
Predictive Dynamic Thermal and Power Management for

Heterogeneous Mobile Platforms

by

Gaurav Singla

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2015 by the
Graduate Supervisory Committee:

Umit Y. Ogras, Chair
Bertan Bakkaloglu

Ali Unver

ARIZONA STATE UNIVERSITY

May 2015

ABSTRACT

Heterogeneous multiprocessor systems-on-chip (MPSoCs) powering mobile platforms in-

tegrate multiple asymmetric CPU cores, a GPU, and many specialized processors. When

the MPSoC operates close to its peak performance, power dissipation easily increases the

temperature, hence adversely impacts reliability. Since using a fan is not a viable solution

for hand-held devices, there is a strong need for dynamic thermal and power management

(DTPM) algorithms that can regulate temperature with minimal performance impact. This

abstract presents a DTPM algorithm based on a practical temperature prediction method-

ology using system identification. The DTPM algorithm dynamically computes a power

budget using the predicted temperature, and controls the types and number of active pro-

cessors as well as their frequencies. Experiments on an octa-core big.LITTLE processor

and common Android apps demonstrate that the proposed technique predicts temperature

within 3% accuracy, while the DTPM algorithm provides around 6× reduction in temper-

ature variance, and as large as 16% reduction in total platform power compared to using a

fan.

i

Dedicated to my family

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest gratitude and thank my advisor, Dr. Umit

Ogras, who not only taught and motivated me to pursue research, but also helped me

achieve certain level of confidence and maturity. Without his valuable time, support and

guidance, I could not have finished this work. I would also like to thank Dr. Bertan

Bakkaloglu and Dr. Ali Unver for taking out time and agreeing to be a part of my the-

sis defense committee.

I would like to thank Gurinderjit, Navyasree and Spurthi for helping conduct the exper-

iments on Odroid platform which accelerated collection of the measurement data. Other

students from eLAB: Ujjwal Gupta, Sankalp Jain and Harshad Navale’s comments and

suggestions not only accelerated but also improved the quality of my work. I would like to

mention people from Intel corporation, Raid Ayoub and Mike for their financial and tech-

nical help throughout this work. Special thanks to David Kadjo from TAMU, for helping

me at the software level and during the board bring-up stage.

I would like to pay respect and express love to my parents Rattan and Rajrani for

their encouragement, sacrifices and endless support. My girlfriend Manbir and my friends

Swanand and Nikita were a constant source of valuable feedback and always provided de-

tailed help.

My master’s term at Arizona State University was productive as well as enjoyable.

Thanks to all the members of eLAB for this wonderful journey. Special thanks to Dr. Umit

Ogras and Intel Corporation for financially assisting me during my master’s study as well

as for the conference trip. Finally,I would also like to thank Dr. Sule Ozev and Dr. Yu Cao

for providing financial support by offering me teaching assistant position.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 RELATED WORK . 5

3 OVERVIEW OF THE PROPOSED FRAMEWORK . 8

4 POWER AND THERMAL MODELING METHODOLOGY 11

4.1 Power Modeling . 11

4.1.1 Leakage Power Modeling . 12

4.1.2 Dynamic Power Modeling . 14

4.1.3 Power Model Validation . 15

4.2 Thermal Modeling. 15

4.2.1 System Identification . 17

4.2.2 Thermal Model Validation . 19

5 DYNAMIC THERMAL AND POWER MANAGEMENT 21

5.1 Run-Time Power Budget Computation . 21

5.2 DTPM Algorithm Implementation . 23

6 EXPERIMENTAL SETUP AND EVALUATION . 26

6.1 Experimental Setup and Methodology . 26

6.1.1 Development Platform . 26

6.1.2 Data Measurement . 28

6.1.3 Benchmarks . 29

6.2 Experimental Configurations . 31

6.3 Experimental Evaluation . 32

iv

CHAPTER Page

6.3.1 Temperature Prediction Accuracy . 32

6.3.2 Temperature Control and Stability . 33

6.3.3 Power and Performance Evaluation . 34

7 CONCLUSION AND FUTURE WORK . 39

7.1 Future Work . 39

REFERENCES . 41

v

LIST OF TABLES

Table Page

6.1 Frequency Table for the Big CPU Cluster . 27

6.2 Frequency Table for the Little CPU Cluster . 28

6.3 Frequency Table for GPU. 28

6.4 Benchmarks Used in the Experiments . 30

vi

LIST OF FIGURES

Figure Page

1.1 Maximum Core Temperature With and Without the Fan 2

1.2 Big-LITTLE Architecture of Samsung Exynos 5 Octa-Core Processor 3

3.1 High Level Description of the DTPM Algorithm . 8

4.1 Temperature Furnace used to Model Leakage Power . 12

4.2 Total CPU Power Measurement Data from the Furnace 13

4.3 Leakage Power Variation with Temperature . 14

4.4 Run-Time Computations for Computing the Product of the Activity Factor

and Switching Capacitance . 14

4.5 Leakage and Dynamic Power Variation with Temperature 15

4.6 Leakage and Dynamic Power Variation with Frequency 16

4.7 Power Model Validation . 16

4.8 PRBS Test Signal for Big Cluster . 18

4.9 Thermal Model Validation for Blowfish Benchmark with Prediction Inter-

val of 1second . 19

4.10 Average Temperature Prediction Error for Templerun Game 20

5.1 Temperature Prediction and Power Budget Computation 21

6.1 Experimental Setup . 26

6.2 Temperature Prediction Error for all the Benchmarks . 32

6.3 Temperature Control for Templerun Benchmark . 33

6.4 Temperature Control for Basicmath Benchmark. 34

6.5 Thermal Stability Comparison for Templerun and Basicmath Benchmark . . . 34

6.6 Frequency and Temperature Variation for Dijkstra Benchmark While Run-

ning The Default Configuration . 35

vii

Figure Page

6.7 Frequency and Temperature Variation for Patricia Benchmark While Run-

ning The Default Configuration . 36

6.8 Frequency and Temperature Variation for Matrix Multiplication Bench-

mark While Running Default Configuration . 37

6.9 Power Savings and Performance Loss Summary . 38

6.10 Power Savings and Performance Loss Summary for Multi-Threaded Bench-

marks . 38

7.1 Power Distribution in Heterogeneous Processor . 40

viii

Chapter 1

INTRODUCTION

The abundance of logic and interconnect resources that can be integrated on a single chip

pushes the limits of MPSoCs, which power the vast majority of mobile devices. Mean-

while, MPSoC design is driven by the persistent demand for faster and more powerful

devices. On one hand, the number and capacity of the CPU cores increase at a steady rate.

On the other hand, the degree of heterogeneity is growing with the inclusion of asymmetric

cores and accelerators such as, GPU, video codecs, digital signal processors and display

processing engine. The boost in computational power inevitably increases the power dissi-

pation, which in turn reduces the battery lifetime and raises the chip temperature.

Recent results reveal that the skin temperature, hence the power consumption, is the

performance limiter in mobile devices [23, 46]. Power and temperature have become the

major constraints for throughput improvement of homogeneous as well as heterogeneous

architectures. Furthermore, rapid changes in power and temperature also deteriorate relia-

bility [4, 25]. Thermal regulation and stability are also as important as thermal and power

control for a reliable system. Mean time to failure is also severely affected due to the ther-

mal stress [37]. Effective control algorithms are need of the hour in order to maximize the

performance while controlling both the power consumption and temperature of a MPSoC.

Competing requirements between performance and power consumption are addressed

by a variety of design and run-time approaches that aim at maximizing performance during

busy periods and minimizing power when there is little activity. For instance, idle power

management determines the number of active cores, while dynamic voltage-frequency scal-

ing (DVFS) controls the operating frequency of active resources to match the system per-

formance to the application requirements [35, 36]. Newly emerged big.LITTLE processing

1

40

50

60

70

80

90

0 50 100 150 200 250 300 350

M
ax

 C
or

e
Te

m
p

(°C
)

Time (sec)

Without Fan

With Fan

Figure 1.1: Maximum core temperature with and without the fan

works in tandem with these techniques by combining high performance (big) and energy

efficient (little) clusters [14]. Big cores are utilized when high performance is needed,

while little cores are used during low activity periods. A recent instance of this architecture

is the Samsung Exynos 5410 chip, which hosts four A15 (big) and four A7 (little) cores as

shown in Figure 1.2. Apart from the CPU, it comprises of GPU, memory and accelerators

for video and jpeg. This processor is commercially being used in handheld devices.

Our measurements on this chip show 10× dynamic range in performance and 30×

range in power consumption between the highest performance and lowest power config-

urations. Highest performance being the four big CPU cluster cores operating at highest

possible frequency, while lowest power when 1 little CPU cluster core is operated at lowest

possible frequency. Furthermore, moderate to high activity workloads demand big cores

and raise the temperature easily beyond acceptable levels. The experimental platform we

use, employs a fan to address this problem [1]. Figure 1.1 shows the temperature behavior

of the hot spots in presence and absence of fan. Using a fan might lower and control the

temperature, however fan is not a viable option for mobile platforms such as smartphones,

where heterogeneous MPSoCs have widespread use. Technology scaling and emerging

2

BIG CPU CLUSTER
LITTLE CPU CLUSTER

GPU

CORE 0 CORE 1

CORE 2 CORE 3

CORE 0 CORE 1

CORE 2 CORE 3

SAMSUNG EXYNOS 5 OCTA-CORE

MEMORY

ACCELERATORS

Figure 1.2: big-LITTLE architecture of Samsung Exynos 5 octa-core processor

techniques have reduced the thickness of mobile phones to such an extent that fan is not

only difficult but almost impossible to be employed for cooling. Hence, there is a strong

need for DTPM approaches for big.LITTLE architectures to effectively regulate tempera-

ture with minimal performance impact.

The major degrees of freedom offered by the big.LITTLE architectures are controlling

the type of CPU cluster (big or little), number of active cores, operating frequency (hence

voltage) of the cores, frequency of GPU, and set the state of active accelerators, such as

audio and image processors. Since the use of accelerators is largely governed by the ap-

plication code and compiler, we focus on rest of the knobs. Constraining the maximum

frequency to limit the temperature, while passively waiting for thermal violations and re-

acting by throttling the cores, impairs performance as well as reliability by causing large

temperature variations [43]. In contrast, predictive approaches can take advantage of rich

set of dynamic configuration capabilities to manage temperature effectively [39].

In this thesis, we first present a broadly applicable methodology for generating power

and thermal models for heterogeneous mobile platforms. This methodology starts from

3

the first principles and generates mathematical models that enable accurate power/thermal

predictions tailored to the mobile platform of interest. After empirically validating these

models, we present a novel run-time technique to periodically compute the power budget

that is guaranteed to keep the temperature within permissible limits. Finally, this power

budget is used for determining the CPU cluster, number of active cores, and their frequen-

cies to regulate temperature with minimal performance impact. The major contributions of

this thesis are as follows:

• A methodology for generating power and thermal models for heterogeneous MP-

SoCs, and experimental validation using one of the first commercial big.LITTLE

architectures [1],

• A novel approach for dynamically computing run time dynamic power budget using

temperature prediction, and implementing an effective DTPM algorithm based on

this approach,

• Exhaustive experimental evaluation which demonstrates effective thermal regulation

with 6× smaller variance and as much as 16% reduction in total platform power

across multiple benchmarks.

The rest of the thesis is organized as follows. Related work is presented in Chapter 2.

Overview of the DTPM technique is explained in Chapter 3. Power and thermal model gen-

eration methodology and corresponding empirical validation appear in Chapter 4. Thermal

prediction and DTPM algorithm based on thermal prediction are presented in Chapter 5.

Finally, extensive experimental evaluation using Samsung Exynos 5410 octa-core chip and

a wide range of benchmarks is presented in Chapter 6, while conclusions appear in Chap-

ter 7.

4

Chapter 2

RELATED WORK

Thermal modeling and dynamic thermal management have received significant attention

due to increased power densities and reliability implications of temperature. Before modern

thermal management techniques, hardware approaches using liquid cooling and fans, where

area and cost was not a limiting factor were utilized [13, 27].

One of the first works on dynamic thermal management is [5], where the authors ex-

plore the impact on performance due to different thermal management mechanisms. Re-

searchers started with reactive approaches where frequency of each core is controlled once

the safe temperature threshold has been surpassed [42]. This technique does not consider

the temperature of the neighboring resources and fails to control the temperature gradients

and hotspots. In particular, poor performance of reactive approaches led researchers to de-

velop compact thermal models [20, 40, 43] and thermal prediction techniques [11, 39, 49].

In [24], authors consider future temperature as linear extrapolation of its previous values.

Such techniques help in predicting future sample temperature values, which can then be

used in pro-active thermal management methods. The thermal model presented in this the-

sis is similar to these approaches in using a linear time invariant system to predict temper-

ature. However, instead of relying on material and design parameters to find the model co-

efficients, we use actual power/temperature measurements and system identification tools

to find the parameters of the model. Increasing the usage of temperature sensors and power

meters [26, 32] make our approach feasible and accurate.

As technology is scaling, reduction in threshold voltage, channel length, and gate oxide

thickness increases the leakage power component as explained in [7, 44]. Leakage power

if not dominant has now become almost equal to the dynamic power in some cases like

5

the Intel Pentium IV processors [15]. Most of the previous work addresses power and

temperature separately, while we take into consideration their inter-dependencies using the

power and thermal models. [51] considers leakage power and temperature dependence,

using which the authors control the fan speed for cooling of data center servers, while we

deal with mobile platforms where fan is not an option. Certain power simulators assume

a constant ratio between leakage and dynamic power [28, 48]. This assumption is not

accurate since dynamic and leakage power’s dependence on frequency, supply voltage and

temperature is different. We demonstrate in Section 4.1 that leakage power is sensitive to

temperature while dynamic power is independent of temperature.

Thermal models are commonly employed for temperature control by voltage/frequency

assignment and task scheduling/migration. For example, the work presented in [18, 21,

34] presents temperature control techniques for homogeneous multi-core systems through

DVFS. Similarly, temperature aware task assignment and scheduling techniques are pre-

sented in [9, 19]. Basically, tasks are scheduled to the resources having low utilization

and temperature. To enhance thermal control and management further, [8, 12] present

task migration approach, where the tasks, which have been already scheduled to a partic-

ular resource are migrated to other resources in case of thermal violations. Researchers

have even tried to implement different policies in conjunction with each other as proposed

in [33]. Model predictive and optimal control theory have been recently employed for ther-

mal management to achieve smooth control with minimal performance loss [45, 50]. In

these papers, authors input the workload requirement for each core and then regulate fre-

quencies to meet these requirements while satisfying the thermal constraints, but they use

feedback control methods to obtain the frequency values instead of a heuristic approach.

We implement our approach using DVFS and core control since the kernel of modern plat-

forms already considers scheduling and migration techniques such as load balancer. Our

thermal predictor and power models can be utilized by the above mentioned techniques.

6

Most of the above mentioned work is done for homogeneous architectures, where

all the cores possess similar architecture, power consumption and performance abilities.

Researchers in recent past started designing algorithms for more complex architectures.

[10, 17, 22] takes into consideration 3d multi-core architectures. Due to scalability prob-

lems of centralized control, an agent-based thermal management technique is proposed

in [2]. Finally, a hierarchical power management technique for asymmetric processors is

presented in [35], where the authors try to optimize the energy/performance trade-off un-

der thermal design power constraints. Authors in [41] present a simulator Qsilver for

thermal management in GPU architectures. Heterogeneous processors increase thermal

management complexity, as multiple resources are to be taken into consideration and the

temperature of all resources depend on each other.

Unlike these studies, our approach calculates a precise power budget based on thermal

prediction. The resources of heterogeneous architecture are utilized to distribute this power

budget and control thermal violations. Our algorithm targets heterogeneous platforms but

also can be used by other architectures. While most of the thermal management techniques

are implemented and validated in a simulation environment, we demonstrate our technique

on a commercial big.LITTLE platform [1]. The used platform offers new capabilities such

as big/little clusters, and detailed power and temperature sensors. The platform employs

a processor which is already available in mobile phones and tablets commercially. Since

developing simulation models for new processors is obstructed by the difficulties in finding

exact floorplan, heat sink information and parameter values, researchers are usually limited

to few examples such as simple XScale core and Alpha processor [19, 39]. We plan to

make our power and thermal models public to enable research on emerging heterogeneous

platforms.

7

Chapter 3

OVERVIEW OF THE PROPOSED FRAMEWORK

State of the art mobile platforms are highly integrated closed systems where differ-

ent hardware and software modules interact very tightly. Therefore, techniques targeting

these platforms cannot be designed in isolation. Hence, all the models and algorithms pre-

sented in this work are incorporated with the existing software infrastructure, as outlined

in Figure 3.1. Existing frequency and idle state governors, as well as the device specific

drivers, e.g., GPU driver, remain intact and feed their outputs to the proposed framework.

For example, the ondemand governor [36] runs the default configuration and determines

the operating frequency of each core. The governor activates at a specific period, checks

the device utilizations, and makes changes to the configuration. Each component of the

heterogeneous processor runs its own governor. Different governor or device specific op-

timizations implemented in dedicated drivers can work in coordination with the proposed

framework.

Power
Model

Default
Frequency
Governor

Temperature
Prediction ?

Thermal
Violation

YES Power
Budget

Calculation

Reduce
frequencies
& number of
active cores

CPU, GPU
core

utilizations

Default
Idle Power
Governor

NO

Use
default
values

Chapter4: Power
and Thermal models

Chapter5: DTPM
algorithm and
implementation

Figure 3.1: High level description of the DTPM algorithm. Sections detailing individual blocks are

annotated

8

The default configuration of the processor runs ondemand or interactive as the default

governor. The platform uses Linux version 3.4.76. The entire algorithm along with the

models are implemented in the kernel. The operating system that has been used in Android

4.4.2 which perfectly emulates a mobile platform. Other operating system such as Ubuntu

can also be ported to the system.

First we start with the power and thermal models which use the thermal and power sen-

sor data as inputs. These are explained in detail in Chapter 4. We have implemented these

models inside the Linux kernel, such that we can keep track of the power consumption and

temperature values. The proposed power model uses the choice made by the default con-

figuration to predict the power consumption before taking any action. The sensors provide

the total power value which is then divided into leakage and dynamic components by the

power model. Using this model, power values for a particular configuration is predicted.

The power consumption predictions are then fed to the thermal model to predict the result-

ing temperature if these actions were taken. Thermal prediction is an important part of the

framework, as it is the basis of our proactive approach.

Unless a thermal violation is predicted, the decisions made the default drivers such as

the core and GPU frequencies, choice of big or little cluster and number of active cores,

are affirmed. Thus, the proposed DTPM approach is non-intrusive when the temperature

is within permissible levels. However, when a temperature violation is predicted, the pro-

posed framework enters the proposed algorithm as is explained in Chapter 5. The first

part of the algorithm is run time power budget computation. Power budget is the maximum

value of power that can be consumed without violating thermal constraints. In order words,

we start with the temperature constraint and work backwards to determine the maximum

power consumption that can be tolerated. Then comes the second part of the algorithm

which is final assignment of the configuration according to the calculated power budget.

Here the power model is utilized to predict the configuration which will adhere to and sat-

9

isfy the budget. The available budget is used to overwrite the set of active resources and

their frequencies such that the temperature constraint violation can be prevented. These

steps are detailed in the following sections as annotated in Figure 3.1.

10

Chapter 4

POWER AND THERMAL MODELING METHODOLOGY

Effective management of power and temperature depends critically on accurate analytical

models that can be evaluated at run-time. Therefore, we start with presenting our mod-

eling methodology that leverages thermal and power sensors [32]. In particular, power

consumption of big CPU cluster PA15, little CPU cluster PA7, GPU PGPU and memory

Pmem are read using power sensors. If the power consumption of a target resource cannot

be measured individually, it needs to be considered as a part of a bigger block whose power

consumption can be measured. Likewise, temperature of each big core is read through tem-

perature sensors. If a thermal hotspot of interest does not have a sensor, that point needs to

be modeled as an unobservable node [40].

4.1 Power Modeling

The total power consumption can be expressed using the dynamic and leakage power

as :

Ptotal = Pdynamic + Pleakage

Ptotal = αCV 2
ddf + VddIleakage (4.1)

where α and C are the activity factor and switching capacitance, respectively. Power mod-

els for major components of a mobile phone such as CPU, GPU, display, WiFi and battery

exists in the literature [4, 6, 52]. Parameters such as supply voltage, operating frequency

can be obtained by measurements or from the kernel source code. Therefore, we detail only

our empirical approach to extract the leakage current and switching capacitance.

11

Figure 4.1: Temperature furnace used to model leakage power

4.1.1 Leakage Power Modeling

Temperature and leakage power have an internal loop with each other. They are inter-

dependent, and increase in one causes the other also to increase. Most of the work done

earlier does not consider this relationship while implementing power and thermal models.

Leakage power varies exponentially with temperature. To model this behavior, we use the

method described below:

Leakage Power Characterization: To model the dependence of leakage power on tem-

perature, we used a temperature furnace as shown in Figure 4.1. The furnace helps in

providing a constant ambient temperature value. We placed the target platform inside the

furnace and swept the temperature from 40◦C to 80◦C in increments of 10◦C. During the

tests, we used a light workload running only on the big cores with fixed f and Vdd such that

the dynamic power did not increase the temperature. Light workload consumes low dy-

namic power and helps in maintaining the temperature at a constant value. Then, multiple

power measurements were taken and this procedure was repeated for each power resource

12

0.4

0.45

0.5

0.55

0.6

0 100 200 300 400

C
P

U
 P

o
w

er
 (W

)

Time (sec)

80°C

70°C

60°C

50°C
40°C

Figure 4.2: Total CPU power measurement data from the furnace

of the heterogeneous processor. The total power measured for different temperature values

is shown in Figure 4.2. It is clear that since we maintained the dynamic power component

constant, the increase in total power with temperature is due to the leakage component. In

general, this analysis and procedure can be implemented for any platform to extract the

corresponding leakage power model.

Ileakage = As
W

L
(
kT

q

2

)e
q(VGS−Vth)

nkT + Igate

Ileakage = c1T
2e

c2
T + Igate (4.2)

Equation 4.2 represents the leakage power equation, where As is a technology depen-

dent constant, L and W are channel length and width, k is the Boltzmann constant, T is

the temperature, q is the charge, VGS is the gate to source voltage, Vth is the threshold volt-

age, n is the sub-threshold swing coefficient, and Igate is the gate leakage current [29, 38].

These technology and parameters are then condensed into parameters denoted by c1 and c2.

We employ non-linear fitting tool to find the unknown parameters c1, c2 and Igate assuming

that dynamic power shows negligible variation with temperature. Once values of these un-

knowns are obtained, we can model leakage power as a function of temperature as shown

in Figure 4.3. It can be seen how leakage power varies exponentially with temperature.

13

0.07

0.12

0.17

0.22

0.27

40 50 60 70 80L
ea

ka
g

e
P

o
w

er
 (

W
)

Temperature (°C)

Figure 4.3: Leakage power variation with temperature

Power Consumption
Reading

Temperature
Reading

Leakage Power
Model

∑+ Pdynamic
Vdd

2 f

Vdd , f

 αααα C

Figure 4.4: Run-time computations for computing the product of the activity factor and switching

capacitance

4.1.2 Dynamic Power Modeling

Run-time computation of αC: At run-time, power/thermal sensors in the platform are

used to measure the power consumption and temperature of the resource of interest. Then,

the dynamic power consumption is found by subtracting the leakage power from the total

power, as described in Figure 4.4. Finally, operating frequency and voltage at the time

of the computation are used to extract the product of the activity factor and switching ca-

pacitance. This computation is continuously updated and an accurate reflection of activity

factor is obtained at run-time. Then, this model is used to predict the dynamic power con-

sumption before any decision on the frequency is made.

14

4.1.3 Power Model Validation

Figure 4.5 demonstrates the variation of leakage and dynamic power with temperature.

As expected the dynamic power remains constant while the leakage power varies exponen-

tially with temperature. The frequency used in this experiment is 1.6Ghz.

Figure 4.6 shows the variation of leakage and dynamic power with respect to frequency.

As expected the dynamic power increases with frequency. Leakage power is product of the

supply voltage and the leakage current. Leakage current does not vary with frequency but

supply voltage does. Due to this relationship, there is a slight increase in leakage power

with frequency. For this experiment, we tried to maintain the temperature constant.

Now we combine the dynamic and leakage power models to obtain the total predicted

power. We compare the measured and the predicted power values in Figure 4.7.

4.2 Thermal Modeling

Due to several disadvantages of reactive approach, we have developed predictive ther-

mal model. This enables us to predict the future temperature by taking into consideration

temperature and power consumption values of all the neighboring components as well. Us-

ing the duality between the thermal and electrical networks, one can model the dynamics

of the temperature using a state-space model [39, 47]. Suppose that there are N nodes

0.06
0.12
0.18
0.24

0.3
0.36

40 50 60 70 80

P
ow

er
 (

W
)

Temperature (°C)

Leakage Power
Dynamic Power

f = 1.6GHz

Figure 4.5: Leakage and Dynamic power variation with temperature

15

0.06

0.12

0.18

0.24

0.3

0.36

800 1000 1200 1400 1600
P

o
w

er
 (W

)

Frequency (MHz)

Leakage Power
Dynamic Power

Figure 4.6: Leakage and Dynamic power variation with frequency

in the network, whose temperature and power consumption are given by [T (t)]N×1 and

[P (t)]N×1, respectively. Then, [T (t)]N×1 can be expressed by the following differential

equation [43]:

Ct
dT

dt
= −GtT (t) + P (t) (4.3)

where Ct and Gt are the thermal capacitance and conductance matrices. Since power/tem-

perature measurement and control are performed periodically in OS kernels or firmware in

practice, we discretize Equation 4.3 assuming a sampling period of Ts seconds:

T [k + 1] = (I − TsC−1t Gt)T [k] + TsC
−1
t P [k]

T [k + 1] = AsT [k] +BsP [k] (4.4)

0.4

0.45

0.5

0.55

0.6

40 50 60 70 80

To
ta

l P
ow

er
 (

W
)

Temperature (°C)

Predicted Power
Measured Power

Figure 4.7: Power model validation

16

For our system, A is a 4x4 matrix which resembles the dependence of future core tem-

perature on its previous value as well as on the neighboring cores while B is a 4x4 matrix

which denotes the future core temperature dependence on the power resources in a par-

ticular platform. T matrix is comprised of 4 cores of the big cluster because those are

the thermal hotspots and P matrix comprises of powers of the big CPU cluster, little CPU

cluster, GPU and memory.

Finding the thermal conductance and capacitance matrices (As and Bs) using finite

element simulations or a thermal modeling framework like Hotspot [43] would require

detailed design information such as floorplan, heat sink geometry, and material properties,

which are either not public or very hard to obtain. Furthermore, validating the thermal

model would still require actual power and temperature measurements. Therefore, we start

directly with actual measurements, and employ system identification to find Ct and Gt, as

detailed next.

4.2.1 System Identification

The input to the difference equation is P (k), which is the power consumption of the

major resources. For instance, P = [PA7, PA15, PGPU , Pmem]T for our system, where PA7

and PA15 correspond to the little and big core clusters, respectively. PGPU corresponds

to the GPU power consumption, whereas Pmem corresponds to the memory power. Thus

even if the thermal hotspots mainly comprises of the big CPU cluster cores, its temperature

dependence on other power resources is also taken into consideration. In order to obtain an

accurate characterization, we controlled each of these four sources separately while keep-

ing the others constant or at a minimum value. More precisely, we oscillated the frequency

of big cores between the minimum and maximum values using a pseudo-random bit se-

quence (PRBS), and measured the temperature. The PRBS input is generated to cover a

frequency spectrum, which is much broader than that excited by an arbitrary application.

17

0

0.5

1

1.5

2

2.5

3

0 150 300 450 600 750 900 1050B
ig

 c
lu

st
er

 p
o

w
er

 (W
)

Time (sec)

40

45

50

55

60

65

70

0 150 300 450 600 750 900 1050

C
o

re
0

Te
m

p
 (
°
C

)

Time (sec)

(a)

(b)

Figure 4.8: PRBS test signal for big cluster (a) Big cluster power (b) Core 0 temperature

The resulting spectrum is also large enough to capture temperature variations since the

OS drivers that sample the temperature and implement the control algorithms are typically

invoked around every 100 ms to avoid computational overhead. Then, we recorded the

input P [k] and output T [k] time series. Figure 4.8(a) shows the PRBS power test signal for

the big cluster. The other power resources were minimum or constant at this point. Fig-

ure 4.8(b) demonstrates the corresponding temperature variation due to variation in power.

Similar signals can be used for little cluster, GPU and memory.

Finally, we used the system identification toolbox of Matlab [30, 31] to find As and Bs

in Equation 4.4. It is important to understand that all the parameters of matrices As and Bs

cannot be modeled at once. Individual test signals for different power resources are applied

and corresponding parameters are modeled. When all the power resources are completed,

we obtain matrices As and Bs which then can be used to predict temperature.

18

Equation 4.4 not only describes how the temperature evolves but it also enables temper-

ature prediction at an arbitrary number of time steps ahead. In particular, the temperature

at time step k + n can be derived as:

T [k + n] = An
sT [k] +Bs

n−1∑
i=0

Ai
sP [k + n− i− 1] (4.5)

This equation predicts the temperature at a future time step for a given power consumption

trajectory. Before changing the frequency of a CPU core, its power consumption can be

computed using Equation 4.1 and plugged to this equation to predict the resulting temper-

ature.

4.2.2 Thermal Model Validation

We implemented this predictor in Linux kernel, and validated its accuracy by comparing

against actual measurements. The validation for the thermal model is shown in Figure 4.9

for Blowfish benchmark. The prediction interval used is 1 s.

We observed that the average prediction error is less than 3% (1◦C) with a prediction

interval of up to 1 second, while the error is within 7% (2.5◦C) for as long as 5 seconds for

the Templerun gaming benchmark, as shown in Figure 4.10. Further evaluation using the

complete set of benchmarks is presented in Chapter 6.

45

50

55

60

65

0 70 140 210 280

C
o

re
 T

em
p

 (
°
C

)

Time (sec)

Measured Temp
Predicted Temp

Figure 4.9: Thermal model validation for Blowfish benchmark with prediction interval of 1second

19

0
2
4
6
8

0 1 2 3 4 5

E
rr

or
 %

Prediction Time (sec)

Temperature Prediction Error

Figure 4.10: Average temperature prediction error for Templerun game

Both the power and thermal models are implemented in the kernel as a module. Other

than the proposed technique the models can also be used by other thermal management

techniques such as thermal aware scheduling and task migration. The described technique

for thermal and power modeling can be used for other platforms as well.

20

Chapter 5

DYNAMIC THERMAL AND POWER MANAGEMENT

In the absence of a DTPM algorithm, the OS kernel wakes-up more processors and in-

creases their frequencies as the workload intensifies. Consequently, increased power con-

sumption elevates the temperature, which eventually results in a thermal violation. The

proposed approach utilizes the power and thermal models introduced in Chapter 4 to dy-

namically compute a power budget, as outlined in Figure 5.1. Staying within this budget

guarantees that no thermal violation will occur. Then, this power budget is used at run-time

to limit the types, number and frequencies of the active resources. In this work, we use a

prediction interval of “1s” since it is sufficient to control the temperature of our target plat-

form. In general, accurate predictions up to “5s” can be made, as depicted in Figure 4.10.

5.1 Run-Time Power Budget Computation

Power budget is the maximum value of power that can be consumed by the proces-

sor without violating any constraints. Suppose the temperature constraint for each thermal

hotspot is given by [Tconstr]N×1, where each entry gives the maximum permissible temper-

Thermal
Predictor

Temperature
Reading

Power Budget
Computation

Dynamic
Power Budget

Temperature ConstraintsLeakage Power

Figure 5.1: Temperature prediction and power budget computation

21

ature. Using Equation 4.4, we write

|T [k + 1]| ≤ |Tconstr|

|AsT [k] +BsP [k]| ≤ |Tconstr| (5.1)

where the | · | represents the norm operation. Since thermal control algorithms typically use

the maximum temperature, we employ L∞ norm and denote |Tconstr|∞ = Tmax to re-write

the temperature constraint as

|AsT [k] +BsP [k]|∞ ≤ Tmax

max {As,iT [k] +Bs,iP [k]} ≤ Tmax 1 ≤ i ≤ N (5.2)

where As,i and Bs,i denote the ith row of matrices As and Bs, respectively as shown by

Equation 5.3 in detail.



Tcore0

Tcore1

Tcore2

Tcore3


=



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44





Tcore0

Tcore1

Tcore2

Tcore3


+



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44





Pbig

Plittle

Pgpu

Pmem


(5.3)

Now, we convert the matrix inequality into a set of scalar inequalities, one for each

thermal hotspot. Each row in A and B matrix corresponds to an equation for one core.

Temperature constraints can be written as:

Bs,iP [k] ≤ Tmax − As,iT [k] 1 ≤ i ≤ N (5.4)

The right hand-side is known since we obtained As and Bs through system identification,

and measure T [k]. We subtract the current temperature dependence. Consequently, run-

time decisions are made such that P (k) satisfies the power budget constraint given by

Equation 5.4. The trigger value of the DTM algorithm can be varied for different systems

22

while the algorithm remains the same. This equation has multiple possible answers and

in order to achieve a unique solution, we solve it for equality such that the performance

is maximized as shown in Equation 5.5. Here, instead of solving for all thermal hotspots

we target the one with the maximum temperature and is most likely to violate constraints.

Assuming core1 has the maximum temperature, we can write:

Bs,1P [k]total = Tmax − As,1T [k] (5.5)

Thus now we obtain the total power budget. We calculate the dynamic power budget

by subtracting the leakage power component from the total budget represented by Equa-

tion 5.6. Once we have the budget, we can finalize the configuration which adheres to it

and control the temperature well within the limits. This budget will provide us with values

for all power resources in the heterogeneous processor.

Bs,1P [k]dynamic = Tmax − As,1T [k]− Pleakage (5.6)

5.2 DTPM Algorithm Implementation

The proposed algorithm is incorporated with the existing governors in the Linux kernel,

as explained in Chapter 3 and illustrated in Figure 3.1. After calculating the power budget,

we need to assign a configuration which will satisfy the budget and avoid violations. The

performance also needs to be maximized while the temperature is being controlled. The

power budget can be represented using the dynamic power equation as shown:

Pbudget = αCV 2
ddfbudget (5.7)

where fbudget is the frequency corresponding to the power budget. Parameters α andC have

been already calculated and can be provided by the dynamic power model as explained in

23

Section 4.1. Since current Vdd is also known from measurements, fbudget is calculated using

Equation 5.7.

Through empirical analysis, it is observed that big cluster has the maximum perfor-

mance and moving to the little cluster might have biggest performance impact. So priority

is to run the application in the big CPU cluster as far as possible. Let fmin and fmax be the

minimum and maximum frequency values for the big cluster. First it is checked whether

the frequency assigned by Equation 5.7 is within the big cluster frequency range as shown:

fmin ≤ fbudget ≤ fmax (5.8)

If Equation 5.8 is satisfied, we assign fbudget to big cluster. Then we again compute

the temperature in the next interval and observe decrease in temperature. In case fbudget

is not constrained within the big cluster frequency range, then before moving to the little

CPU cluster, we explore the option of turning off a core in the big cluster. If the power

budget cannot be met with the current number of active cores, then the hottest core is

put to sleep, and the tasks running on this core are migrated to the other cores by the

kernel. Some applications tend to be scheduled such that they utilize a particular core and

increase its temperature more than the other cores. We check whether this is the case, using

Equation 5.9 as shown.

Thot − Ti ≥ ∆ 1 ≤ i ≤ N (5.9)

where, Thot is the temperature of the hottest core, N is the total number of cores in the big

cluster and ∆ is the maximum temperature difference value allowed which is calculated

empirically. If Equation 5.9 is true, the hottest core is turned off.

Similar to CPU, frequency value is set for GPU and other power resources if available.

In case of other power resources, we have to deal with choice of frequency only unlike

24

CPU, where the decisions are complex. To summarize, the proposed algorithm first finds

the maximum feasible frequencies under the available power budget. Finally, when the

power budget is so small that it cannot be satisfied even with three big cores running at

minimum possible frequency, then all the active tasks are migrated to the little cluster and

big cores are put to sleep. Moving to the little cluster and reducing the GPU frequency (if

GPU is active) are used as the last resort, since they have the biggest performance impact

and migrating across clusters has a larger overhead based on our empirical evaluations.

25

Chapter 6

EXPERIMENTAL SETUP AND EVALUATION

The proposed algorithm is implemented in the Linux kernel version 3.4.76. In this chapter,

we evaluate our approach by running multiple benchmarks.

6.1 Experimental Setup and Methodology

The setup includes the development platform, display, power sensors (internal powers),

thermal sensors and power meter (total platform power) as shown in Figure 6.1. The in-

ternal sensor values are logged periodically and used in the kernel for implementing the

algorithm.

6.1.1 Development Platform

The proposed framework is evaluated using the Odroid-XU+E platform [1] powered by

Samsung Exynos 5410 processor. This MPSoC is a single ISA heterogeneous processor

Odroid XU+E platform
MpSoC: Samsung Exynos 5

Power Meter for total
platform power

Internal Power and Temperature sensors

Display

Figure 6.1: Experimental setup

26

which uses the ARM big.Little architecture [3]. It integrates 2 types of CPUs on the same

SoC. The 2 types of CPUs are the big CPU cluster (4 ARM A15 cores) and the little CPU

cluster (4 ARM A7 cores). Apart from that, it is also composed of a GPU, audio and

video encoders/decoders and other basic components. The Odroid platform can activate

only the big or the little cluster at a given time. The processor supports DVFS capabilities

where the frequencies can be regulated in order to meet the workload requirements. The

CPU clusters are symmetric i.e. all cores in the same CPU cluster need to be operated at

the same frequency. Each core in the same cluster cannot run a different frequency value.

There are nine discrete frequency levels in the big cluster as shown in Table 6.1 while there

are eight frequency levels in the little CPU cluster as shown in Table 6.2. This processor

is used commercially in mobile phones and tablets running Android operating system. In

order to support images,games and videos, the GPU also supports DVFS and has 5 discrete

frequency levels as shown in Table 6.3.

Table 6.1: Frequency Table for the big CPU cluster

Frequency (MHz)

800

900

1000

1100

1200

1300

1400

1500

1600

27

Table 6.2: Frequency Table for the little CPU cluster

Frequency (MHz)

500

600

700

800

900

1000

1100

1200

Table 6.3: Frequency table for GPU

Frequency (MHz)

177

266

350

480

533

6.1.2 Data Measurement

Built-in power sensors measure the power consumption of big core cluster, little core

cluster, GPU and memory separately while external power meters enable logging the total

platform power. The platform also provides built-in temperature sensors located on each

big core which are the thermal hotspots. Thus the temperature value for each big core can

28

be measured. A UNIX script was prepared and used to log the sensor values for validation.

The logged data was saved in form of tables as .CSV format. In the kernel, these sensor

values were periodically measured and used to implement the thermal and power models.

Apart from the sensor values we used time command in order to measure the execution

time. Performance is measured as the amount of time taken to execute a particular applica-

tion. All the results reported in this thesis are direct measurements on this platform. Hence,

the implementation overheads are included in the results.

6.1.3 Benchmarks

We used 15 benchmarks, 11 from the Mi-Bench embedded benchmark suite [16], 3

frequently used game and video applications and one self written multi-threaded matrix

multiplication code, which is mainly used during debugging. Mi-Bench is an embedded

benchmark suite available for researchers. Since our focus is mobile phones and tablets,

we included common mobile games and video applications. We adhere to a realistic setup

i.e. when an application runs on a mobile phone, multiple background processes also load

the processor. Likewise, while running each benchmark all background processes were

allowed to run. Even if a benchmark is single threaded, there are many active threads in the

system since the benchmarks run along with Android operating system stack and all other

kernel background processes. Therefore, multiple cores were active during the experiments

and this number varied dynamically. Finally, the games and video benchmarks utilized

GPU, while the other benchmarks were CPU intensive. While running games and video

applications, we executed matrix-multiplication benchmark in background to overload the

CPU. The benchmarks and their relevant properties are summarized in Table 6.4. The

benchmarks are also categorized according to their comparative CPU power consumption

as low, medium and high. High being the benchmarks which consume more power than

others.

29

Table 6.4: Benchmarks used in the experiments

Types Benchmarks Category

Security Blowfish, Sha Low, Medium

Network Dijkstra, Patricia, Low, Medium

Computational
Basicmath, Matrix Multiplication

Bitcount, Qsort

High

Medium

Telecomm CRC32, GSM, FFT Low, Medium, High

Consumer JPEG Medium

Games Angry-Birds, Temple-run High

Video Youtube Low

A brief summary of all the benchmarks is as follows:

Audio/Video and Games: Common Android games like Templerun and Angry-Birds

were used to emulate mobile phones and tablets. Apart from that audio/video application

Youtube which is also a common mobile application was used.

CPU Intensive: Basicmath benchmark involves cubic function solving, integer square root

and angle conversions from degrees to radians. Bit-count counts the number of bits in an

array of integers while Quick-sort sorts a large array of strings into ascending order. A

multi-threaded matrix multiplication application was developed to observe the behavior for

multi-threaded benchmarks. Apart form mobile phones, these benchmarks are common

embedded applications used in automotive and industrial scenarios.

JPEG encode/decode: JPEG is a consumer devices test benchmark. It is a standard com-

pression image format used in cases when some data loss is acceptable. We took multiple

images and then encoded as well as decoded them which is common in mobile phones.

30

Network and Security: The Security category includes several common algorithms for

data encryption, decryption and hashing. Patricia is used to test the network capabilities of

embedded processors. Other than Patricia, this category includes benchmarks like Blow-

fish, Sha, CRC32 and Dijkstra.

Telecommunications: With the explosive growth of the Internet, many portable consumer

devices are integrating wireless communication. These benchmarks consist of voice encod-

ing and decoding algorithms, frequency analysis and a check sum algorithm. FFT performs

a Fast Fourier Transform and its inverse transform on an array of data. The Global Stan-

dard for Mobile (GSM) communications is the standard for voice encoding and decoding

in Europe and many countries. The input data is small and large speech samples.

6.2 Experimental Configurations

We execute all the benchmarks in multiple configurations which are described below:

Default configuration (With fan) : We ran the benchmarks first with the default config-

uration of the target platform which uses a fan. The fan is activated when maximum core

temperature exceeds 57◦C. Then, the fan speed is increased to 50% and 100% when the

temperature passes 63◦C and 68◦C, respectively. We emphasize that using a fan is not fea-

sible when this chip is used in a smartphone or tablet, which is the case for Samsung Galaxy

S4. Therefore, we evaluated two more solutions besides the proposed DTPM technique.

Without fan : We disabled the fan and re-ran all the benchmarks. Since the fan is not

activated when the workload is low, we observe little or no changes for light activity. How-

ever, temperature increases quickly for high loads and keeps on increasing continuously.

To avoid physical damage to the device, we limited the run time to a few minutes for these

workloads. We also implemented a heuristic thermal management algorithm which mimics

the fan control algorithm. Instead of increasing the fan speed, this heuristic throttles the

frequency by 18% and 25% when the temperature passes 63◦C and 68◦C, respectively.

31

Proposed DTPM algorithm : After compiling the whole kernel with our modifications,

we flashed it to the device. The kernel function implementing our models is called peri-

odically whenever the CPU frequency driver is executed (once every 100ms). We first ran

the modified kernel with the power models and thermal predictor without taking any real

action to assess the power and performance overhead. We did not observe any noticeable

change in power and performance due to our models.

6.3 Experimental Evaluation

6.3.1 Temperature Prediction Accuracy

We ran each benchmark and predicted the temperature T [k+10] at every control interval

T [k]. The temperature one second (10 control intervals) ahead of time is predicted and the

predictions are compared to the measured values at the end of each experiment. Figure 6.2

shows that the average prediction error is less than 3% (1◦C) and it never exceeds 4%

(1.4◦C). One second prediction window is selected since 10 control intervals are sufficient

to regulate the temperature. We also validated that for prediction windows as large as “5s”

the prediction error increases moderately, as depicted in Figure 4.10.

Figure 6.2: Temperature prediction error for all the benchmarks

32

6.3.2 Temperature Control and Stability

The objective of the DTPM algorithm is to ensure that the temperature is regulated suc-

cessfully without using a fan. To provide a fair comparison with the default configuration,

we used a temperature constraint of 63◦C which is used in the fan control algorithm. We

validated that the proposed algorithm can regulate the temperature for all of the benchmarks

with minimal performance impact. As representative examples, the results for Templerun

and Basicmath benchmarks are shown in Figure 6.3 and Figure 6.4, respectively. First,

we observe that the proposed DTPM algorithm successfully limits the temperature to the

specified constraint, which is easily violated without the fan. Furthermore, the temperature

variation is significantly smaller than the default solution with fan, without using a fan,

and the heuristic algorithm, which is not shown for clarity. More precisely, we observe as

high as 6× reduction in variance for both of the benchmarks, as summarized in Figure 6.5.

Superior and smoother operation is achieved since the performance is throttled only if a

thermal violation is predicted, and only as much as needed with the help of precise power

budgeting.

40

50

60

70

80

0 20 40 60 80 100

M
ax

 C
or

e
Te

m
p

(°C
)

Time (sec)

Without Fan

With Fan DTPM

Figure 6.3: Temperature control for Templerun benchmark

33

40

50

60

70

80

0 20 40 60 80 100 120 140

M
ax

 C
or

e
Te

m
p

(°C
)

Time (sec)

Without Fan

With Fan

DTPM

Figure 6.4: Temperature control for Basicmath benchmark

6.3.3 Power and Performance Evaluation

The proposed DTPM algorithm demotes the frequency and number of active cores only

if the default values exceed the power budget. When the computation load is light, the

temperature barely reaches the maximum constraint. Therefore, the proposed algorithm

rarely interferes with the system and results in almost no change in frequencies of the

resources.

Figure 6.6 shows the frequency and temperature variation for one of the low activity

benchmarks Dijkstra for the default configuration and DTPM algorithm. Now it can be seen

55

60

65

70

Without
Fan

With Fan Proposed
DTPM

A
ve

ra
g

e
Te

m
p

 (
°
C

) Templerun
Basicmath

0

6

12

18

Without
Fan

With Fan Proposed
DTPM

M
ax

-M
in

 T
em

p
 (
°
C

) Templerun
Basicmath

Figure 6.5: Thermal stability comparison for Templerun and Basicmath benchmark

34

0.8

1

1.2

1.4

1.6

0 16 32 48 64

F
re

q
u

en
cy

 (
G

H
z)

Time (sec)

Default Algorithm With Fan

40

50

60

70

80

0 16 32 48 64

M
ax

 C
o

re
 T

em
p

 (
°
C

)

Time (sec)

40

50

60

70

80

0 16 32 48 64
M

ax
 C

o
re

 T
em

p
 (
°
C

)

Time (sec)

0.8

1

1.2

1.4

1.6

0 16 32 48 64

F
re

q
u

en
cy

 (
G

H
z)

Time (sec)

Our Approach

Figure 6.6: Frequency and temperature variation for Dijkstra benchmark while running the default

configuration

that even when DTPM algorithm is executed there is not much need of thermal throttling

and hence both the frequency variations are alike. But avoiding the fan, even if it is rarely

active, results in around 3% platform power savings which corresponds to about 0.2 W.

As the computational load increases, the number of active cores and their frequencies

increase. Hence, both the core and fan power consumption increase. Consequently, the

power savings obtained using the proposed approach become more significant. Figure 6.7

shows how the frequency and temperature changes for one of the medium benchmarks

Patricia when running the default and the proposed DTPM algorithm. In this case, it can

be observed that how the frequency is throttled as calculated by the DTPM algorithm. We

achieve 8% power savings for medium activity benchmarks on average.

When activity of the benchmarks increases even further, the rise in temperature occurs

35

40

50

60

70

80

0 100 200 300
M

ax
 C

o
re

 T
em

p
 (
°
C

)

Time (sec)

0.8

1

1.2

1.4

1.6

0 100 200 300

F
re

q
u

en
cy

 (
G

H
z)

Time (sec)

Our Approach

0.8

1

1.2

1.4

1.6

0 100 200 300

F
re

q
u

en
cy

 (
G

H
z)

Time (sec)

Default Algorithm With Fan

40

50

60

70

80

0 100 200 300

M
ax

 C
o

re
 T

em
p

 (
°
C

)

Time (sec)

Figure 6.7: Frequency and temperature variation for Patricia benchmark while running the default

configuration

frequently. Whenever the temperature rises, the frequency and configuration is calculated

and set by the drivers in the kernel. Figure 6.8 shows the frequency and temperature varia-

tion for one of the high activity benchmarks(Matrix-Multiplication) for the default configu-

ration and DTPM algorithm. A fan was employed while running the default configuration,

so we do not see reduction in frequencies due to rise in temperature.The marked regions in

Figure 6.8 indicate thermal throttling due to increase in temperature. The variation in fre-

quency can be clearly distinguished in this case. On average, 14% savings for high activity

benchmarks are observed. It is important to note that these savings are significant since

they are at the platform level. For example, 14% savings corresponds to 0.7 W savings,

which would increase the lifetime of a typical smartphone battery by around 25% from 2h

to 2h30m under continuous use.

36

0.8

1

1.2

1.4

1.6

0 20 40 60

F
re

q
u

en
cy

 (
G

h
z)

Time (sec)

Our Approach

40

50

60

70

80

0 20 40 60
M

ax
 C

o
re

 T
em

p
 (
°
C

)

Time (sec)

0.8

1

1.2

1.4

1.6

0 20 40 60

F
re

q
u

en
cy

 (
G

h
z)

Time (sec)

Default Algorithm with Fan

40

50

60

70

80

0 20 40 60

M
ax

 C
o

re
 T

em
p

 (
°
C

)

Time (sec)

Figure 6.8: Frequency and temperature variation for Matrix Multiplication benchmark while run-

ning default configuration

Minimum Performance Degradation: For any embedded system the maximum per-

formance can be achieved in presence of an active cooling component as the system will

run at maximum possible frequency. When we remove the fan, the temperature has to be

controlled using a DTPM algorithm. Thus we compare our algorithm with the best case

which actually is not a feasible solution in mobile systems. We also implemented reactive

heuristic approaches which lowers the frequency after temperature threshold is reached.

The reactive DTPM algorithm that mimics the fan control results in around 20% loss in

performance measured by execution time. Despite significant power savings, the perfor-

mance loss is only 3.3% on average, while it is less than 1% for low activity benchmarks.

The performance loss hardly reaches 5% even for the most demanding applications. The

power and performance results have been summarized in Figure 6.9. Similar results are

shown for multi-threaded benchmarks in Figure 6.10

37

Figure 6.9: Power savings and performance loss summary

0
10
20
30
40
50

FFT LU

(%
)

Power Savings Performance Impact

Figure 6.10: Power savings and performance loss summary for multi-threaded benchmarks

38

Chapter 7

CONCLUSION AND FUTURE WORK

In this thesis, we presented a practical temperature prediction methodology and a DTPM

algorithm for heterogeneous MPSoCs. The proposed approach calculates a precise power

budget based on temperature predictions at run-time. Then, this budget is used to control

the type of cores (big or little), number of active cores and frequency of the cores. Thor-

ough experimental evaluation shows that the proposed approach not only eliminates the

need for a fan, which is not a viable choice for mobile devices, but also provides signifi-

cant power, thermal, and reliability advantages. In particular, it regulates the temperature

more effectively than the default configuration which uses a fan, and on average offers 10%

platform power savings with 3.3% loss in performance.

7.1 Future Work

In this work we focused on the CPU. Some benchmarks and applications utilize the

GPU more than CPU and hence it becomes necessary to throttle GPU as well. In future,

we plan to extend our power budget approach to make use of the heterogeneous processor

in true sense. The power budget distribution among components is shown in Figure 7.1.

The power distribution problem is a np-hard problem and we need to solve it dynamically

while maximizing performance.

The cost function shown in Equation 7.1 corresponds to the execution time which we

need to minimize.

J(f1, f2...fn) =
n∑

i=1

ci
fi

(7.1)

In this equation ci is the performance parameter for each component of the heteroge-

neous processor. The cost function will be minimized subject to the constraint of power

39

Dynamic
Power
Budget

Big CPU GPU

Little
CPU

Figure 7.1: Power distribution in heterogeneous processor

budget as represented by Equation 7.2.

P (f1, f2...fn) =
n∑

i=1

aifi
3 ≤ Pbudget (7.2)

Power distribution amongst the components is a difficult problem. To find an optimal

frequency corresponding to each component such that the performance is maximized while

satisfying the power budget further adds to the complexity. Branch and bound algorithm

solves this problem theoretically, but is limited during implementation by the use of recur-

sive function in the linux kernel source due to kernel stack issues. Hence we throttle the

frequency of the components which has least affect on performance as follows in Equa-

tion 7.3.

J(fCPU−1, fGPU) if ∆J(fCPU−1, fGPU) ≤ ∆J(fCPU , fGPU−1)

J(fCPU , fGPU−1) if ∆J(fCPU , fGPU−1) ≤ ∆J(fCPU−1, fGPU) (7.3)

40

REFERENCES

[1] ODROID− XU + E. http://www.hardkernel.com/main/main.php.

[2] M. A. Al Faruque, J. Jahn, T. Ebi, and J. Henkel. Runtime thermal management
using software agents for multi-and many-core architectures. IEEE Design & Test of
Computers, 27(6)(6):58–68, 2010.

[3] ARM. big.little processing. http://www.arm.com/products/ processors/technolo-
gies/biglittleprocessing.php.

[4] D. Brooks, R. P. Dick, R. Joseph, and L. Shang. Power, thermal, and reliability
modeling in nanometer-scale microprocessors. IEEE Micro, 27(3):49–62, 2007.

[5] D. Brooks and M. Martonosi. Dynamic thermal management for high-performance
microprocessors. In High-Performance Computer Architecture, 2001. HPCA. The
Seventh International Symposium on, pages 171–182. IEEE, 2001.

[6] A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In
USENIX annual technical conference, pages 271–285, 2010.

[7] A. P. Chandrakasan, W. J. Bowhill, and F. Fox. Design of high-performance micro-
processor circuits. Wiley-IEEE press, 2000.

[8] P. Chaparro, J. González, G. Magklis, C. Qiong, and A. González. Understanding the
thermal implications of multi-core architectures. Parallel and Distributed Systems,
IEEE Transactions on, 18(8):1055–1065, 2007.

[9] J. Choi et al. Thermal-aware task scheduling at the system software level. In Proc. of
Int. Symp. on Low Power Electron. and Design, pages 213–218, 2007.

[10] A. K. Coskun, J. L. Ayala, D. Atienza, T. S. Rosing, and Y. Leblebici. Dynamic
thermal management in 3d multicore architectures. In Proc. of DATE, pages 1410–
1415, 2009.

[11] A. K. Coskun, T. S. Rosing, and K. C. Gross. Utilizing predictors for efficient thermal
management in multiprocessor socs. IEEE Trans. on CAD of Integrated Circuits and
Syst.,, 28(10):1503–1516, 2009.

[12] J. Donald and M. Martonosi. Techniques for multicore thermal management: Classi-
fication and new exploration. In ACM SIGARCH Computer Architecture News, vol-
ume 34, pages 78–88, 2006.

[13] S. Fok, W. Shen, and F. Tan. Cooling of portable hand-held electronic devices us-
ing phase change materials in finned heat sinks. International Journal of Thermal
Sciences, 49(1):109–117, 2010.

[14] P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7. ARM White
Paper, 2011.

41

[15] A. Grove. Changing vectors of moores law. In Keynote speech, International Electron
Devices Meeting, 2002.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Proc.
of Int. Symp. on Workload Characterization, pages 3–14, 2001.

[17] F. Hameed, M. Faruque, and J. Henkel. Dynamic thermal management in 3d multi-
core architecture through run-time adaptation. In Proc. of DATE, pages 1–6, 2011.

[18] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio. Thermal
response to dvfs: Analysis with an intel pentium m. In Proceedings of the 2007 in-
ternational symposium on Low power electronics and design, pages 219–224. ACM,
2007.

[19] V. Hanumaiah, S. Vrudhula, and K. S. Chatha. Performance optimal online dvfs
and task migration techniques for thermally constrained multi-core processors. IEEE
Trans on CAD of Integrated Circuits and Syst., 30(11):1677–1690, 2011.

[20] W. Huang et al. Hotspot: A compact thermal modeling methodology for early-stage
vlsi design. IEEE Trans. on Very Large Scale Integration Syst., 14(5):501–513, 2006.

[21] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy with architectural and
frequency adaptations for multimedia applications. In Proceedings of the 34th annual
ACM/IEEE international symposium on Microarchitecture, pages 250–261. IEEE
Computer Society, 2001.

[22] D.-C. Juan, S. Garg, and D. Marculescu. Statistical thermal evaluation and mitigation
techniques for 3d chip-multiprocessors in the presence of process variations. In Proc.
of DATE, pages 1–6, 2011.

[23] D. Kadjo, U. Y. Ogras, R. Ayoub, M. Kishinevsky, and P. Gratz. Towards platform
level power management in mobile systems. In In Proc. of System-on-Chip Conf,
pages 146–151, 2014.

[24] O. Khan and S. Kundu. Hardware/software co-design architecture for thermal man-
agement of chip multiprocessors. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe, pages 952–957. European Design and Automation As-
sociation, 2009.

[25] R. Kumar and V. Kursun. Impact of temperature fluctuations on circuit characteristics
in 180nm and 65nm cmos technologies. In Circuits and Systems, 2006. ISCAS 2006.
Proceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE, 2006.

[26] T. Lee, M. Johnson, and M. Crowley. Temperature sensor integral with microproces-
sor and methods of using same, Oct. 5 1999. US Patent 5,961,215.

[27] T.-Y. T. Lee, B. Chambers, and K. Ramakrishna. Thermal management of handheld
telecommunication products. Electronics Cooling Magazine, 4(2):30–33, 1998.

42

[28] W. Liao, J. M. Basile, and L. He. Leakage power modeling and reduction with
data retention. In Proceedings of the 2002 IEEE/ACM international conference on
Computer-aided design, pages 714–719. ACM, 2002.

[29] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-dependent integrated
circuit leakage power estimation is easy. In Proc. of DATE, pages 1526–1531, 2007.

[30] L. Ljung. System identification toolbox. The Matlab Users Guide, 1988.

[31] L. Ljung. System identification toolbox for use with MATLAB. 2007.

[32] R. McGowen. Adaptive designs for power and thermal optimization. In Proc. of
ICCAD, pages 118–121, 2005.

[33] R. Mukherjee and S. O. Memik. Physical aware frequency selection for dynamic
thermal management in multi-core systems. In Proc. of ICCAD, pages 547–552,
2006.

[34] S. Murali et al. Temperature control of high-performance multi-core platforms using
convex optimization. In Proc. of DATE, pages 110–115, 2008.

[35] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin. Hierar-
chical power management for asymmetric multi-core in dark silicon era. In Proc. of
DAC, page 174, 2013.

[36] V. Pallipadi and A. Starikovskiy. The ondemand governor. In Proc. of the Linux
Symp., volume 2, pages 215–230, 2006.

[37] M. Pedram and S. Nazarian. Thermal modeling, analysis, and management in vlsi
circuits: Principles and methods. Proceedings of the IEEE, 94(8):1487–1501, 2006.

[38] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mecha-
nisms and leakage reduction techniques in deep-submicrometer cmos circuits. Proc.
of the IEEE, 91(2):305–327, 2003.

[39] S. Sharifi, D. Krishnaswamy, and T. S. Rosing. Prometheus: A proactive method for
thermal management of heterogeneous mpsocs. IEEE Trans. on CAD of Integrated
Circuits and Syst., pages 1110–1123, 2013.

[40] S. Sharifi and T. S. Rosing. Accurate direct and indirect on-chip temperature sens-
ing for efficient dynamic thermal management. IEEE Trans. on CAD of Integrated
Circuits and Syst., 29(10):1586–1599, 2010.

[41] J. W. Sheaffer, K. Skadron, and D. P. Luebke. Studying thermal management for
graphics-processor architectures. In Performance Analysis of Systems and Software,
2005. ISPASS 2005. IEEE International Symposium on, pages 54–65. IEEE, 2005.

[42] K. Skadron et al. Temperature-aware microarchitecture. In ACM SIGARCH Computer
Architecture News, volume 31, pages 2–13, 2003.

43

[43] K. Skadron et al. Temperature-aware microarchitecture: Modeling and implementa-
tion. ACM Trans. on Arch. and Code Optimization, 1(1):94–125, 2004.

[44] Y. Taur and T. H. Ning. Fundamentals of modern VLSI devices. Cambridge university
press, 2009.

[45] Y. Wang, K. Ma, and X. Wang. Temperature-constrained power control for chip
multiprocessors with online model estimation. In ACM SIGARCH Comp. Arch. News,
volume 37, pages 314–324, 2009.

[46] Q. Xie, J. Kim, Y. Wang, D. Shin, N. Chang, and M. Pedram. Dynamic thermal
management in mobile devices considering the thermal coupling between battery and
application processor. In Proc. of ICCAD, pages 242–247, 2013.

[47] J. Yang et al. Dynamic thermal management through task scheduling. In Proc. Int.
Symp. on Perf. Analysis of Systems and Software., pages 191–201, 2008.

[48] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of
simplepower: a cycle-accurate energy estimation tool. In Proceedings of the 37th
Annual Design Automation Conference, pages 340–345. ACM, 2000.

[49] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal management for multi-
core systems. In Proc. of DAC, pages 734–739, 2008.

[50] F. Zanini, D. Atienza, L. Benini, and G. De Micheli. Multicore thermal management
with model predictive control. In European Conf. on Circuit Theory and Design,
pages 711–714, 2009.

[51] M. Zapater, O. Tuncer, J. L. Ayala, J. M. Moya, K. Vaidyanathan, K. Gross, and A. K.
Coskun. Leakage-aware cooling management for improving server energy efficiency.

[52] L. Zhang et al. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proc. of Int. Conf.on Hardware/-
Software Codesign and System Synthesis, pages 105–114, 2010.

44

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	RELATED WORK
	OVERVIEW OF THE PROPOSED FRAMEWORK
	POWER AND THERMAL MODELING METHODOLOGY
	Power Modeling
	Leakage Power Modeling
	Dynamic Power Modeling
	Power Model Validation

	Thermal Modeling
	System Identification
	Thermal Model Validation

	DYNAMIC THERMAL AND POWER MANAGEMENT
	Run-Time Power Budget Computation
	DTPM Algorithm Implementation

	EXPERIMENTAL SETUP AND EVALUATION
	Experimental Setup and Methodology
	Development Platform
	Data Measurement
	Benchmarks

	Experimental Configurations
	Experimental Evaluation
	Temperature Prediction Accuracy
	Temperature Control and Stability
	Power and Performance Evaluation

	CONCLUSION AND FUTURE WORK
	Future Work

	REFERENCES

