducing the average temperature of the chip, they have not considered the effect that temperature gradients have in system reliability. In this work, we explore the benefits of thermal-aware task migration techniques for embedded multi-processor systems. We propose several policies that are able to reduce the average temperature of the chip and the thermal gradients with a negligible performance overhead. With our techniques, hot spots and temperature gradients are decreased up to 30% with respect to state-of-the-art thermal management approache

    Adaptive Task Migration Policies for Thermal Control in MPSoCs

    Full text link

    Energy and thermal models for simulation of workload and resource management in computing systems

    Get PDF
    In the recent years, we have faced the evolution of high-performance computing (HPC) systems towards higher scale, density and heterogeneity. In particular, hardware vendors along with software providers, HPC centers, and scientists are struggling with the exascale computing challenge. As the density of both computing power and heat is growing, proper energy and thermal management becomes crucial in terms of overall system efficiency. Moreover, an accurate and relatively fast method to evaluate such large scale computing systems is needed. In this paper we present a way to model energy and thermal behavior of computing system. The proposed model can be used to effectively estimate system performance, energy consumption, and energy-efficiency metrics. We evaluate their accuracy by comparing the values calculated based on these models against the measurements obtained on real hardware. Finally, we show how the proposed models can be applied to workload scheduling and resource management in large scale computing systems by integrating them in the DCworms simulation framework

    Temperature Aware Online Algorithms for Minimizing Flow Time

    Full text link

    Power and Thermal Management of System-on-Chip

    Get PDF
    corecore