

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Power and Thermal Management of System-on-Chip

Liu, Wei; Nannarelli, Alberto

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Liu, W., & Nannarelli, A. (2011). Power and Thermal Management of System-on-Chip. Kgs. Lyngby, Denmark:
Technical University of Denmark (DTU). (IMM-PHD-2011-250).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13748606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/power-and-thermal-management-of-systemonchip(bd5bc117-a903-4c80-83b2-0fa98906714f).html

Power and Thermal Management of
System-on-Chip

Wei Liu

Kongens Lyngby 2011

IMM-PHD-2011-250

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

With greater integration of VLSI circuits, power consumption and power density
have increased dramatically resulting in high chip temperatures and presenting
a heat removal challenge. To effectively limit the high temperature inside a chip,
thermal specific approaches, besides low power techniques, are necessary at the
chip design level.

In this work, we investigate the power and thermal management of System-on-
Chips (SoCs). Thermal analysis is performed in a SPICE simulation approach
based on the electrical-thermal analogy. We investigate the impact of inter-
connects on heat distribution in the substrate and present a way to consider
temperature dependent signal delay in global wires at early design stages.

With the aim of reducing high local power density in hotspots, we propose two
placement techniques to spread hot cells over a larger area. The proposed meth-
ods are compared in terms of temperature reduction, timing and area overhead
to the general method, which enlarges the circuit area uniformly.

A case study analyzes the design of Floating Point Units (FPU) from an energy
and a thermal perspective. For the division operation, we compare different
implementations and illustrate the impact of power efficient dividers on the
energy consumption and thermal distribution within the FPU and the on-chip
cache. We also characterize the temperature dependent static dissipation to
evaluate the reduction in leakage obtained from the decrease in temperature.

ii

Resumé

Ved øget integration af VLSI kredsløb øges effektforbrug og effekttæthed drama-
tisk med højere temperaturer p̊a chippen til følge. Dette forhold gør fjernelse af
energi en design udfordring. P̊a chip design niveau er termisk specifikke metoder
nødvendige for effektivt at begrænse temperaturen p̊a chippen.

I dette arbejde undersøges metoder for styring af effekt og temperatur for
System-on-Chips (SoCs). Termisk analyse baseres p̊a SPICE simuleringer af
elektriske ækvivalentkredsløb for det termiske system. Indflydelsen af lednings-
forbindelser for temperaturfordelingen i substratet undersøges, og en metode
for estimering af temperaturafhængige signalforsinkelser p̊a et tidligt stadie af
design præsenteres.

Med målsætningen om at reducere punkter med høj lokal effekttæthed (hotspots)
foresl̊as to placeringsteknikker for fordeling af hotspots over større areal. De
foresl̊aede metoder sammenlignes med den generelle metode, hvor kredsløbsarealet
øges uniformt, med hensyn til opn̊aet temperaturreduktion samt omkostninger
i form af øget forsinkelse og areal.

I et case study analyseres design af enheder til beregninger med flydende tal
(Floating Point Units, FPU) med hensyn til energi og temperatur. For divi-
sionsoperationen sammenlignes forskellige implementationer, og betydningen af
energi-effektive divisionskredsløb illustreres ved energiforbrug og temperatur-
fordeling inden for FPU og i on-chip cache-lagre. Endelig karakteriseres det
temperatur-afhængige statiske effektforbrug for at beregne reduktion i læk-
strømme som følge af den lavere temperatur.

iv

Preface

This thesis was prepared at the Department of Informatics and Mathematical
Modelling, the Technical University of Denmark in partial fulfillment of the
requirements for acquiring the degree of Doctor of Philosophy in engineering.

The thesis deals with power and thermal management of System-on-Chips. The
main focus is on investigating thermal behaviors within VLSI circuits, reducing
peak temperature in hotspots and optimizing energy and leakage consumption.

The thesis is self-contained and relies on the work done in a number of research
papers written during the period 2007–2010.

Lyngby, December 2010

Wei Liu

vi

Acknowledgements

First and foremost, I would like to thank my supervisor, Alberto Nannarelli, for
his persistent encouragement and guidance over the years. I am deeply grateful
for his confidence in me and for having the opportunity to work with him. I
would also like to thank my co-supervisor, Jan Madsen, for providing great
insight in state of the art of research and the way to conduct successful PhD
study.

Part of the work was carried out during my external stay at the Electronic Design
Automation group at Politecnico di Torino. I would like to express thanks to
Professor Enrico Macii and Professor Massimo Poncino for hosting me at Polito
and also to Andrea Calimera who worked closely with me on the project. Our
discussions gave me great insight in the area of design automation and inspired
many ideas that were later put down in this work.

I would also like to thank all the colleagues in the Embedded Systems Engineer-
ing section at DTU Informatics, for creating a great atmosphere to exchange
ideas and opinions.

Finally, the greatest thanks go to my parents and my girlfriend for their enduring
encouragement, support and love.

viii

Curriculum Vitae

Wei Liu

2005 Bachelor in Engineering, Zhejiang University (China)

2006-07 Student Assistant, Center for Biological Sequence Analysis,
Technical University of Denmark

2007 MSc in Engineering, Technical University of Denmark

2009 Visiting Student, Electronic Design Automation Group,
Politecnico di Torino (Italy)

2011 PhD in Engineering, Technical University of Denmark
Dissertation: Power and Thermal Management of System-on-Chip
Supervisor: Alberto Nannarelli and Jan Madsen

ix

PUBLICATIONS

W.Liu and A.Nannarelli, “Power Dissipation in Division”, Proc. of 42nd Asilo-
mar Conference on Signals, Systems and Computers, pp. 1790-1794, Oct. 2008

W.Liu and A.Nannarelli, “Net Balanced Floorplanning Based on Elastic Energy
Model”, Proc. of 26th Norchip Conference, pp. 258-263, Nov. 2008

W.Liu, A.Calimera, A.Nannarelli, E.Macii and M.Poncino, “On-Chip Thermal
Modeling Based on SPICE Simulation”, Proc. of 19th International Workshop
on Power And Timing Modeling, Optimization and Simulation, pp. 66-75, Sept.
2009

W.Liu, A.Nannarelli, A.Calimera, E.Macii and M.Poncino, “Post Placement
Temperature Reduction Techniques”, Proc. of 2010 Design, Automation Test
in Europe Conference Exhibition, pp. 634-637, Mar. 2010

W.Liu and A.Nannarelli, “Power Dissipation Challenges in Multicore Floating-
Point Units”, Proc. of 21st IEEE International Conference on Application-
specific Systems Architectures and Processors, pp. 257-264, Jul. 2010

W.Liu and A.Nannarelli, “Temperature Aware Power Optimization for Mul-
ticore Floating-Point Units”, Proc. of 44th Asilomar Conference on Signals,
Systems and Computers, pp. 1134-1138, Nov. 2010

x

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Power Dissipation and Heat Transfer in CMOS VLSI circuits 5

2.1 Power Dissipation in CMOS circuits 6

2.2 Design for Low Power . 9

2.3 Heat Transfer and Distribution 13

2.4 Technology Scaling and Thermal Issues 17

2.5 Thermal Management Techniques 19

3 Floating Point Units 23

3.1 Floating-Point Representation . 24

3.2 Floating-Point Addition . 26

3.3 Floating-Point Multiplication . 28

3.4 Floating-Point Fused Multiply-Add 30

3.5 Floating-Point Division . 33

4 Thermal Modeling 45

4.1 A SPICE Simulation Based Thermal Modeling Method 46

4.2 Wire Delay Estimation under Substrate Temperature Variation . 59

4.3 Summary . 68

xii CONTENTS

5 Power Density Reduction in Hotspots 69
5.1 Motivation . 70
5.2 Design Methodology . 73
5.3 Experiment Results . 81
5.4 Summary . 85

6 Energy and Thermal Aware Design in FPU 87
6.1 Energy Metrics . 88
6.2 Implementation of the FP-units 89
6.3 Energy Consumption in FP-operations 91
6.4 Thermal Analysis . 94
6.5 Leakage Optimization in Caches 96
6.6 Summary . 100

7 Perspective 103
7.1 Thermal Aware Planning and Routing for Global Wires 103
7.2 Delay Overhead Optimization in ERI and HSD Methods 104
7.3 NBTI Analysis with Detailed Spatial Thermal Distribution . . . 105

8 Conclusion 107

A Source Code for the Thermal Simulation Tool 119
A.1 SPICE Subcircuit Model for Thermal Cells 120
A.2 Mapping from Standard Cells to Thermal Cells 121
A.3 Generating SPICE Netlist for the RC Equivalent Circuit 125
A.4 Auxiliary Scripts . 131

B Synopsys Commands in the ERI and HSD Methods 133
B.1 Floorplanning in Synopsys’ IC Compiler 133
B.2 Commands for Information Retrieval and Cell Movement 134
B.3 Scripts for the Empty Row Insertion Method 135
B.4 Scripts for the HotSpot Diffusion Method 137

Chapter 1

Introduction

Over the past few decades, the semiconductor industry has seen a revolutionary
increase in computing performance, which is largely achieved through doubling
the number of transistors on a chip almost every two years. This trend of
technology scaling was already predicted by Intel’s co-founder Gordon Moore as
early as 1965, and often referred to as Moore’s Law. In 2010, the industry has
passed the two billion transistor milestone with the release of several high end
server processors.

The dramatic increase in the degree of integration has allowed the design of more
and more powerful systems, ranging from large mainframe servers constituting
backbones of the Internet to portable handheld devices, which enable people to
be connected at anytime from anywhere. The advancement in manufacturing
technology and design methodology makes it possible to put an entire System
on a Chip (SoC), integrating all components of an electronic system into a single
Integrated Circuit (IC).

The increasing performance of Very Large Scale Integration (VLSI) circuits is
accompanied by the increasing power and power density, which exhibit them-
selves in the form of heat and present a cooling challenge. The cost of cooling
solutions is a nonlinear function of power and to a large extent limits the maxi-
mum amount of power that can be dissipated in a chip. This is also referred to
as the Power Wall of commodity processors, which makes power and thermal

2 Introduction

management both a technical and an economic challenge.

Heat generated at transistor junctions flows towards the heat sink and the ambi-
ent environment mainly through the substrate and the chip package. Analogous
to electrical resistance in current flow, thermal resistance can be defined as well,
which is dependent on the dimension and the material used in the chip. To con-
tain the peak junction temperature, a circuit has to operate within its thermal
design power (TDP) so that heat generation does not outpace heat dissipation
in the cooling system.

High temperature has a negative impact on many aspects of a Complementary
Metal Oxide Semiconductor (CMOS) circuit, such as transistor performance,
power consumption and system reliability. Thermal management is not only
the task of package designers but also of the chip designers. To effectively limit
the high temperature in a chip equipped with a cost-effective cooling system,
thermal specific approaches, besides low power techniques, are necessary at the
chip design level.

Figure 1.1: A typical power map and the corresponding thermal map (from [1]).

Figure 1.1 illustrates the correlation between the power profile and the cor-
responding thermal map, which schematically shows the temperature rise at
different locations in the chip. The non-uniformity of power consumption can
cause a much higher local power density (typically referred to as hotspots). In
microprocessors, regions on the die with a temperature higher than 85 ◦C are
usually called hotspots. Temperatures in the hotspots rise much faster than the
full chip heating and can in the worst case cause severe damage to the chip.

In this work, we investigate the power and thermal management of SoCs. To

3

study the thermal distribution within a circuit, we implement a thermal simula-
tor that numerically analyzes the power-temperature relationship. The thermal
simulation provides valuable insights and forms the basis for characterization
and optimization of thermal behaviors. We also studied the thermal impact on
interconnect in terms of delay since the electrical resistance in metal is temper-
ature dependent. The results give the perspective that wire planning at early
design stages should take thermal impact into account to optimize for delay and
reliability.

With the purpose of reducing power density in hotspots, we propose two place-
ment techniques that spread cells in the hotspots over a larger area. Increasing
the area occupied by the hotspot directly reduces its power density. We com-
pare the proposed methods in terms of temperature reduction, timing and area
overhead to the general method, which enlarges the circuit area uniformly.

In addition, as a case study we analyze the design of Floating Point Units
(FPU) from both an energy and thermal perspective. We compare different
implementations for the division operation and illustrate the impact of power
efficient dividers on thermal profiles within the FPU and on-chip cache. The
decrease in average temperature can reduce the power consumption in cache and
any other leakage dominate circuit blocks. We provide a quantitative evaluation
of the leakage and the total power reduction obtained from the decrease in
temperature.

The rest of the chapters in this work is organized as follows. Chapter 2 describes
power consumption and heat transfer within a CMOS VLSI circuit. Chapter 3
introduces floating-point (FP) number representations and describes algorithms
and implementations for FP operations. Chapter 4 presents a thermal simula-
tion method, which we use to analyze steady-state thermal profile within a cir-
cuit. In Chapter 4, we also describe a method to model temperature dependent
wire delay during the early design stages. Chapter 5 presents two temperature
reduction techniques that we propose to reduce the power density in hotspots.
Chapter 6 discusses power consumption in FPUs and compares energy savings
and peak temperature reductions from alternative implementations of FP divi-
sion. Chapter 7 highlights some of the perspectives that can extend this work
and finally Chapter 8 draws the conclusions.

4 Introduction

Chapter 2

Power Dissipation and Heat

Transfer in CMOS VLSI

circuits

Power consumption has become a primary design constraint as CMOS manu-
facturing technology scales down to deep sub-micron geometries.

Traditionally, static CMOS circuits are very power efficient as they nearly dis-
sipate zero power while idle. This is a compelling advantage over bipolar pro-
cesses and allows much more CMOS transistors to be integrated onto a single
die. Since the 1980s CMOS processes were widely adopted and are nowadays
used for nearly all digital logic applications.

According to the constant field scaling theory [2], both the dynamic power and
the area of a transistor scales to 1/S2 (S is the process scaling factor) when
moving to a new process node. As a result, for the same die area designers
can put S2 times more transistors in a new process while maintaining the same
power density.

In practice, however, power density has skyrocketed because clock frequencies
have increased much faster and supply voltage remains higher than classical
scaling would predict. The increasing power density results in higher junction

6 Power Dissipation and Heat Transfer in CMOS VLSI circuits

temperature, which affects many aspects of a semiconductor device. In high end
processors, the performance is becoming increasingly limited by the maximum
amount of power that can be dissipated by the cooling system without exceeding
the maximum junction temperature. Increasing the volume of heat sinks or using
more advanced cooling systems can permit more power dissipation. However,
the cost of cooling systems is a nonlinear function of total chip power dissipation
which makes using more powerful cooling system a non sustainable solution. In
commodity microprocessors, a shift from high frequency single core designs to
moderate frequency multi-core designs has already taken place because of the
excessive cooling cost.

The emergence of new technologies can offer a one time solution to the heating
problem, such as the displacement of bipolar technology by CMOS technol-
ogy. However, at the moment no clear successor to the CMOS technology has
emerged yet. Power consumption and power density will remain as the key
design bottleneck as the degree of integration increases with each new process
node. Consequently, it has become ever more important to build power efficient
and thermal aware solutions at all design levels.

Many research work has been carried out in the past decades to design power
efficient circuit but in recent years thermal issues quickly arose to become one
of the potential show-stoppers to future CMOS scaling. In this chapter, we will
first review the mechanisms of power dissipation in CMOS circuits and describe
the methods to model and estimate on-chip temperature distribution. Then we
will discuss about thermal trends with technology scaling and how temperature
affect various properties of CMOS circuits. Finally, we briefly summarize the
related work in the area of power and thermal management.

2.1 Power Dissipation in CMOS circuits

Power dissipation in CMOS circuits comes from two components [2]:

• Dynamic dissipation due to charging and discharging of load capacitance
and to the short-circuit current.

• Static dissipation due to leakage current and other current drawn contin-
uously from the power supply.

2.1 Power Dissipation in CMOS circuits 7

2.1.1 Dynamic Dissipation

The dominant component in dynamic power dissipation is due to the charging
of the load capacitance CL. In standard cell designs, CL for a certain cell
is the total gate capacitance on the driven cells Cg and the total capacitance
contributed from the interconnecting wires to the driven cells Cw. In nanometer
technologies, for long wires (longer than several tens of micrometer), Cw can
dominate Cg and contribute the most to CL in a standard cell.

CL = Cg + Cw (2.1)

The average dynamic power dissipation can be expressed as the average instan-
taneous energy dissipation:

Pdynamic =
1

T

∫ T

0

iDD(t)VDDdt =
VDD

T

∫ T

0

iDD(t)dt (2.2)

where iDD(t) is the transient current drawn from the power supply and VDD

is the supply voltage. The integral is the total amount of charges delivered
during the time interval T . During each transition, the load capacitance is
charged to VDD or discharged to ground and the amount of charges delivered
Q is therefore equal to CLVDD. Assuming a nodal activity of α on the load
and a clock frequency of f , the total number of transitions amounts to αTf .
Therefore, Eq. (2.2) simplifies to:

Pdynamic =
VDD

T
αTfCLVDD = αCLVDD

2f (2.3)

αCL is also called effective switching capacitance as it is the part of total ca-
pacitance that contributes power consumption.

Short circuit power dissipation occurs when both pull-up and pull-down net-
work in a CMOS gate are partially ON during the input signal transition (as
illustrated in Figure 2.1). This results in a current pulse directly from VDD to
GND in a short period of time. The short circuit power depends on the transi-
tion time, the peak current and the supply voltage. However, the derivation of
an exact formula for the short circuit power is not easy and by making simpli-
fying assumptions closed-form expressions have been proposed in [3, 4, 5]. To
reduce short circuit power dissipation, it is desirable to make the edge slope of
transition as sharp as possible, e.g. by increasing the size of the driving gate.

8 Power Dissipation and Heat Transfer in CMOS VLSI circuits

Figure 2.1: Short circuit power dissipation in an inverter.

2.1.2 Static Dissipation

Static dissipation is caused by secondary effects (as illustrated in Figure 2.2)
such as sub-threshold conduction, gate oxide tunneling, reversed biased diode
leakage, etc. which lead to small amounts of current flowing through an OFF
transistor. In 130 nm processes and beyond, the static power (a.k.a leakage
power) has rapidly become a primary design issue which increases exponentially
as process moves to finer technologies. This is primarily due to the scaling of
threshold voltage Vth

1 resulting in orders of magnitudes increase in transistor’s
leakage current.

According to the International Technology Roadmap for Semiconductors (ITRS)
[6], various low power techniques such as dynamic Vth, multiple Vth transistors,
power domains/voltage islands, body bias, etc. will mitigate leakage until 2012.
As the use of high-κ dielectric2 brings gate leakage under control, sub-threshold
leakage is going to dominate and limit performance. Figure 2.3 shows the ITRS
prediction of leakage in 2007 for the next decade.

The sub-threshold leakage current density, i.e. the current per unit transistor
area, can be expressed by [7]:

Jsub =
W

Leff

µ

√

qǫsiNcheff

2φs

v2T exp

(

Vgs − Vth

ηvT

)[

1− exp

(

−Vds

vT

)]

(2.4)

1Threshold voltage is the voltage at which there are sufficient carriers to make a conducting
path between source and drain of a transistor.

2The silicon dioxide gate dielectric is replaced by a material with a higher dielectric constant
κ (such as hafnium-based materials), which allows further device miniaturization.

2.2 Design for Low Power 9

Figure 2.2: Static power dissipation in an inverter.

where W is the width of the transistor, Leff is the effective channel length,
Ncheff is the effective channel doping, φs is the surface potential, η is the sub-
threshold swing, and vT is the thermal voltage. vT is given by kT/q where k
is the Boltzmann’s constant, q is the electrical charge, and T is the junction
temperature.

From Eq. (2.4), we can see that sub-threshold leakage current is an exponential
function of the junction temperature T . At high operating temperatures, static
dissipation can contribute a significant amount to the total power dissipation in
CMOS circuits. In cache and other circuit components, where signal switching
only occurs to a small portion of transistors at a time, static power can dominate
over dynamic power. Reports indicate that 40% or even a higher percentage of
the total power consumption in 90 nm process technology is due to leakage [8]
and this percentage is expected to increase with technology scaling.

2.2 Design for Low Power

Design for low power has been one of the main research subjects in VLSI design
for the past decades. Many proposed low power techniques are quite effective
and over the years major library providers and Electronic Design Automation
(EDA) tool vendors have integrated these techniques into their products. Stan-
dards for power intent specification such as Unified Power Format [9] (UPF) and

10 Power Dissipation and Heat Transfer in CMOS VLSI circuits

 1

 2

 3

 4

 5

 6

 7

 8

 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er

Year

Full chip leakage predicted by ITRS

Figure 2.3: Full-chip leakage normalized to leakage power in 2007.

Common Power Format [10] (CPF) allow the specification of implementation-
relevant power information in power aware design flows. Some of these tech-
niques are general in nature and can be applied to most situations. Others
require circuit designers to make decisions based on careful analysis of the var-
ious interacting factors. Low power techniques can be divided into those that
reduce dynamic power and those that reduce static power.

2.2.1 Dynamic Power Reduction

The dynamic dissipation is governed by Eq. (2.3) and is reduced by decreasing
the effective switching capacitance, the power supply or the operating frequency.

Clock gating [11, 12] is an effective method in reducing switching capacitance,
which disables any changes to input registers of the idle part of a circuit. Clock
gating can be applied at different granularities. Fine grained clock gating con-
trols a small number of registers or even a single register and the area overhead
due to extra control hardware can be high. On the other hand, coarse grained
clock gating is applied to a large number of registers, probably also to portions
of the clock tree since the clock tree itself consumes a significant amount of
power due to the large activity factor. The disadvantage of coarse grained clock

2.2 Design for Low Power 11

gating is that it can only be applied when all the gated registers are idle, which
can be infrequent in general.

Synthesis tools can also perform many power reduction techniques during logic
synthesis such as operand isolation, logic restructuring and resizing, pin swap-
ping, etc. to minimize the effective switching capacitance [13].

Intuitively, the most effective way of optimizing dynamic power would be to de-
crease the supply voltage VDD as the reduction can be quadratic. A lower supply
voltage can be used for cells not in the critical path without compromising a
circuit’s performance [14]. At the chip level, different blocks can have differ-
ent speed requirements (e.g. peripheral interfacing circuitry can operate at a
slower speed than the data processing circuitry) allowing effective power reduc-
tion through multiple supply voltages with no performance overhead. However,
multivoltage design does introduce complexities especially for layout. Addi-
tional pins are required to connect all the supply voltages to the chip. The
power grid has to distribute each of the power supplies separately to the appro-
priate blocks. The interfacing between different power domains has to ensure
the correct signal levels by using level shifters.

Another technique that involves lowering supply voltage is dynamic voltage
scaling (DVS) [15], which varies the speed of a circuit dynamically according
to the timing requirement. A similar technique is dynamic frequency scaling
(DFS) [16], which adjusts the clock frequency in order to save power. DVS and
DFS are combined in some designs into dynamic voltage and frequency scaling
(DVFS) [17].DVS and DFS can both be implemented either in hardware through
circuit delay monitoring and matching or in software through operating system
scheduling.

2.2.2 Static Power Reduction

The static dissipation, unlike dynamic dissipation, is very much dependent on
the manufacturing process (e.g. channel length, doping profile, etc.) and the
operating environment (e.g. temperature, supply voltage, etc.). As can be seen
from Eq. (2.4), at the circuit design level, the static dissipation can be reduced
by increasing the threshold voltage Vth or decreasing the gate to source voltage
Vgs (decreasing the drain to source voltage Vds is impractical since static CMOS
swings from rail to rail).

Transistor threshold voltage Vth is dependent on several parameters such as body
doping profile, gate oxide thickness, body voltage, temperature, etc. Standard
cell libraries usually offer more than one cells to implement each logic function,

12 Power Dissipation and Heat Transfer in CMOS VLSI circuits

each using a different transistor threshold voltage. Cells with a low threshold
voltage (LVT cells) have a faster transition time but leak more sub-threshold
current. Cells with a high threshold voltage (HVT cells) have less leakage but
also a slower speed. Thus, leakage optimization can proceed in such a way that
LVT cells are used sparingly in timing critical paths and HVT cells are used
elsewhere to save standby power [18].

Alternatively, the threshold voltage can be controlled at runtime through apply-
ing a variable biasing voltage to the body from a control circuitry [19]. Reverse
body bias (RBB) can be applied to increase the threshold voltage and thus re-
duce leakage when the circuit is in standby mode. During active mode, forward
body bias (FBB) can be applied to speed up the circuit to match timing require-
ment. In this way, the circuit can be seen as implemented in transistors with
adaptable or variable threshold voltages. In fact, the technique is also known as
variable threshold CMOS (VTCMOS). The advantage of adaptive body biasing
is that dynamiclly tuning the threshold voltage allows leakage reduction also at
runtime. However, the technique requires a triple well process to achieve differ-
ent body bias levels at different regions of the chip, which is quite expensive.

Another technique to reduce idle time leakage is power gating, also known as
multiple threshold CMOS (MTCMOS), which cuts off power supply entirely
to the idle part of a circuit [20]. Power gating uses low Vth transistors for
computation and high Vth transistor as switches to disconnect the power supply
during idle mode. Power gating is suitable for runtime behaviors with quite
long idle periods (e.g. millions of clock cycles) and is very effective in reducing
leakage power since the path from power supply to the ground is “cut-off”.

Figure 2.4 illustrates a power gating design, where the controller controls the
sequences when switching between power ON and power OFF mode. The power
gated block is disconnected from supply rails by the power switching fabric. The
isolation block insures any signal connected to the always-on block does not stay
at intermediate signal levels when the power gated block is in OFF mode.

The technique also imposes several requirements to the design of standard cell
libraries and physical implementation tools. For example, isolation cells and
always-on cells have to be provided by the library in order to ensure signal
integrity on the interface with non power gated domains. Any useful state
information in memory elements (e.g. registers) has to be preserved during
power down and correctly restored upon power on, which is usually accomplished
by using state retention registers. State retention register is embedded with an
always on low leakage shadow register that keeps the content of the main register
during power gating. At the physical implementation stage, cells in the same
power gating domain can be clustered in the layout as much as possible in order
to minimize the number of switch cells, which are usually large area. Power

2.3 Heat Transfer and Distribution 13

Figure 2.4: Block diagram of a SoC with Power Gating (from [21]).

gating also introduces virtual supply rails and complicates the design of power
networks.

2.3 Heat Transfer and Distribution

The dissipated power in a VLSI circuit is manifested in the form of heat. In
the context of a MOSFET, when a signal transition occurs, the applied voltage
leads to a lateral electric field, which accelerates the charge carriers to move
from source to drain. The charge carriers that gained kinetic energy release
part of the energy whenever colliding with other carriers and atoms causing
vibrations of these particles and consequently a rise in the temperature. In this
way, electrical energy due to power consumption in CMOS circuit is transformed
to heat.

Two sources of heat generation exist in a CMOS circuit: cells and interconnects.
Power consumption in cells is composed of dynamic and static dissipation as
described in the previous section. Power consumption in interconnects is caused
by the flow of a small amount of current that charge and discharge the parasitic
capacitance in the interconnect during signal transition.

The small amount of current flow can result in significant temperature rise in

14 Power Dissipation and Heat Transfer in CMOS VLSI circuits

metal wires, which is widely known as self-heating, due to the low-κ dielectric
materials used in modern processes. However, self-heating is less related to
substrate temperature distribution than reliability issues in metal wires such as
electromigration. Due to the much smaller electrical resistance in interconnects,
the major source of heat generation is the power dissipation in cells on the device
layer.

For a flip-chip design3, most of the heat generated from the transistor junctions
is dissipated to the ambient environment through the heat sink attached to the
back side of the substrate, which constitutes the primary heat transfer path. A
small amount of heat is also conducted through interconnect layers and pads
to the packaging and printed circuit boards (PCB). Figure 2.5 shows a typical
flip chip design with a cross-sectional view of the PCB, packaging and a heat
sink. The heat sink is attached to the backside of the substrate through thermal
interface materials (TIM) and the wire leads are connected to the PCB through
C4 and CBGA Joint. The system is modeled as a network of thermal resistors
which shows the major heat dissipation paths. The heat is mainly transferred
through conduction within the system and through radiation and convection to
the ambient.

Figure 2.5: Heat dissipation paths of a chip (from [22]).

To describe the relationship between power consumption and junction temper-

3Flip-chip, also called Controlled Collapse Chip Connection (C4), is a method where the
surface of the chip is covered with an array of pads on the top of metal. The chip is flipped up-
side down and in nearly direct contact with the package, eliminating the inductance associated
with the bond wires [2].

2.3 Heat Transfer and Distribution 15

ature, a first order expression can be expressed as:

Tj = Ta + Pchip ×Rja (2.5)

where Ta is the temperature of ambient environment (e.g. temperature of air in
side the chassis of a desktop computer), Pchip is the total power consumption
inside the chip, Rja is the junction to ambient thermal resistance and Tj is the
derived junction temperature. As illustrated in Figure 2.5, Rja can be modeled
as the series resistance from junction to ambient in different parts of the chip.
Analogous to electrical resistance, thermal resistance can be defined as:

R =
L

k ×A
(2.6)

where k is the material’s thermal conductivity, L is the length and A is the
cross-sectional area of the conducting path.

Substituting Eq. (2.6) into Eq. (2.5), we get:

Tj = Ta + Pchip ×
L

k ×A
(2.7)

To a circuit designer, L and k are process and package dependent parameters
and Ta is determined by the operating environment. Consequently, Tj is closely
related to the ratio between Pchip and A which defines the power density of the
chip.

Due to the large variation of power density in different regions on the die, sig-
nificant temperature difference between different regions (typically referred to
as thermal gradients) usually exists on the substrate layer. The one dimen-
sional first order expression in Eq. (2.5) is incapable to capture the temperature
difference within the chip.

In general, the heat diffusion equation is used to describe the rate of heat con-
duction in a chip:

q = −kt∇T (2.8)

which states that heat flux, q (inW/m2), is proportional to the negative gradient
of temperature, T (in K), with the constant of proportionality corresponding
to the thermal conductivity of the material, kt (in W/(mK)). kt is in general
temperature dependent, however the variation is not significant. For on chip
thermal analysis, kt can be treated as constant for each type of material.

The divergence of q is the difference between the power generated and the time
rate of change of heat as described in Eq. (2.9),

∇ · q = −kt∇ · ∇T = −kt∇
2T = g(r, t)− ρcp

∂T (r, t)

∂t
(2.9)

16 Power Dissipation and Heat Transfer in CMOS VLSI circuits

where r is the spatial coordinate of the point at which the temperature is being
determined, g is the power density of the heat source (in W/m3), cp is the heat
capacity of the material (in J/(kgK)) and ρ is the density of the material (in
kg/m3). This heat diffusion equation(Eq. (2.9)) can be rewritten as,

ρcp
∂T (r, t)

∂t
= kt∇

2T + g(r, t) (2.10)

Eq. (2.9) is subject to the boundary condition,

−kt
∂T (r, t)

∂n
= hc(Tr,t − Ta) (2.11)

which states that the heat generated inside the chip equals the heat dissipated
to the ambient.

The time constant of on-chip heat conduction is in milliseconds, which is much
larger than the clock periods in nanoseconds. This means transient currents
with short time constants do not have significant impact on temperature dis-
tribution. If the power profile of a circuit does not change within an extended
period of time, steady-state analysis can capture the thermal behavior of the
circuit accurately [22]. Steady state thermal analysis determines temperature
distribution when power density distribution does not change over time, which
is sufficient for applications with stable power profiles or periodically changing
power profiles that cycle quickly [23]. Thus to obtain steady state temperature
profile, single average power for different location of the circuit can be used.

Eq. (2.10) can be solved numerically using one of several solution frameworks
for partial differential equations. The Finite Difference Method (FDM) and the
Finite Element Method (FEM) both discretize the chip and form a system of
linear equations relating the temperature distribution to the power distribu-
tion. Many research work based their optimization on thermal simulators using
the FDM or the FEM methods [24, 25, 26, 27]. The work in [28] proposed a
compact thermal model for architectural thermal analysis, which based on the
electrical-thermal analogy creates a coarse grained RC network of functional
blocks and the package. The resulting matrix equations are then solved using
LU decomposition to obtain a steady-state thermal analysis.

For full chip thermal analysis, in order to achieve high resolution the number
of linear equations resulted from the FDM discretization can be huge. The
multigrid algorithm was successfully used in [23, 29] to solve the problem and
shown to be more efficient than other methods such as Gauss-Seidel iteration,
conjugate gradient method, etc. The multigrid method follows a hierarchical
approach and is based on the observation that an iterative solver is usually

2.4 Technology Scaling and Thermal Issues 17

more effective in removing high frequency solution errors in a FDM mesh than
low frequency errors. Therefore, a hierarchy of mesh grids with multilevel gran-
ularities are constructed. The method starts with iterating over the finest grid
and once the convergence deteriorates due to low frequency errors it changes to
the coarser grid where the low frequency errors are removed through coarse grid
correction. Once the solution to the coarser grid is obtained, it is mapped back
to the finer grid through interpolation. The overall runtime is observed to be
linear with the number of nodes in the finest mesh grid.

An alternative to the FDM and FEM methods is a boundary element method
using Green functions [30, 31]. In this method, only layers of heat sources or
layers of thermally interest are analyzed, thus resulting in a smaller problem size
than FDM and FEM. However, the method is based on the assumption that chip
materials are layer-wise uniform and consequently is more suitable for early stage
analysis where efficiency is more in favor than accuracy. An improved method
in [32] reduces the complexity in Green function based methods by recognizing
the bottleneck corresponds to a convolution operation.

2.4 Technology Scaling and Thermal Issues

Eq. (2.5) shows that junction temperature depends on power consumption and
thermal resistance. With manufacturing process scaled to finer geometries,
power consumption in a single transistor decreases. Thermal resistance for a
single transistor, on the other hand, increases due to the reduction in the tran-
sistor’s geometrical size [33]. Transistor’s temperature in a new process is thus
dependent on the relative rate of changes of the two parameters.

To estimate full chip temperature increase in a new process, one also has to
take into account the increase in transistor density. In [22], the authors using
industrial technology data and ITRS prediction for future technologies showed
that the normalized temperature increase of a chip is significantly elevated when
CMOS technology scaled from 350 nm to 90 nm. The estimated junction tem-
perature of a 90 nm process CMOS chip is about 4.5 times higher than that of
a 350 nm process CMOS chip.

The rapid increasing junction temperature can affect several aspects of circuit
design as many CMOS circuit parameters are temperature dependent. The car-
riers mobility of a transistor decreases with increasing temperature which lowers
the drive current and leads to increased delays. On the contrary, transistor’s
threshold voltage decreases with temperature which improves transistor switch-
ing time. The performance of a transistor is therefore dependent on which of the

18 Power Dissipation and Heat Transfer in CMOS VLSI circuits

two factors dominate. The unit resistance of a wire segment increases with tem-
perature, which makes the delay on wires especially global wires very sensitive
to high temperature [34].

The unevenly distributed heat caused by large spatial variations in power con-
sumption at different locations can make performance analysis difficult. Ther-
mally induced device mismatch is a major concern in high speed and high pre-
cision IC design such as clock distribution networks, Arithmetic Logic Units
(ALU), data converters, amplifiers, etc. Containing temperature and thermal
gradient is also critical to the design of mixed signal and analog ICs as they are
more sensitive to temperature.

Sub-threshold leakage, as described in Section 2.1 has an exponential depen-
dence on temperature [7]. It has been shown in [35] that for every 30 ◦C in-
crease in temperature, the amount of leakage more than doubles. The induced
leakage in turn increases total power consumption and causes further temper-
ature rise. If the cooling system is inadequate to remove the generated heat
fast enough, the positive feedback loop between temperature and leakage will
eventually cause thermal runaway and burn down the chip.

Temperature is a vital factor in microelectronics system’s reliability [36]. Higher
junction temperature reduces mean time to failure (MTTF) for the devices,
which has a direct impact on the overall system reliability. It is reported in
[37] that a small increase in operating temperature (10 − 15 ◦C) can decrease
the lifespan of devices by 2 times. Many physical effects that cause reliabil-
ity degradation are thermally activated processes [38, 39, 40]. Negative Biased
Temperature Instability (NBTI) and Hot Carrier Injection (HCI) effects, which
are strongly dependent on temperature, degrade the performance of transistors
in an irreversible manner over time. These effects reduce a circuit’s lifetime
and cause timing violations eventually. Other failure mechanisms such as elec-
tromigration, stress migration and dielectric breakdown are accelerated by high
temperature and temperature gradients and cause permanent device failures
[41]. According to ITRS [6], the junction temperature of a semiconductor de-
vice must be kept at 85 ◦C or lower to ensure long term reliability.

All these factors dictate that the excessive heat generated from the circuit must
be dissipated to the ambient at a reasonable speed and the circuit should be
operated within a specified temperature range.

2.5 Thermal Management Techniques 19

2.5 Thermal Management Techniques

Although the elevated temperature is caused by the increasing power consump-
tion in a chip, effective power management methods may not be as useful for
thermal management. The key differences between power reduction techniques
and temperature reduction techniques can be classified into several aspects.

First, power dissipation is in general spatially nonuniform across a chip and thus
temperature in local hotspots can increase much faster than full chip heating.
If the high power density in hotspots is effectively reduced, a chip can dissipate
the same amount or even more total power at a lower peak temperature. Power
management performs a minsum optimization, which monitors full chip power
consumption and attempts to lower the total energy consumed over an entire
application run. In contrast, thermal management is a minmax optimization
problem, where peak temperature at specific localized hotspots and full chip
thermal gradient are of main concern.

Second, heat distribution within a circuit evolves over timescales of hundreds
of microseconds while power dissipation changes every clock cycle, which is in
nanoseconds. Consequently, low power techniques that reduce power dissipation
at a very short timing granularity do not have effect in reducing temperature.

Although a vast literature on techniques to reduce power does exist, as we have
seen in Section 2.2, not all low-power design solutions are effective for reducing
temperature. For this reason, recent research has focused on specific solutions
for thermal management ([42, 43, 44, 45, 46]), in which temperature and not
power is the actual metric.

To perform thermal management within a circuit, techniques explicitly targeting
the spatio-temporal thermal behavior are needed. Thermal management can
be divided into design time and run time techniques based on the timing of
activation.

2.5.1 Design Time Solutions

Design time thermal management involves the spatial arrangement of circuit
structures in such a way that the maximum local power density is reduced.
These structures are functional blocks at the chip level and individual gates at
the block level. Placing high power consumption structures away from each
other can reduce the thermal coupling and flatten out the die’s thermal profile.

20 Power Dissipation and Heat Transfer in CMOS VLSI circuits

In [47], an isothermal logic partitioning technique was proposed. This method
iteratively optimizes the thermal profile of a placed netlist by building isothermal
logical clusters and then partitioning the hottest clusters into two parts. In this
way, hotspots are split apart and can be placed close to cool cells. For standard
cell based synthetic benchmarks, the algorithm achieved on average 5.54% and
9.9% in peak temperature reduction with a timing overhead of 5% and 10%
respectively.

Many thermal aware floorplanning and placement algorithms were also pro-
posed, typically using peak temperature as one component of the cost function
when evaluating the quality of a candidate solution. In [48], a system level
leakage aware floorplanner (LEAF) was proposed. The method also models the
positive feedback loop between temperature and leakage in a simulated anneal-
ing based floorplanning algorithm. For each type of transistor in the library,
a temperature leakage correlation table is generated from SPICE simulation.
Within the annealing, an initial estimate of the leakage is used to determine the
temperature, which in turn updates the leakage. The feedback loop between
the leakage and the temperature continues until steady-state temperature is
reached. The new floorplan is evaluated in terms of total leakage power and
other metrics such as area and total wirelength.

In recent years, temperature variation induced clock skew in the clock distribu-
tion network has become prominent. In [49, 50], the authors described design
time clock tree synthesis algorithms to take counter measures against nonuni-
form substrate thermal profile. While in [51], the optimal insertion of tunable
delay buffers into clock trees, to adjust at run time the delay of clock distribution
paths that are more susceptible to temperature variations, is discussed. Ther-
mal aware global routing algorithms for improving reliability are also proposed
in [52, 53].

The advantage of design time techniques is that they are applied during the
physical implementation stage and the incurred performance overhead can usu-
ally be optimized. On the other hand, the solution is static and does not adapt
to changes in thermal behaviors such as the shifting of locations of hotspots at
run time.

2.5.2 Run Time Solutions

Run time thermal management is also called dynamic thermal management
(DTM) as they are performed dynamically when applications are running. DTM
monitors chip temperature through thermal sensors and triggers response mech-
anisms. Reactive DTM activates responsive mechanisms once the peak temper-

2.5 Thermal Management Techniques 21

ature or thermal gradient exceeds predefined thresholds, while the timing of
activation in proactive DTM is based on predictions of future temperatures.
Response mechanisms include dynamic power reduction techniques like DVFS,
power gating and clock gating as described in Section 2.2, and architectural
adaptation methods like clock throttling, limiting the issue width in multiple
issue processors, task migration in multicore systems, etc.

In [54, 55, 56], the authors studied the reductions in hotspots and spatial-
temporal thermal gradients using static and dynamic task scheduling methods.
The DTM schemes considered in [55] are thread migration and voltage scal-
ing and the proposed scheduler is compared against load balancing schedulers,
which are typically found in multi-core operating systems. To avoid significant
performance degradation a probabilistic policy (Adaptive-Random) determines
between load balancing and DTM schemes. The results showed that the pro-
posed methods can effectively reduce hotspots with a performance overhead
between 2.4% and 15.0% for different approaches. In [56], the authors proposed
a proactive thermal management approach, which can estimate future temper-
ature based on a moving window of temperature history. The robustness and
accuracy of the method are achieved through adapting the model parameters
according to the dynamic workload and temperature measurements at runtime.
In [57], the authors proposed a thermal balancing policy specifically designed for
multiprocessor stream computing applications. The experiment results showed
that the proposed policy achieved thermal balance between cores at a perfor-
mance cost less than general DTM schemes such as DVFS, Stop&Go, etc.

The advantage of run time thermal management is that it can adapt to dynamic
thermal behaviors and is suitable for applications where the workload on blocks
varies overtime as in the case of a microprocessor. The disadvantage is that these
techniques are usually complex to implement and the performance overhead due
to the triggering of DTM can be significant. For example, DVS requires to stall
between 10 - 50 µs for the resynchronization of the clock’s phase-locked loop
[58]. Furthermore, aggressive DTM might introduce additional thermal stress-
relax cycles that cause mechanical stress and impact system reliability and thus
requires careful analysis.

22 Power Dissipation and Heat Transfer in CMOS VLSI circuits

Chapter 3

Floating Point Units

Floating-point units (FPU) could be a good case study for power and thermal
aware design. FPUs are found in a wide variety of processors ranging from
server and desktop microprocessors, graphic processing units (GPU), to digi-
tal signal processors (DSPs), mobile Internet devices and embedded systems.
In NVIDIA’s latest CUDA architecture Fermi, each streaming multiprocessor
contains 32 FPUs totaling 512 of them in a single GPU. Floating-point opera-
tions are much more complex than their integer and fixed-point counterparts.
Consequently, FPUs usually occupy a significant amount of silicon area and
can consume a large fraction of power and energy in a chip. For scientific and
graphics intensive applications, the high power consumption in FPU can make
it the hotspot on the die.

In this chapter, we give a brief overview of the floating-point representation
and the arithmetic operations on floating-point numbers, namely add/subtract,
multiply, fused multiply-add and divide. For each operation, we illustrate the
basic steps necessary to perform the operation in hardware and an example im-
plementation. In particular, the division operation is implemented using several
alternative algorithms. In Chapter 6, we compare the different implementations
of division in terms of power and energy consumption and discuss FPU design
from an energy and a thermal perspective.

24 Floating Point Units

3.1 Floating-Point Representation

A floating-point representation is used to represent real numbers in a finite
number of bits. Since the set of real numbers is infinite, it is only possible to
exactly represent a subset of real numbers in the floating-point representation.
The rest of the real numbers either fall outside the range of representation
(overflow or underflow) or are approximated by other floating-point numbers
(roundoff). The most used representation is sign-and-magnitude, in which case
a floating-point number x is represented by a triple (Sx, Mx, Ex):

x = (−1)Sx ×Mx × bEx (3.1)

where Sx ∈ {0, 1} is the sign, Mx denotes the magnitude of the significand, b is
a constant called the base and Ex is the exponent.

A floating-point representation system involves many parameters and histori-
cally many floating-point processors were designed using a variety of represen-
tation systems. To avoid incompatibilities between different systems, the IEEE
Floating-point Standard 754 was developed, which is followed by most floating-
point processors today. The latest version of the standard (IEEE 754-2008 [59])
defines the arithmetic formats of binary and decimal floating-point numbers as
well as arithmetic and other operations that perform on these numbers. We
briefly summarize the main components of the IEEE Standard 754 for binary
numbers in this section.

3.1.1 Formats

The magnitude of the significand Mx is represented in radix 2 normalized form
with one integer bit:

1.F

where F is called the fraction and the leading 1 is called the hidden bit. The
exponent Ex is base 2 and in biased representation with

B = 2e−1 − 1

where e is the number of bits of the exponent field. Denormalized numbers
(Ex = 0∧ F 6= 0) do not have a leadinig 1 in the hidden bit. Consequently, the
value of a normal floating-point number represented in the IEEE format can be
obtained as:

x = (−1)Sx × 1.Fx × bEx−B (3.2)

The three components are packed into one word with the order of the fields in
S, E and F . The system defines three basic binary floating-point formats:

3.1 Floating-Point Representation 25

• binary16 (Half): S(1), E(5), F(10).

• binary32 (Single): S(1), E(8), F(23).

• binary64 (Double): S(1), E(11), F(52).

3.1.2 Rounding

The standard defines five rounding algorithms:

• Round to nearest: Round to nearest, ties to even (default); Round to
nearest, ties away from zero.

• Directed: Round toward 0 (truncated); Round toward +∞; Round toward
−∞.

3.1.3 Operations

Required operations include:

• Numerical: add, subtract, multiply, divide, remainder, square root, fused
multiply-add, etc.

• Conversions: floating to integer, binary to decimal (integer), binary to
decimal (floating), etc.

• Miscellaneous: change formats, test and set condition flags, etc.

3.1.4 Exceptions

The standard defines five exceptions, each of which sets a corresponding status
flag when raised and by default the computation continues.

• overflow (result is too large to be represented).

• underflow (result is too small to be represented).

• division by zero.

26 Floating Point Units

• inexact result (result is not an exact floating-point number).

• invalid operation (when a Not-A-Number result is produced).

In the following sections, we describe the algorithm and implementation for
floating-point operations. In specific, the operations described are: add/sub-
tract, multiply, fused multiply-add and divide. Of all these operations, division
is more complex and we will present several algorithms and implementations for
the division operation.

For each operation, we first present a high level description of the steps to be
performed in generic form. We assume the operands and results are represented
in the triple (S, M , E) as described in the previous section. To simplify the
description of algorithms, let M∗ = (−1)SM represent the signed significand.
A hardware implementation of the operation is then given to illustrate the exe-
cution of different algorithms.

3.2 Floating-Point Addition

The addition/subtraction is described in the following expression:

z = x± y

The high level description of this operation is composed of the following steps:

1. Add/subtract significands and set exponent.

M∗
z =

(M∗
x ± (M∗

y × b(Ey−Ex)))× bEx if Ex ≥ Ey

((M∗
x × b(Ex−Ey))±M∗

y)× bEy if Ex < Ey

Ez = max(Ex, Ey)

2. Normalize significand and update exponent.

3. Round, normalize and adjust exponent.

4. Set flags for special cases.

A single path implementation of the floating-point add operation is shown in
Figure 3.1 from [60], where a more detailed description of the unit is given. To

3.2 Floating-Point Addition 27

Compare Swap

Bit-invert
control

R-Shifter

Inverter Inverter

LZA
Adder

L-Shifter L1/R1-Shifter

MUX

ROUND

Exponent
Difference

Mux

Exponent
UpdateSign

EzSz Mz

d

sgn(d)

Ex Ey

sub

d

sgn(d)

ovf

ovf_rndovf

EOP

zero(d)

Mx My

3 ms bits of
adder output

cmp

EOP

Sy

Sxsgn(d)
zero(d)

cmp

01

3 ms bits of
adder output

Figure 3.1: Single path floating-point addition.

28 Floating Point Units

avoid having two alignment shifters, the operands are swapped according to the
sign of the exponent difference. A two’s complement adder performs the sign-
and-magnitude addition in step 1. When the effective operation is subtraction
(determined by the operation and the signs of the operands), the smaller operand
is complemented by bit-inversion plus carry-in to the adder. This is to avoid
complementing the output of the adder when the result is negative. The leading
zero anticipation (LZA) unit determines the position of the leading one in the
result in parallel with the addition.

In the normalization step, two cases can occur. In the first case, the effective
operation is subtraction and the output of the adder has many leading zeros,
which requires a massive left shift of the result and no roundup is necessary
since the exponents difference is less than 2 and no initial massive right shift
was performed. In the second case, the output of the adder contains only one
leading zero or has an overflow due to addition. In this case, a shifting of only
one position to the left or to the right is required and subsequently a roundup is
necessary. The two cases can be designed into separate paths in order to reduce
the latency in both paths [61].

3.3 Floating-Point Multiplication

The multiplication of two floating-point numbers x and y is defined as:

z = x× y

The high level description of this operation is composed of the following steps:

1. Multiply significands and add exponents.

M∗
z = M∗

x ×M∗
y

Ez = Ex + Ey +B

2. Normalize M∗
z and update exponent.

3. Round.

4. Determine exception flags and special values.

The basic implementation of floating-point multiplication is shown in Figure 3.2.
For the sake of simplicity, we only show the data paths for the significands in

3.3 Floating-Point Multiplication 29

x y

z

recoder

Multiplier

Adder

R-Shifter

Round

Figure 3.2: Implementation of floating-point multiplication (significands only).

30 Floating Point Units

block diagrams. Parallel multiplication (combinational) is a three steps compu-
tation [60]. We indicate with

z = x× y

the product z (n+m bits) of a n-bit operand x and a m-bit operand y.

1. First, m partial products

zi = 2ix · yi i = 0, . . . ,m− 1

are generated. Because yi = {0, 1}, this step can be realized with a n×m
array of AND-2 gates1

2. Then, the m partial products are reduced to 2 by an adder tree

m−1
∑

i=0

2ix · yi = zs + zc .

3. Finally, the carry-save product zs, zc is assimilated by a carry-propagate
adder (CPA).

z = zs + zc .

The delay in the adder tree and its area depend on the number of addends to be
reduced (m : 2). By radix-4 recoding the multiplier y, often referred as Booth’s
recoding, the number of partial products is halved m

2 . As, a consequence the
multiplier’s adder tree is smaller and faster. However, in terms of delay, the
reduction in the adder tree is offset by a slower partial product generation, due
to the recoding [60]. On the other hand, the reduction in area is significant, and
the power dissipation is reduced as well due to both the reduced capacitance
(area) and the nodes’ activity because sequences of 1’s are recoded into sequences
of 0’s resulting in less transitions.

The significand of the product might have an overflow in which case it is nec-
essary to shift the result one position to the right and increment the exponent.
Finally, rounding is performed according to the specified mode.

3.4 Floating-Point Fused Multiply-Add

The fused multiply-add (FMA) operation is a three operand operation defined
by the following expression:

z = a+ b × c

1Shifting (2i) is done by hard-wiring the AND-2 array’s output bits.

3.4 Floating-Point Fused Multiply-Add 31

The high level description of this operation is composed of the following steps:

1. Multiply significands M∗

b and M∗
c , add exponents Eb and Ec, and deter-

mine the amount of alignment shift of a.

2. Add the product of M∗

b ×M∗
c and the aligned M∗

a .

3. Normalize the adder output and update the result exponent.

4. Round.

5. Determine exception flags and special values.

The multiply-add operation is fundamental in many scientific and engineering
applications. Many commercial processors include a FMA unit in the floating-
point unit to perform double precision floating point fused multiply-add opera-
tion as a single instruction. The main advantages of the fused implementation
over the separate implementation of multiplication and addition are:

• The high occurrence of expressions of that type in scientific computation,
and the consequent reduction in overhead to adjust the operands from the
IEEE format to the machine internal representation (de-normalization,
etc.).

• Improvement in precision, as the result of multiplication is added in full
precision and the rounding is performed on a+ b× c.

The drawback is that if a large percentage of multiply and add cannot be fused,
the overhead in delay and power is large especially for addition.

The architecture of an FMA unit for binary64 (double precision) significands,
shown in Figure 3.3, is derived from the basic scheme in [60] and [62]. Registers
A, B and C contain the input operands and register Z contains the final result.
To prevent shifting both a and the product of b and c, a is initially positioned
two bits to the left of the most significant bit (MSB) of b× c so that only a right
shift is needed to align a and the product. The zero bits inserted in the two
least-significant (LS) positions are used as the guard and round bits when the
result significand is a. The amount of shift depends on the difference between
the exponents of a and b × c. Moreover, a is conditionally inverted when the
effective operation is subtraction.

A Booth encoded tree multiplier computes the product of b and c and the result
is output in carry-save format to be added with the shifted a. Since the product

32 Floating Point Units

CBA

INV

RSHIFTER

Z

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Stage 1

Stage 2

Stage 3

ROUNDING
Stage 4

Figure 3.3: Scheme of an FMA unit (significands only).

has 106 bits, only the 106 LSBs of the shifted a are needed in the carry-save
adder (CSA). The 55 MSBs of the shifted a are concatenated with the sum of
the CSA to form input to the adder. Since the carry in the output of the CSA
has 106 bits, only one of the input to the adder has 161 bits.

Consequently, the leftmost 55 bits portion of the adder is implemented as an
incrementer with the carry-out of the lower part as the increment input. The
adder also performs end-around-carry adjustment for effective subtraction. As
the result might be negative, an array of inverters is required at the output of
the adder.

Once the result of the addition is obtained, the amount of normalization shift is
determined by the leading one detector (LOD). No right shift for normalization
is required due to the initial position of a.

3.5 Floating-Point Division 33

To increase throughput, the FMA unit is implemented in a four-stage pipeline.
The position of the pipeline registers is indicated with dashed horizontal lines
in Figure 3.3.

The FMA unit can be used to perform floating point addition by making b = 1
(or c = 1) and multiplication by making a = 0.

3.5 Floating-Point Division

The division operation is defined by the following expressions:

x = q · d+ rem

and
|rem| < |d| · ulp and sign(rem) = sign(x)

where the dividend x and the divisor d are the operands and the results are the
quotient q and the remainder rem.

The high-level description of the floating-point division algorithm is composed
of the following steps:

1. Divide significands and subtract exponents.

M∗
q = M∗

x /M∗

d

Eq = Ex − Ed −B

2. Normalize M∗
q and update exponent accordingly.

3. Round.

4. Determine exception flags and special values.

Division is implemented in hardware in all general purpose CPUs and in most
processors used in embedded systems. Several classes of algorithms exist to im-
plement the division operation in hardware, the most used being the digit recur-
rence method, the multiplicative method and various approximation methods.

In the following we briefly review these algorithms and implementations. Due
to the differences in the algorithms, a comparison among their implementation
in terms of performance and precision is sometimes hard to make. In Chapter
6, we will use power dissipation and energy consumption as metrics to compare
among these different classes of algorithms.

34 Floating Point Units

3.5.1 Division by Digit Recurrence

The digit-recurrence algorithm [63] is a direct method to compute the quotient
of the division

q =
x

d
+ rem

The radix-r digit-recurrence division algorithm is implemented by the residual
recurrence

w[j + 1] = rw[j] − qj+1d j = 0, 1, . . . , n

with the initial value w[0] = x. The quotient-digit qj+1, normally in signed-digit
format to simplify the selection function, provides log2 r bits of the quotient at
each iteration. The quotient-digit selection is

qj+1 = SEL(dδ, y) qj+1 ∈ [−a, a]

where dδ is d truncated after the δ-th fractional bit and the estimated residual,
y = rw[j]t, is truncated after t fractional bits. Both δ and t depend on the radix
and the redundancy (a). The residual w[j] is normally kept in carry-save format
to have a shorter cycle time.

The divider is completed by a on-the-fly convert-and-round unit [63] which con-
verts the quotient digits qj+1 from the signed-digit to the conventional represen-
tation, and performs the rounding based on the sign of the remainder computed
by a sign-zero detect (SZD) block. The conversion is done as the digits are
produced and does not require a carry-propagate adder.

The digit-recurrence algorithm is quite a good choice for the hardware imple-
mentation because it provides a good compromise between latency, area and
power and rounding is simple (the remainder is computed at each iteration). A
radix-4 division scheme is implemented in Intel Pentium CPUs [64], in ARM
processors [65] and in IBM FPUs [66].

Radix-4 Division Algorithm

We now briefly summarize the algorithm for radix-4 with the quotient digit
selected by comparison [65]. The radix-4 recurrence is

w[j + 1] = 4w[j]− qj+1d j = 0, 1, . . . , n

with qj+1 = {−2,−1, 0, 1, 2}.

3.5 Floating-Point Division 35

The quotient-digit qj+1 is determined by performing a comparison of the trun-

cated residual y = 4̂w[j] (carry-save) with the four values (mk) representing the
boundaries to select the digit for the given d. That is,

y ≥ m2 → qj+1 = 2
m1 ≤ y < m2 → qj+1 = 1
m0 ≤ y < m1 → qj+1 = 0
m−1 ≤ y < m0 → qj+1 = −1

y < m−1 → qj+1 = −2

This selection can be implemented with a unit (QSL) similar to that depicted in
Figure 3.4.a where four 8-bit comparators (sign-det.) are used to detect in which
range y lies. The coder then encodes qj+1 in 1-out-4 code which is suitable to
drive multiplexers.

4

CSA 3:2 CSA 3:2 CSA 3:2 CSA 3:2

sign−det. sign−det. sign−det. sign−det.

coder

q
j+1

8 8

m2 m 1 m0 m−1

s
y

c
y

a)

y
s

c
y

CSA 3:2CSA 3:2 CSA 3:2CSA 3:2

M U X 5 : 1

QSL

4
q
j+1

8 8

mks

s

cw [j] w [j]s

cw [j+1]w [j+1]

nn 2dd−d−2d

b)

Figure 3.4: a) Selection by comparison (QSL). b) Single radix-4 division stage.

In parallel, all partial remainders wk[j + 1] are computed speculatively (Fig-
ure 3.4.b), and then one of them is selected once qj+1 is determined.

36 Floating Point Units

The critical path of the unit in Figure 3.4 is

tREG + tQSL
CSA + tQSL

8b−CPA + tbuffer + tMUX

Intel Penryn Division Unit

The division unit implemented in the Intel Core2 (Penryn) family is sketched in
Figure 3.5 [64]. It implements IEEE binary32/binary64 compliant division, plus
extended precision (64 bits significand) and integer division. The unit consists
of three main parts: the pre-processing stage necessary to normalize integer
operands to ensure convergence; the recurrence stage; and the post-processing
stage where the rounding is performed.

The recurrence is composed of two cascaded radix-4 stages synchronized by a
two-phase clock to form a radix-16 stage (4 bits of quotient computed) over a
whole clock cycle. Each radix-4 stage is realized with a scheme similar to that
of [65] shown in Figure 3.4.

This scheme was selected by Intel because of the reduced logical depth. However,
the speculation on the whole w-word (54 bits for [65], 68 bit for the Core2
format) is quite expensive in terms of area and power dissipation.

According to [64], a maximum of 6+15=21 cycles are required to perform a
division on binary64 (double-precision) operands.

Radix-16 by Overlapping Two Radix-4 Stages

An alternative to the Penryn solution, is to have a radix-16 divider obtained
by overlapping (and not cascading) two radix-4 stages. In this scheme, the
speculation is applied to the narrower y-path as explained next. Examples of
radix-16 dividers by radix-4 overlapping are reported in [63] and [67].

The radix-16 retimed recurrence, illustrated in Figure 3.6.a, is

v[j] = 16w[j − 1]− qHj(4d)

w[j] = v[j]− qLjd

with qHj ∈ {−2,−1, 0, 1, 2}, qLj ∈ {−2,−1, 0, 1, 2}, and w[0] = x (eventually
shifted to ensure convergence). In Figure 3.6.a, the position of the registers is
indicated with a dashed horizontal line. The recurrence is retimed (the selection
function is accessed at the end of the cycle) to increase the time slack in the

3.5 Floating-Point Division 37

dx

MUX

MUX

<<2

<<2

Post processing

Pre processing

Quotient/remainder

QSL Hybrid 68b
Adder

QSL Hybrid 68b
Adder

Radix 4

Radix 4

Latch/Register

Latch/Register

Figure 3.5: Architecture of Penryn divider (significands only).

38 Floating Point Units

bits of the wide w-path (at right) so that these cells can be redesigned for low
power [67].

The block QSL in Figure 3.6.b is the same as that of Figure 3.4.a. In this case,
while qH is computed, all five possible outcomes of qL are computed specula-
tively. Therefore the computation of qL is overlapped to that of qH , and qL is
obtained with a small additional delay.

The total number of iteration to compute a binary64 division, including initial-
ization and rounding, is 18.

3.5.2 Division by Multiplication

The quotient q of the division can also be computed by multiplication of the
reciprocal of d and the dividend x

q =
1

d
· x

This is implemented by the approximation of the reciprocal R = 1/d, followed
by the multiplication q = R · x.

By determining R[0] as the first approximation of 1/d, R can be approximated
in m steps by the Newton-Raphson (NR) approximation [60]

R[j + 1] = R[j](2−R[j]d) j = 0, 1, . . . ,m

Each iteration requires two multiplications and one subtraction. The conver-
gence is quadratic and the number of iterations m needed depends on the initial
approximation R[0], which is usually implemented by a look-up table.

Once R[m] has been computed, the quotient is obtained by an additional multi-
plication Q = R[m] · x. To have rounding compliant with IEEE standard, extra
iterations are required to compute the remainder and perform the rounding ac-
cording to the specified mode [60]:
• rem = Qd− x
• q = ROUND(Q, rem,mode).

The NR algorithm for binary64 division (m = 2) with an initial approximation
of 8 bits is summarized below.

3.5 Floating-Point Division 39

L
q

q
H

q
HL

q

Mux 2:1

−2d −d0d 2d

Mult/mux

vcvs

wcws

C S A

C S A

x

y
s

c
y

Selection Function

Mult/mux

0−8d 8d

m1m2 m0 m −1

d

Tablekm

3

−2d 2d

10

10

10

s16w

c16w

s16w
c16w

nn

n

nn

a)

CSA CSA CSA CSA

M U X

10 10

−2d d−d 2d

q
H

q
L

QSL QSL QSL QSL QSL QSL

4

4 4

s
y

c
y

8 8

mks

b)

Figure 3.6: a) Recurrence radix-16. b) Overlapped selection function.

40 Floating Point Units

R[0] = LUT(d);

FOR i := 0 TO 2 LOOP

W = 2 - d * R[i];

R[i+1] = R[i] * W;

END LOOP;

Q = x * R[3];

rem = x - d * Q;

q = ROUND(Q,rem,mode);

Although division by iterative multiplication is expensive in power, it has been
chosen to implement division in AMD processors [68], NVIDIA GPUs [69], and
in Intel Itanium CPUs utilizing the already existent FMA unit.

To implement the NR algorithm using the existing FMA instruction, the look-
up table for the initial approximation has to be performed in software. Sub-
sequently, the NR iterations can be executed directly in the FMA unit in Fig-
ure 3.3. An extra clock cycle is required to forward the result from the output
register to the input register between each FMA instruction. Thus, excluding
the initial approximation a total of 8×5+1 = 41 cycles is required to implement
division in software.

As can be seen, the latency of software implementation is quite long. In the
following, we illustrate how to implement the NR algorithm in hardware based
on the FMA unit shown in Figure 3.3. In order to achieve the initial approx-
imation and implement the NR algorithm, the FMA unit in Figure 3.3 needs
to be augmented with a look-up table and several multiplexers and registers to
bypass intermediate results. The implementation of the multiplicative method
based on a FMA unit is shown in Figure 3.7.

A look-up table, providing an 8-bit initial approximation is generated using
the midpoint reciprocal method [70], of which the entries are the reciprocals of
midpoints of the input intervals. The dividend x is stored in register B and
divisor d in register C.

The first cycle is to obtain the initial approximation R[0]. After that, the
operations performed in the 4-stage pipelined unit of Figure 3.7 are the following
(Stage 1 is abbreviated S1, etc.):

S1 The initial approximation R[0] is multiplied by d using the tree multiplier.

S2 The product is subtracted from 2 to obtain 2 − R[0]d. This is achieved
by setting register A to the value of 2 in the previous stage. The result is
stored in register W (W [1]← (2−R[0]d)).

3.5 Floating-Point Division 41

CBA

INV

RSHIFTER

W

MULTIPLIER

CSA3:2

ADDER

INV

LSHIFTERLOD

53
53 53

106 106
161

161

53

10655

161 161

Stage 1

Stage 2

Stage 3

MUX

Approx

MUX

Lookup
Table

MUX

R

53

MUX

W

W

R

R

MUX

Z

53

ROUNDING Stage 4

Figure 3.7: Scheme of the modified FMA unit to support division.

42 Floating Point Units

S1 W [1] is multiplied by R[0].

S2 The new approximation R[1]←W [1]R[0] is stored in register R. The new
approximated reciprocal has a precision of 16 bits.

The above 4 steps have to be repeated two more times to have R[3] with the
precision necessary for binary64 division.

Once the correct approximation of 1/d has been computed, another two itera-
tions in the multiplier are required to compute:

1. the non-rounded quotient: Q = x · R[3];

2. the remainder: rem = Q · d− x necessary for IEEE compliant rounding.

Finally, Q is rounded according to the remainder and the specified rounding
mode

q = ROUND(Q, rem,mode) .

Summarizing, the number of clock cycles required for the implementation of the
division algorithm with the unit of Figure 3.7 is 18 as detailed in Table 3.1.
The intermediate results are stored in denormalized format and consequently
the normalization and rounding stages can be bypassed between iterations.

cycles
initial approx. R[0] 1
three NR iterations 2 × 6 = 12
non-rounded quotient Q = x ·R[3] 2
remainder rem = Q · d− x 2
rounding 1
Total cycles 18

Table 3.1: Cycles for binary64 division in FMA unit.

3.5.3 Division by Piecewise Interpolation

Alternatively, the reciprocal 1/d can also be obtained by polynomial approxima-
tion. This approximation is normally applied for operations in limited precision,
such as single precision. For larger precisions, the coefficients look-up table is
too large for practical implementation.

3.5 Floating-Point Division 43

Once the reciprocal 1/d is obtained, the quotient can be obtained by multipli-
cation of 1/d and x. The method proposed in [71] to generate the coefficients
results in a smaller table than that of [72]. The function proposed in [71] to
compute 1/d is approximated as follows:

f(d) ≈

Ky +Km(d− d∗) +Kp1(d− d∗)2

for d < d∗

Ky +Km(d− d∗) +Kp2(d− d∗)2

for d > d∗

where d∗ is the mid-point in each interval. A look-up table is used to retrieve
optimized coefficients and the polynomial is evaluated by a high speed datapath.

The first 6 fractional bits in d is used to index the look-up table to retrieve Ky

and Km with precision of 17, and 27 bits, respectively. Kp with a precision of
12 bits has twice the entries than Ky and Km and thus requires 7 bits in d. In
total, the coefficients correspond to a table size of 64 · (2 · 12 + 17 + 27) = 4288
bits. The error to approximate 1/d is smaller than 2−24. The approximation
tables with the values of Ky, Km and Kp are reported in [73, 74].

Figure 3.8 shows the implementation of the approximation unit (in blue color)
followed by a multiplier. A squarer is used to compute (d− d∗)2, which is then
multiplied with Kp to obtain Kp(d−d∗)2. In parallel to this, another multiplier
computes Km(d − d∗). Once the individual terms are ready, they are summed
up to form the approximation of reciprocal r. An additional multiplication of x
and r produces the quotient.

Implementing binary64 (double precision) division by piecewise interpolation
would require a too big coefficients table, therefore in Chapter 6 the polynomial
approximation unit is not considered as an alternative. Instead, a comparison
of power dissipation for binary32 (single precision) input is discussed in [73].

44 Floating Point Units

Squarer

CPA Kp1

Kp2
Km Ky

Multiplier1 Multiplier2

CSA

CPA

d

r

12 18 27

17 13 17 18

17

6

Multiplier3

x

q

24 24

24

28 28

Figure 3.8: Implementation of division by polynomial approximation (signifi-
cands only).

Chapter 4

Thermal Modeling

Modeling of thermal behavior within a CMOS circuit provides the basis for
thermal management and optimization. In Section 2.3, we show that heat dis-
tribution can be described in Fourier’s law of diffusion. In our work, steady
state thermal analysis is performed using the Finite Difference Method (FDM)
to approximate Fourier’s equation. The resulting linear system from FDM dis-
cretization is converted to an RC equivalent circuit and solved by circuit analysis
tool SPICE.

Functional cells and interconnects are the sources of heat generation in a CMOS
circuit. Although the major heat source is cells, the interconnects could still
play a role in shaping thermal profile on the silicon substrate by serving as
low resistance conducting paths due to the much larger thermal coefficients in
metals. We provide a preliminary investigation on the impact of interconnect
using both analytical and experimental methods.

Electrical resistivity in metal is in general temperature dependent and intercon-
nects of the same length but different temperature may have large difference in
signal propagation delay. This is more pronounced in global wires which are
routed across many functional blocks on the substrate with large temperature
variations. We describe a way of estimating temperature dependent wire delay
during the floorplanning stage.

46 Thermal Modeling

4.1 A SPICE Simulation Based Thermal Mod-

eling Method

4.1.1 Steady State Thermal Analysis

For steady state analysis, all derivatives with respect to time in Eq. (2.10)
become zero and thermal analysis corresponds to solving the Poisson’s equation
[75],

∇2T (r) = −
g(r)

kt
(4.1)

where r is the spatial coordinate of the point at which temperature is being
determined and g is the power density function of the heat source (in W/m3).

The Finite Difference Method (FDM) is used to approximate Eq. (4.1) as a
difference equation through space discretization. The FDM method can easily
account for non uniformity in thermal conductivities among different materials
and obtain a highly accurate temperature distribution at very small geometries
(standard cell level).

In the FDM method, a chip is discretized into 3-D cuboids with △x, △y and
△z denote the lengths of cuboids along the x, y and z axis. Let Ti,j,k denote
the steady state temperature at point (i△x ,j△y and k△z), where i, j and k
are the offsets in each dimension. Along the x direction we can write,

∂2T (r)

∂2x
≈

Ti−1,j,k−Ti,j,k

△x
−

Ti,j,k−Ti+1,j,k

△x

△x
(4.2)

Let Ri−1,j,k = △x/kAx△x denote thermal resistance in each cuboid along the
x direction and Ax = △y△z denote the cross sectional area. Eq. (4.2) can be
rewritten as,

∂2T (r)

∂2x
≈

[

Ti−1,j,k − Ti,j,k

Ri−1,j,k
−

Ti,j,k − Ti+1,j,k

Ri,j,k

]

·
1

kAx△x
(4.3)

Similar equations can be written in the y and z directions.

Thus, the Poisson’s equation (Eq. (4.1)) can be approximated using the following
linear equation,

[

Ti−1,j,k−Ti,j,k

Ri−1,j,k
+

Ti+1,j,k−Ti,j,k

Ri,j,k

]

+
[

Ti,j−1,k−Ti,j,k

Ri,j−1,k
+

Ti,j+1,k−Ti,j,k

Ri,j,k

]

+
[

Ti,j,k−1−Ti,j,k

Ri,j,k−1
+

Ti,j,k+1−Ti,j,k

Ri,j,k

]

= −Gi,j,k (4.4)

4.1 A SPICE Simulation Based Thermal Modeling Method 47

whereGi,j,k = gi,j,k△V is the total power generated within each cuboid. Eq. (4.4)
is equivalent to Kirchhoff’s Current Law describing nodal voltage in circuit anal-
ysis [76]. By modeling Ti,j,k as nodal voltage, boundary conditions as voltage
sources and power consumption as current sources, we can obtain an RC equiv-
alent circuit for the heat conducting network within the chip.

The RC equivalent circuit is a netlist of resistors, current sources and voltage
sources for steady state analysis. For transient analysis, the netlist would also
include capacitors modeling time varying power densities. In our work, we focus
on steady-state analysis. The RC equivalent circuit can be solved using circuit
analysis techniques to obtain all nodal voltages (thus temperatures).

Heat Sink Temperature

Board Temperature

+
-

+
-

package

substrate

metal
layers

bump

device power

Theat sink

Tboard

Figure 4.1: 3-D discretization of a chip.

Figure 4.1 illustrates the discretization of a chip. The PCB board and surface of
the heat sink are assumed to be isothermal and form the boundary conditions for
heat conduction within the chip. Two major heat conduction paths are modeled
from the device layer to the ambient environment. The primary conduction
path is through substrate layers and package layer to heat sink. The secondary
conduction path is through metal layers and bump layer to PCB board. The
sidewalls of the chip are assumed to be adiabatic where no heat exchange occurs.

48 Thermal Modeling

The chip is meshed into a grid of thermal cells, of which the size can be tuned
according to the granularity of analysis. For macro-scale thermal analysis, quan-
tum mechanical effects at small length scales can be ignored and thus the size
of thermal cells is much larger than standard cells. In addition, due to the low
pass filter effect hotspot is usually formed by a cluster of high activity gates
instead of a single gate, which means on the device layer a thermal cell may
cover several standard cells.

A thermal cell is modeled as an RC equivalent circuit illustrated in Figure 4.2,
composed of thermal resistance in x, y and z directions and a current source. We
assume active gates to be the only sources of heat generation and self heating
in interconnects do not have impact on substrate temperature. Consequently
only thermal cells on the device layer dissipate power, which equals the total
amount of power consumption in standard cells covered by a thermal cell.

Rx

Ry

Rz

Ipower
dx

dz

dy

Figure 4.2: Equivalent RC model of a thermal cell.

To compute thermal resistance in each thermal cell, the value of thermal con-
ductivity k is needed. However, on each layer thermal conductivities in the same
direction can be different at different locations due to complex layout patterns.
The metal layer, for example, is a non uniform mixture of materials such as
metal and inter metal dielectric (IMD) with very different thermal properties.
Discretization of a chip at submicron scale to align with material geometries is
impractical due to the excessive problem size resulted from such fine granularity
meshing. To facilitate an efficient yet accurate 3-dimensional thermal analysis,
the equivalent average thermal conductivity for each layer can be used.

In our model, we adopted the layer stack-up and thermal coefficients in [77],

4.1 A SPICE Simulation Based Thermal Modeling Method 49

R1 IMD

METAL

R4

R2 + R3

Figure 4.3: Example of computing average thermal conductivity in metal layer.

Layer Thickness kx ky kz
(µm) (W/ ◦C ·m) (W/ ◦C ·m) (W/ ◦C ·m)

package 200 5.0 5.0 5.0
sub 1 ∼ 4 125 63.0 63.0 63.0
device 2 28.0 14.0 69.0
wire 1 ∼ 2 3.1 20.7 20.7 4.26
bump 200 0.05 0.05 0.25

Table 4.1: Layer stackup and thermal properties.

where a 90 nm1 SoC design is analyzed. Figure 4.3 illustrates how thermal
conductivity on a metal layer is derived. Thermal resistance in the x (horizontal)
direction is calculated as combined resistance of R1, R2 + R3 and R4, where
R1 represents inter-metal dielectric (IMD), R2 + R3 represents IMD and the
metal wire and R4 is the metal wire only. The equivalent resistances for y
and z directions are calculated in the same manner. In [77], the authors listed
the thermal resistances (Rx, Ry and Rz) in a thermal cell on each layer. We
derived the corresponding thermal conductivity (k) on each layer based on the
relationship R = L/kA. The layer stack up and thermal conductivity factors are
listed in Table 4.1 and used throughout our experiments. The only difference
from [77] is that we chose a larger conductivity in the package layer so that
thermal resistance per cm2 equals to 0.4 ◦C/W , which is close to a commodity
microprocessor’s package.

The equivalent RC circuit obtained from FDM discretization can also be solved
using general methods for linear equations. To compare the efficiency of SPICE
against other linear solvers, we performed thermal simulations of the same prob-

1Although our design flow is based on a 65 nm standard cell library and we assume thermal
coefficients are the same as the 90 nm design.

50 Thermal Modeling

lem of 3600 thermal cells or unknowns using different methods. We implemented
a few linear solvers to test against SPICE, namely direct methods including LU
decomposition, Cholesky decomposition and iterative methods including Jacobi
method, Gauss-Seidel method and Successive Over Relaxation (SOR) method.
SPICE simulation and linear solvers result in the same temperature values, how-
ever, the runtime varies significantly for the same problem size. Table 4.2 lists
the results, where the runtime is shown in seconds.

Method Runtime(s) Ratio
SPICE 21.99 1.0

LU dcmp 504.98 23.0
Cholesky dcmp 124.53 5.7

Jacobi 691.26 31.4
Gauss-Seidel 479.30 21.8
SOR 320.04 14.6

Table 4.2: Speed comparison between SPICE and linear solvers.

As can be seen in Table 4.2, SPICE is the fastest among all the methods. Even
the best linear solver Cholesky decomposition, which takes advantage of the
symmetric property of the conductance matrix, is more than five times slower.
SPICE, on the other hand, can utilize advanced circuit analysis techniques and
results in much less simulation time.

4.1.2 Impact of Interconnect in Substrate Heat Distribu-

tion

In CMOS processes, interconnect uses copper or aluminum and has a much
larger thermal conductivity than bulk silicon and insulator materials such as
SiO2. At room temperature, thermal conductivity of copper is about 400
W/mK, three times larger than silicon which has a thermal conductivity of
130 W/mK. If large temperature difference exists on the two ends of an inter-
connect, it could potentially serve as a low resistance path and redistribute heat
on the substrate layer as illustrated in Figure 4.4. We performed a preliminary
analysis on the impact of interconnect using a simplified structure model which
only consists a piece of silicon and a metal wire. For a detailed analysis, other
factors such as self-heating in wires, material used in the via and the diffusion
area, etc. also need to be considered.

We compared the ability of heat conduction between a wire in layer Metal Three
(M3) and a piece of silicon of the same length in Table 4.3. M3 is typically used

4.1 A SPICE Simulation Based Thermal Modeling Method 51

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 14

 16

 18

 20

 22

 24

 26

 28

hot cell cool cell

wire

Figure 4.4: A cool cell connected to a hot cell through metal wire.

52 Thermal Modeling

for local interconnection between standard cells. Copper is used in the metal
layer and is sized twice wider than the minimum width required in the design
manual.

Ratio(Si/Cu)
Length(µm) 1
Width(µm) 13
Thickness(µm) 3.0
Thermal Conductivity(W/mK) 0.3
Thermal Resistance(K/W) 1/11.7

Table 4.3: Comparison of heat conductivity between copper and silicon.

It can be seen from Table 4.3 that although thermal conductivity of copper
(Cu) is more than 3 times better than silicon (Si), the resistance in wire is
actually much larger due to its small cross sectional area. In reality, the ratio of
thermal resistance would be smaller than 1/11.7 because the effective resistance
in silicon is smaller due to multiple parallel conducting paths between the two
ends through adjacent thermal cells. In addition, most signal wires are sized
using the minimum width, which is only half of the value used in the above
comparison. Consequently, if a cool region gets 10 ◦C temperature rise due to
heat diffusion in the substrate from a hot region, heat diffusion in interconnect
only contributes to less than 1 ◦C. In other words, substrate is the dominating
layer of horizontal heat diffusion.

To verify the above analysis using our model, we created a two dimensional
grid of cells in a square shape where cells in the center have a high power
consumption and all other cells have zero power consumption. In this way,
temperature rise in inactive cells is solely due to heat diffusion from the active
cell through substrate. Thermal simulation is performed to obtain temperature
values in all cells.

The second step is adding a resistor to the equivalent RC circuit to model
interconnects in M3 connecting the hot cell (in the center) and a cool cell on
the boundary. The width of the wire is twice the minimum and length of the
wire is the distance from the center of the hot cell to the center of the cool cell.
This time the temperature rise in the cool cell includes contributions from heat
diffusion through the interconnect.

Simulation results are shown in Table 4.4. △T is the extra temperature increase
due to heat diffusion through interconnect.

When heat is only diffused through the substrate, temperature rise is 23.3 ◦C
in the hot cell and 14.37 ◦C in the cool cell. When a single wire is considered,

4.1 A SPICE Simulation Based Thermal Modeling Method 53

Trise(
◦C) △T (◦C)

substrate only 14.37
substrate and 1 wire 14.63 0.26
substrate and 10 wires 16.32 1.95

Table 4.4: Temperature rise in the cool cell.

temperature in the cool cell increased by another 0.26 ◦C reaching 14.63 ◦C. For
ten wires the interconnect contributes 1.95 ◦C, corresponding to about 12% of
the total temperature rise.

In both cases, temperature increase due to wire is smaller than the value predi-
cated from the analysis based on Table 4.3 (approx 1 ◦C). This is because heat
can diffuse in the substrate layer to the cool cell not only through cells in a
straight line source-sink, but also through the cells in adjacent rows. Therefore,
the effective resistance in the substrate layer becomes smaller than the value
used in the analysis in Table 4.3.

In conclusion, if wire density between thermal cells in different regions is not
high, as in most cases, we can reasonably assume that the heat is mainly dis-
tributed in the substrate layer, and contribution of the interconnects is marginal.

4.1.3 Design Flow and Benchmarks

Unlike other fields in Electronic Design Automation such as placement and tim-
ing analysis, there are no standard cell based circuit benchmarks specifically
designed for investigating thermal properties. Some works in the literature used
the MCNC2 and ISPD3 standard cell placement benchmarks in their experi-
ments. However, these circuits are composed of generic cells and information
about power consumption inside these circuits are not available.

As described in Section 2.1, power consumption is closely related to the function
of a circuit as its main component is the switching of load capacitance. In our
work, benchmark circuits are synthesized from RTL descriptions into gate level
netlist using commercial EDA tools. Since the patterns of circuits input are
usually unknown, we apply random test vectors to obtain power consumption
in these circuits.

2MCNC is the abbreviation of Microelectronics Center of North Carolina and the bench-
mark suite contains macro cell level, standard cell level and mixed designs.

3ISPD is the abbreviation of The International Symposium on Physical Design and the
benchmark suite is for physical design applications.

54 Thermal Modeling

Our design flow is based on an industrial 65 nm standard cell library, which
is illustrated in Figure 4.5. We used Synopsys’ VCS for logic simulation and
switching activity annotation, Design Compiler for logical synthesis, IC com-
piler for physical placement and Power Compiler for power estimation. Power
estimation is based on the annotated switching activity obtained from applying
random test vectors to the benchmarks. The post placement netlist of standard
cells and their power consumption are mapped to our SPICE based thermal
simulator to obtain a thermal map.

The first step of the thermal simulation block in Figure 4.5 is to map the stan-
dard cells to a two dimensional array of thermal cells according to their locations.
The size of each dimension depends on the circuit size and the granularity of
analysis. A SPICE netlist of these thermal cells is then constructed. The cur-
rent in each thermal cell equals to the total amount of power consumption from
all mapped standard cells. The SPICE simulation result will return the voltage
in all thermal cells, which is the equivalent temperature value according to the
electrical-thermal analogy.

To gain some insight in thermal behavior within a circuit, we first tried the
ISCAS benchmarks which are described in verilog and are widely used for place-
ment and testing. In order to obtain thermal maps with significant temperature
gradient, we also designed a synthetic benchmark circuit where we can force
large variations of power density at different locations. In this way, we can
intentionally create hotspots and thermal gradients to explore the correlation
between functional and spatial hotspots. The benchmark circuit is composed of
8 identical 24 bit × 24 bit Booth encoded multipliers and is synthesized with a
clock period of 1 GHz. We choose multipliers as they usually dissipate quite a
lot of power due to the partial product tree and reduction network.

4.1.4 Experiment Results

Circuit geometries and simulation results for the ISCAS circuits are shown in
Table 4.5. In column 5, MaxTrise reports the maximum temperature rise above
the ambient, and in column 6, △T reports the temperature difference between
Max Trise and the minimum temperature rise.

As can be seen from Table 4.5, the ISCAS benchmark circuits are small in
size and flat in power profile. Due to the heat diffusion in the substrate layer,
temperature in the cells are quite even. As a result, we did not observe significant
thermal gradient (△T > 1 ◦C) in these circuits.

For our synthetic benchmark, the layout of the circuit occupies a square shape

4.1 A SPICE Simulation Based Thermal Modeling Method 55

Logical & Physical
Synthesis

Functional
Simulation

Thermal
Simulation

saif annotation

cell
location

cell
power

lib
RTL

Design

Package
info

 0 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 14

 14.5

 15

 15.5

 16

 16.5

 17

Figure 4.5: Standard cell design thermal simulation flow.

56 Thermal Modeling

Circuit # of Cells Area(µm2) Total Power(mW) Max Trise(
◦C) △T (◦C)

c432 210 27.2× 28.6 0.069 4.49 0.00
c1355 313 40.0× 41.6 0.456 15.20 0.02
c499 331 42.9× 41.8 0.434 13.12 0.02
c1908 334 42.8× 40.2 0.291 9.69 0.01
c880 353 40.0× 39.0 0.089 2.96 0.00
c2670 529 47.0× 49.4 0.212 6.44 0.01
c3540 969 62.0× 62.4 0.372 5.20 0.01
c5315 1304 69.2× 70.2 0.617 6.82 0.03
c7552 1443 75.4× 73.5 0.793 7.86 0.02
c6288 2582 95.3× 94.9 1.440 7.24 0.09

Power is measured at 1 GHz for all units.

Table 4.5: Results on ISCAS circuits.

of 400µm on each side. The layout and position of each multiplier unit is shown
in Figure 4.6. Cells within each multiplier are placed close together since the
layout tool performs a timing driven placement.

U1 U3

U8 U6

U5

U2 U4
U7

Figure 4.6: Layout of benchmark circuit.

We performed six experiments by activating different combinations of units.
Active units dissipate both dynamic and static power and inactive units dissipate
static power only. Table 4.6 lists all configurations used in the circuit and the
experiment results.

The experiments can be categorized into 4 groups according to the number of
active units.

4.1 A SPICE Simulation Based Thermal Modeling Method 57

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 27

 28

 29

 30

 31

 32

 33

 34

 27

 28

 29

 30

 31

 32

 33

 34

a) U2, U4, U6 and U8 are active.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 28

 28.5
 29

 29.5
 30

 30.5
 31

 31.5
 32

 28

 28.5

 29

 29.5

 30

 30.5

 31

 31.5

 32

b) U1, U2, U3 and U4 are active.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 0

 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0.001

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009
 0.001

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 14

 14.5

 15

 15.5

 16

 16.5

 17

 14

 14.5

 15

 15.5

 16

 16.5

 17

c) U6 and U8 are active.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 0

 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0
 0.0001
 0.0002
 0.0003
 0.0004
 0.0005
 0.0006
 0.0007
 0.0008
 0.0009

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20 0

 5

 10

 15

 20
 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 14

 14.5

 15

 15.5

 16

 16.5

 17

 17.5

d) U2 and U5 are active.

Figure 4.7: Power (left) and thermal (right) profiles of test2 and test3.

58 Thermal Modeling

of Act.Units Active Units Tot.Power(mW) Max Trise(
◦C) △T (◦C) ratio

8 All 158.0 60.0 1.39

4
U2,U4,U6,U8 79.8 33.3 6.31 +68%
U1,U2,U3,U4 79.7 31.8 3.76

2
U2,U5 41.4 17.5 3.19 +23%
U6,U8 41.0 16.9 2.59

1 U8 21.4 9.7 2.50

Power is measured at 1 GHz for all units.

Table 4.6: Peak temperature and gradient in the synthetic benchmark.

• test1 all units are active.

• test2 four units are active (with two different configurations).

• test3 two units are active (with two different configurations).

• test4 only one unit is active.

In test1, we activate all 8 units which results in the highest power consumption
and peak temperature. The thermal profile is flat and has the smallest gradient
since all units are dissipating power. In test4 we activate unit U8 only and the
hotspot has the smallest peak temperature. Test2 and test3 are of more interest
and we show their power and thermal maps in Figure 4.7. In the maps, unit of
power values is W and unit of temperature rise above ambient is ◦C. In test2,
we first make units U2, U4, U6 and U8 active which are placed close together
in the lower left corner as shown in Figure 4.6. Then units U1, U2, U3 and
U4 are made active, which are located on the two opposite sides of the circuit.
The results showed that in the first case the peak temperature rise is higher.
Similarly, in test3 we performed 2 experiments each activating 2 different units.
The results in row 4 and 5 in Table 4.6 showed the similar thermal behavior.
With the same amount of power consumption, the hotspot exhibits a higher
temperature when active units are placed close and thus power density is larger.
We also compared the difference in thermal gradient in test2 and test3 in the
last column in Table 4.6. When hotspots are closer, thermal gradient is also
larger which reflects the trend that peak temperature can increase faster than
average temperature.

4.1.5 Analysis of Thermal Behavior

The experiment results provide us with insight and guidelines into some impor-
tant aspects of thermal behavior and thermal aware design. The benchmark

4.2 Wire Delay Estimation under Substrate Temperature Variation 59

circuit, although relatively small in area, already has significant temperature
gradient (e.g. larger than 6 ◦C along a diagonal of 500 um long). Due to the
short circuiting effect of heat diffusion in the substrate layer, the maximum ther-
mal gradient is much smaller than the maximum power gradient. For example,
an active unit dissipates 100 times more power than an inactive unit which only
dissipates static power. The thermal gradient, even in the worst case in our
experiments, is just 6.31 ◦C.

The results also show that the thermal profile is highly dependent on the relative
location of high power consumption units. Functional hotspots should be placed
away from each other as far as possible in order to reduce thermal coupling. Low
power consumption units can be placed closer to hotspots to serve as their heat
spreader. On the other hand, temperature sensitive units (e.g. analog blocks,
leakage power dominant blocks) need to be placed carefully in order to minimize
heat diffusion from hotspots.

From another point of view, we can also see how peak temperature can be re-
duced by using dynamic scheduling policies on systems with multiple execution
units such as multicore architectures. Test1 and test4 can be seen as two ex-
treme cases where a task is performed either on all units or only on one unit.
The execution time is shorter when all units are active and work in parallel
but the peak temperature is also much higher. Alternatively, if there is slack
between execution time and deadline requirement or peak temperature becomes
the primary concern once exceeding a threshold value, we can schedule the task
on fewer units to avoid overheating.

4.2 Wire Delay Estimation under Substrate Tem-

perature Variation

Interconnect delay increases steadily with technology scaling and global inter-
connects have already dominated path delays. In Chapter 2, we illustrated that
a secondary heat conduction path exists from substrate layer towards metal
layers. In nanometer technologies, in spite of an increase in the number of avail-
able metal layers, the top metal layers may still get closer to the substrate which
results in a stronger thermal coupling between the substrate and the intercon-
nects. Temperature in interconnects can reach very high due to the fact that
metal layers are far away from heat sink, especially in global interconnects.

Electrical resistivity in metal increases linearly with temperature and conse-
quently high temperature causes performance degradation in metal intercon-
nects. Traditional physical design algorithms such as floorplanning assume re-

60 Thermal Modeling

sistivity in interconnects is uniform and constant and wirelength is used as a
metric to estimate signal delay in interconnects. However, in designs where
the substrate has nonuniform thermal profile, the traditional way of estimating
wire delay can lead to large errors. This is because interconnect performance
decreases with an increase in temperature and the delay of two wires of the same
length are no longer equal.

Although extensive work has been done in thermal aware floorplanning algo-
rithms, all of them assume electrical resistivity in wires is constant and thermal
gradients in the substrate has no impact on wire delay. This assumption is in
general invalid and increasingly inaccurate in nanometer high performance de-
signs where large temperature gradients already exist in the substrate. In this
section, we first illustrate the impact of nonuniform interconnect thermal profile
on the Elmore delay and then we show a new way of estimating wire delay in
thermal aware floorplanning algorithms.

4.2.1 Nonuniform temperature dependent wire delay model

The electrical resistance of an interconnect line has a linear relationship with
its temperature and can be written as:

R(x) = R0(1 + β · T (x)) (4.5)

where R0 is the resistance at reference temperature, β is the temperature
coefficient(1/◦C) and T (x) is the temperature profile along the length of the
interconnect.

According to the distributed RC Elmore delay model [2, 78], signal propagation
delay through an interconnect line of length L can be written as follows:

D = Rd

(

CL +

∫ L

0

c0(x)dx

)

+

∫ L

0

r0(x) ·

(

∫ L

x

c0(τ)dτ + CL

)

dx (4.6)

where Rd is the driver cell’s ON resistance, c0(x) and r0(x) are the capacitance
per unit length and resistance per unit length at location x and CL is the load
capacitance.

4.2 Wire Delay Estimation under Substrate Temperature Variation 61

Symbol Value Unit
temperature coefficient β 3E-03 1/◦C
sheet resistance at room temperature rsh 0.077 Ω/sq
sheet capacitance at room temperature csh 0.2 fF/sq

Table 4.7: Electrical and thermal parameters for Al/Cu interconnects.

It can be assumed that the driver cell’s ON resistance and the capacitance per
unit length do not change with temperature variations [34]. By using Eq. (4.5),
we can rewrite Eq. (4.6) as:

D = D0 + (c0L+ CL)r0β

∫ L

0

T (x)dx− c0r0β

∫ L

0

x · T (x)dx (4.7)

where

D0 = R0(c0L+ CL) +

(

c0r0
L2

2
+ r0LCL

)

(4.8)

D0 is the Elmore delay of the interconnect corresponding to the unit length
resistance at reference temperature. Typical electrical and thermal parameters
for Aluminum/Copper interconnects are given in Table 4.7.

Given a temperature profile and dimension of an interconnect we can calcu-
late its delay from Eq. (4.7). In Figure 4.8, we plot the percentage of delay
increase as temperature increases for wires of different lengths. It can be seen
from Figure 4.8 that the delay of an interconnect at high temperature can be
quite different from the delay at room temperature. The high temperature in
an interconnect is mainly caused by self heating and heat diffusion from the
substrate. According to [34], assuming the substrate has a uniform temperature
profile, the temperature within an interconnect can be written as:

T (x) = Tsub +
θ

λ2

(

1−
sinhλx + sinhλ(L− x)

sinhλ

)

(4.9)

λ2 =
1

km

(

k∗ins
tmtins

−
I2rmsρiβ

w2t2m

)

(4.10)

θ =
I2rmsρi
w2t2mkm

(4.11)

62 Thermal Modeling

 0

 10

 20

 30

 40

 50

 60

 70

 40 60 80 100 120 140 160 180 200

D
el

ay
 In

cr
ea

se
 (

%
)

Temperature (C)

L=100
L=500

L=1000
L=2000
L=4000

Figure 4.8: Percentage increase of signal delay with respect to nominal delay at
room temperature (27 ◦C).

where θ and λ are constants for a chosen metal layer in a specific technology
node. The peak temperature rise is equal to θ/λ2 for interconnects whose lengths
are larger than the heat diffusion length.

Based on 4.9, we plot the thermal profiles for a local, a semi-global and a
global Cu interconnect of 1000µm long in a 50nm technology in Figure 4.9
with parameters provided in ITRS [6]. Temperature in the substrate is assumed
to be uniform at 100 ◦C. Current density is 3.0× 106A/cm2 for all three layers.

As can be seen in Figure 4.9, the global interconnect which is in the top most
metal layer and thus the farthest away from the heat sink has the highest peak
temperature.

4.2.2 Estimating temperature dependent wire delay in ther-

mal aware floorplanning

Interconnects between architectural blocks are mostly assigned to semi global
and global metal layers, where wirelength is usually large and signal delay is
strongly affected by heat diffusion from the substrate. In addition, long wires are

4.2 Wire Delay Estimation under Substrate Temperature Variation 63

 100

 110

 120

 130

 140

 150

 160

 0 200 400 600 800 1000

T
em

pe
ra

tu
re

 (
C

)

Location x (um)

Global
Semi Global

Local

Figure 4.9: Temperature profiles along the length of interconnects on different
metal layers.

very likely to be routed above several blocks with significant temperature vari-
ations. To estimate the temperature dependent interconnect delay, the nonuni-
form thermal profile on the substrate layer has to be considered.

At the floorplanning stage, detailed routing information of an interconnect is un-
known and wirelength is usually estimated as the Manhattan distance between
two connected blocks. Manhattan distance is measured as the half perimeter of
the bounding box of two end points of an interconnect. The half perimeter can
be either along the upper bend or the lower bend since resistance is constant
along the interconnect and therefore delay is the same as long as wirelength is
the same. For temperature dependent wire delay estimation, different routes of
the same length can have different delay since they may be subjected to different
thermal profile on the substrate.

In our work, we restrict the routing of an interconnect to be L-shape with an
upper bend as illustrated in Figure 4.10. L-shape routing, also called 1-bend
routing, is a type of pattern routing which uses the predefined pattern (of L-
shape) to route two end points. Pattern routing can reduce the number of
vias and has been shown to allow a more accurate prediction of wirelength and
congestion at an early stage in the design flow [79]. In addition, we assume all
signals propagate in the direction from left to right between two end-points.

64 Thermal Modeling

Blk1

Blk2

Blk3

Blk4

Blk5

Blk6

Figure 4.10: Signals propagate from left to right in upper bend L-shape routing.

All interconnects are routed in local (< 100µm), semi global (< 500µm) or
global layers according to the wirelength. Once the routing of an interconnect is
determined, we extract thermal profile of blocks along the route of the intercon-
nect and compute the interconnect’s thermal profile. Temperatures within each
block usually exhibit some gradient also, but we assume a block has constant
thermal profile for the sake of simplicity. The thermal profile of an interconnect
is then used in Eq. (4.7) to obtain the propagation delay.

HotFloorplan [80], an architectural level thermal aware floorplanning tool, is
used in our experiments to perform floorplanning for the MCNC benchmarks.
The optimization process in HotFloorplan is based on simulated annealing and
by default it uses a linear combination of total area, peak block temperature and
total wirelength as the cost function. A new floorplan is generated by making
random moves to the candidate floorplan (e.g. move a block to a new location,
etc.). If the move results in an improvement in the cost, the new floorplan is
accepted as the candidate, otherwise the new floorplan is accepted based on a
probability function.

We used benchmark ami49 throughout the experiments as a test case, as it
contains 49 functional blocks and has the largest area in the MCNC benchmarks.
Random power density is assigned to each block in ami49 to obtain power
consumption since the MCNC benchmark is designed for testing traditional
floorplanning algorithms and does not contain any information about power
consumption in each block.

4.2 Wire Delay Estimation under Substrate Temperature Variation 65

In HotFloorplan, the connectivity information is stored in a wire density matrix,
which is a 2-dimensional matrix where an element with index i and j represents
the number of wires between block i and block j. To be compatible with the
matrix representation, multiple terminal nets in the MCNC benchmarks are
split up into pairwise connections. Position of pins are modeled at the center
of the associated block and wire dimensions are derived from predictions of the
50nm process node.

 65

 70

 75

 80

 85

 90

 95

 100

 105

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
em

pe
ra

tu
re

(C
)

Location(um)

substrate thermal profile

Figure 4.11: Substrate temperature profile along the length of an interconnect.

First, we illustrate our steps of performing temperature dependent wire delay
estimation in an example. We extract the substrate thermal profile for one
segment of a wire as illustrated in Figure 4.11 from one floorplan of ami49.
Based on Eq. (4.9), the temperature profile of the global interconnect subject to
substrate thermal profile in Figure 4.11 is computed and shown in Figure 4.12.
We also included the maximum and average temperature of the interconnect for
the purpose of comparison.

The temperature dependent delay (shown in Figure 4.13) is calculated using
Eq. (4.9). The delay subject to maximum, average and room temperature are
also shown in the figure. As can be seen in Figure 4.13, the wire delay obtained
by using average and maximum temperature can be 25% over estimated from the
real delay, while by using room temperature, obviously, resulted in significant
underestimation.

66 Thermal Modeling

 120

 130

 140

 150

 160

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
em

pe
ra

tu
re

(C
)

Location(um)

discrete
average

maximum

Figure 4.12: Interconnect temperature profile along the length.

 0

 5

 10

 15

 20

 25

 30

 500 1000 1500 2000 2500 3000 3500 4000 4500

D
el

ay
 (

ns
)

Location x (um)

discrete
average

maximum
room temperature

Figure 4.13: Temperature dependent wire delay along the length.

4.2 Wire Delay Estimation under Substrate Temperature Variation 67

Next, we run HotFloorplan using traditional cost function with total wirelength
as one of the evaluation metrics to collect statistics on thermal profiles in global
interconnects (wires longer than 500µm). In Figure 4.14, we show the statistics
on the average temperature of all global interconnects. The height of a bar rep-
resents the number of interconnects having average temperature between one
statistical point and the next. The substrate has a peak temperature of 104 ◦C
and a temperature gradient of around 30 ◦C. Obviously, the interconnects have
a significant higher average temperature than the substrate and a few of them
even reached above 145 ◦C due to self-heating. For long wires, it is especially de-
sirable to avoid routing above substrate regions at high temperature. Detouring
around hotspot regions may increase wirelength and cause congestion, therefore
an accurate overall analysis is necessary to assess different routing choices.

 0

 20

 40

 60

 80

 100

 120

 140

 115 120 125 130 135 140 145 150

N
um

be
r

of
 in

te
rc

on
ne

ct
s

Average temperature

Figure 4.14: Statistics on average temperature in interconnects.

In Figure 4.15, we show the statistics on temperature gradient within global
interconnects. Although temperature gradient in about half of the interconnects
is less than 10 ◦C, more than 40% of interconnects do have a gradient larger than
20 ◦C. As we have described earlier, using average or maximum temperature can
introduce a large error in delay estimation for these interconnects and therefore
an accurate analysis for each wire is needed.

68 Thermal Modeling

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

N
um

be
r

of
 In

te
rc

on
ne

ct

Gradient(C)

Figure 4.15: Statistics on temperature gradient in interconnects.

4.3 Summary

In this chapter, we described our SPICE simulation based temperature estima-
tion method and discussed thermal behaviors and thermal ware design using a
synthetic benchmark. High temperatures are caused by the large local power
density in hotspots and therefore thermal coupling between hot cells and blocks
need to be reduced in order to lower peak temperature. A preliminary analysis
of the impact of interconnects on thermal distribution in the substrate is carried
out and we conclude that the impact is marginal due to the small cross sectional
area and thus large thermal resistance in interconnects.

In addition, we also presented a way to estimate temperature dependent delay
in wires at an early design stage. Long wires, especially global wires, are subject
to nonuniform temperature in the substrate. Consequently, a good wire plan
at the floorplanning stage needs to take into account the temperature profile in
wires as well.

Chapter 5

Power Density Reduction in

Hotspots

As described in Equation2.7, junction temperature is largely dependent on
power density. As described in Chapter 2, elevated temperatures in modern
CMOS circuits are caused by increased power density (power consumption per
unit area) as manufacturing technology scales to smaller geometries. The high
power density in hotspots makes local temperature rises much faster than full
chip heating. In order to lower peak temperature the power density in hotspots
has to be reduced.

From the definition of power density, it can be seen that circuit designers can
lower power density through reducing power consumption and/or increasing
hotspot area. However, power consumption is dependent on circuit functionality
and the room for reduction is not always large. In addition, low power techniques
need to have large timing granularity in order to be effective for temperature
reduction as we discussed in Section 2.5.

Alternatively, we approach the thermal problem by managing area. In this
chapter, we describe two block level post placement temperature reduction tech-
niques which reduce power density in hotspots through area management. In-
stead of uniformly increasing a block’s area, the two techniques explicitly target
area management in hotspots. We compare the efficiency of the two techniques

70 Power Density Reduction in Hotspots

in reducing peak temperature against the general area enlarging method.

5.1 Motivation

Thermal management can be carried out at both design time (static) and run
time (dynamic). In particular, physical level design time solutions such as ther-
mal aware floorplanning and placement algorithms focus on reducing thermal
coupling between blocks and cells that have a high power consumption. These
algorithms try to spread high power consumption cells evenly on the die to
avoid excessive local power densities that can lead to overheating. However,
cells within hotspots are usually closely coupled and placing them apart in-
evitably increases the length of interconnect between these cells. As wire delay
is gradually dominating cell delay in nanometer technologies, longer intercon-
nect is making timing closure increasingly difficult.

Long wires not only introduce extra delay but also power due to the parasitic
capacitance in wires. In Table 5.1, we list two net instances of different length
to show the ratio between wire capacitance and pin capacitance. Pin capaci-
tance refers to the capacitance associated with the output pin of the driving
gate and the input pins of the load gate. All the values are reported from a
design implemented in a 65 nm library using Synopsys’ IC Comipler. Both nets
have 3 pins, namely 1 driver pin and 2 load pins. Recall from Eq. (2.1) that
dynamic power consumption is due to the charging and discharging of load ca-
pacitance. As can be seen in Table 5.1, wire capacitance is on the same order
of magnitude as pin capacitance for short wires and dominate total capacitance
for long wires. Capacitance in long wires can significantly impact the driving
cell’s power consumption.

Length(µm) Pin cap.(fF) Wire cap.(fF) Ratio(Wire/Pin)
94.31 6.93 19.29 2.78
5.31 9.68 1.02 0.11

Table 5.1: Ratio between wire capacitance and pin capacitance.

Unlike design for low power, not many works have focused on smart manage-
ment of area in the context of standard-cell designs with the explicit objective
of reducing local power density. One possible reason is that in a traditional
back-end design flow, a potential increase in area means increasing chip cost
and reducing yield. As a result, most floorplaning and placement tools try to
minimize total area by placing cells as compact as possible. For standard-cell
designs, this is also made possible by the fine grain of the atomic elements of
placement, i.e., library cells of the same height.

5.1 Motivation 71

In modern design, on the contrary, the outline of a die is usually fixed while the
component blocks and cells can be placed in a variable shape [81]. For the same
total cell area, this means there are some whitespace1 or area slack that can be
exploited to alleviate the thermal problem. However, even a straightforward use
of this area slack (e.g., by increasing the area or decreasing the row utilization
factor2 UF during placement) would result in a decrease in cell (and, in turn,
power) density over the entire circuit block. Such a generalized, “blind” allo-
cation, ignores the fact that peak temperature usually occurs in local hotspots
which are clusters of cells having larger switching activity than the rest of the
circuit. Consequently, it is desirable to reduce cell density mostly in hotspots
instead of the whole circuit while maintaining (or even slightly increasing) cell
density in cooler areas.

In this work, we propose two methods empty row insertion (ERI) and hotspot
diffusion (HSD) for implementing a smart management of this additional area in
such a way that peak temperature and temperature gradients can be reduced.
Instead of devising completely new placement algorithms, we target the two
approaches as plug-ins to mainstream industrial physical design tools. Mod-
ern design tools have already achieved good quality of placement for standard
cell based designs. By optimizing the placed netlist we try to preserve circuit
performance as much as possible while reducing peak temperature.

During the placement stage, performance driven algorithms find optimal loca-
tions for each cell to minimize critical path delay. As a result, coupling cells are
placed close together, either on the same row or on neighboring rows to make
interconnect wirelength as short as possible. This is illustrated in Figure 5.1
where we highlight a few cells and their connections along a signal path from a
circuit layout.

To keep the increase in wirelength as small as possible when enlarging the area of
hotspots, our methods try to preserve the relative positions of cells, which helps
to avoid introducing significant overhead in circuit delay and power consump-
tion. The two methods differ in the type of granularity at which the white space
is allocated. In ERI, empty layout rows are inserted inside the hotspots, whereas
in HSD individual “hot” cells are diffused into surrounding “cool” regions.

1Whitespace means space on a placement row that is not covered by functional cells.
2The utilization factor is defined as the ratio between core area and total area, thereby

reducing utilization with the same core area will increase the total area.

72 Power Density Reduction in Hotspots

Figure 5.1: Coupled cells are placed close together.

5.2 Design Methodology 73

5.2 Design Methodology

In this section we describe the two proposed schemes, Empty Row Insertion
(ERI) and HotSpot Diffusion (HSD) as post-placement temperature reduction
techniques. Both methods aim to reduce power density in hotspot regions,
by reducing cell density while keeping delay and power overhead as little as
possible. They work on synthesized and placed design, and can therefore exploit
detailed spatial information about the cells, besides using accurate, post-layout
estimation of area, delay, and power.

Figure 5.2 shows the flow of our methodology. The first step is to input the post
placement netlist to the thermal simulator described in Section 4.1 to get an
initial thermal map. The initial thermal map, together with the placed netlist
and a user-specified area overhead, are processed by our area management tool
which yields a modified placed netlist with better thermal properties using one
of the two strategies. Our thermal management tool interacts directly with
commercial physical design tools.

Logic and Phyiscal

Synthesis

Logic and Phyiscal

Synthesis
RTL HDL

Description

Placed

netlist

Thermal

Simulation

Thermal

Simulation

Power

Estimation

Power

Estimation

Power
values

Area &
placement info

 6.3
 6.32
 6.34
 6.36
 6.38
 6.4
 6.42
 6.44
 6.46
 6.48
 6.5

 0 5 10 15 20 25 30 35 40
 0

 5

 10

 15

 20

 25

 30

 35

 40

Thermal

map
Area

Management

Area

Management

New

placed

netlist

Area overhead

Figure 5.2: Synthesis and Post-Layout Flow of the Proposed Methodology.

In both methods, the available area overhead is filled with filler cells which do

74 Power Density Reduction in Hotspots

not contain active transistors and consume zero power. They can guarantee
electrical continuity of power and ground rails in each layout row. Filler cells
are also designed to meet all the design rules imposed by the technology such
as geometrical sizes, spacing and percentage of metal to guarantee a planar
construction of stacked upper layers. This gives our methods a compliance with
industrial semiconductor fabrication process.

Unlike other thermal aware placement algorithms which build their own timing
and power estimation models, our methods interact directly with commercial
physical design tools. We extract timing and power information and modify
layout in Synopsys’ IC Compiler, which enables our approaches a seamless in-
tegration into industrial design flow.

Moreover, the application of the proposed temperature reduction techniques
does not limit the use of other thermal aware design methods. Instead they
can be used as orthogonal methods which help to further reduce both peak
temperature and temperature gradient.

5.2.1 Model Description and Problem Formulation

Figure 5.3 illustrates the layout and the corresponding thermal mesh. As men-
tioned in Chapter 4 a thermal cell usually covers several standard cells. In
Table 5.2 and Table 5.3, we list some of the variables in the layout domain
as well as the thermal domain. The characteristics of wide and concentrated
hotspots are described below. MWHS is the threshold ratio between the width
of a hotspot and the total width W to define a wide hotspot.

Variable Description

W row width

H row height

R = {r0, ..., rn} rows in the layout

Gi = {g0, ..., gm} standard gates in rowi

Pgi power consumption of gate i

Table 5.2: Variables in the layout (standard cells) domain.

Definition 5.1 ADJACENT CELLS
two thermal cells a and b, with coordinates (ia, ja) and (ib, jb) respectively, are
adjacent if

(|ia − ib| = 1 ∧ |ja − jb| = 0) ∨ (|ia − ib| = 0 ∧ |ja − jb| = 1) (5.1)

5.2 Design Methodology 75

Figure 5.3: Thermal mesh VS layout.

Definition 5.2 HOTSPOT
set of adjacent thermal cells for which

Ti,j ≥ αTaverage with α > 1.0 (5.2)

Definition 5.3 WIDE HOTSPOT
thermal region made up of K × L thermal cells, with K > MWHS , adjacent
thermal cells of coordinates (i, J) with J = const ∈ [0,K] for which

Ti,J ≥ αTaverage with α > 1.0 (5.3)

and
∆Thi,J ≤ γTaverage with γ < 1.0 (5.4)

Definition 5.4 CONCENTRATED HOTSPOT
thermal region made up of K × L, with K < MWHS , adjacent thermal cells of
coordinates (i, j) for which

Ti,j ≥ αTaverage with α > 1.0 (5.5)

and
∆Thi,j ≤ γTaverage with γ < 1.0 (5.6)

76 Power Density Reduction in Hotspots

Variable Description

A section area of a thermal cell

MWHS threshold width ratio to define wide hotspot

Pdi,j = 1

A

∑
Pgatei ; power density of the

gatei ∈ celli,j thermal cell with coordinate i, j

Ti,j temperature of the
thermal cells i, j

∆Thi,j = |Ti,j − Ti,j+1| horizontal thermal gradient
between adjacent thermal cells

∆Tvi,j = |Ti,j − Ti+1,j | vertical thermal gradient
between adjacent thermal cells

Table 5.3: Variables in the thermaldomain.

∆Tvi,j ≤ γTaverage with γ < 1.0 (5.7)

Problem Formulation Given a row-based IC layout L with area AL = (W ×
n × H), with n=number of rows (Figure 5.3), and the corresponding thermal
mesh made up of N × M thermal cells; Let Q be the hot spot region, with
Q ⊆ L, and size (NQ ×MQ) thermal cells, allocate additional whitespace in
order to minimize the power density of the hotspot region such that:

1. the introduced area overhead is lower than a user defined threshold:
AL <= ALnom(1 + δarea);

2. the delay overhead on the critical path is smaller than a user defined
threshold:
Dp <= Dpnom(1 + δtiming).

5.2.2 Method 1: Empty Row Insertion for Wide Hotspots

Under this scheme, the granularity of the area slack insertion is a layout row.
Conceptually it works as follows: in the area of a given hotspot, we insert an
empty row between every adjacent row. The method is illustrtrated in Fig-
ure 5.4, where shaded rectangles colored in red indicate cells in the hotspot
region and shaded rectangles colored in green indicate cells in the cool region.
Figure 5.4.a shows the original layout with a wide hotspot region and Fig-
ure 5.4.b shows the layout after the ERI method is applied. As can be seen

5.2 Design Methodology 77

in Figure 5.4.b, an empty row is inserted between each row in the hotspot re-
gion while the cool region remains the same as the original layout. This row of
whitespace will be filled with filler cells which do not consume power such that
we increase the area only of the hotspot region.

The algorithm of the method is illustrated in Algorithm 1. We first initialize
the number of empty rows to the maximum available, which means the area
overhead meets exactly with the area constraint. The increase in area might
introduce too much extra wirelength causing delay constraint violation although
the reduction in power density is the largest. In such a case, we revert to the
original layout and decrease the number of rows to insert, which subsequently
shrinks the area and reduces timing overhead. The procedure is repeated until
timing constraint is not violated. In this way, we achieve power density reduction
through empty row insertion without violating area or timing constraint.

Algorithm 1 Empty Row Insertion.

1: INPUT: Row-Based IC Layout
2: INPUT: Thermal-Map
3: INPUT: Timing Information
4: localize the wide hot-spot region Q
5: list all the rows belonging to the hot-spot region rowi ∈ Q
6: initialize number of empty rows ne = (A× δarea)/W
7: insert ne rows in the middle of hotspot
8: while Timing constraint is violated:

{Dp > Dpnom(1 + δtiming)}
do

9: revert layout
10: decrease number of empty rows ne

11: insert ne rows in the middle of hotspot
12: update power information
13: update timing information
14: end while

15: generate new thermal map
16: OUTPUT: optimized layout

5.2.3 Method 2: Cell Diffusion for Concentrated Hotspots

For concentrated hotspots, only a small fraction of cells in a row belongs to
the hotspot region, making the ERI method less efficient. Power density can
be reduced by increasing the total circuit area, resulting in a uniform increase
in area across the entire circuit. From a thermal point of view, it would be
desirable to have a larger reduction in power density in hotspot regions than
the cool regions.

78 Power Density Reduction in Hotspots

a) original layout.

b) after ERI.

Figure 5.4: Empty row is inserted in between adjacent rows.

5.2 Design Methodology 79

We first tried to push away the cells in the vicinity of a hotspot, which creates
some whitespace around the hotspot. This can be achieved through the use of
“bound” in placement tools. A placement “bound” only allows a set of user
specified cells to be placed in a defined area, other cells will be moved out of the
bound in a subsequent legalization step. This will enable cells in the hotspot to
scatter over a larger area and power density is thus reduced. However, pushing
a large number of cells away introduces significant timing overhead. This is
because the legalization step does not perform any delay optimization but merely
finds the nearest “legal” location for a cell pushed out of the bound.

Algorithm 2 HotSpot Diffusion.

1: INPUT: Row-Based IC Layout
2: INPUT: Thermal-Map
3: INPUT: Timing Information
4: localize the concentrated hot-spot region, Q
5: list all the gates belonging to the hot-spot region, gi ∈ Q
6: initialize number of rows to diffuse nd

7: move nd rows to the neighboring area
8: while Timing constraint is violated:

{Dp > Dpnom(1 + δtiming)}
do

9: revert layout
10: decrease number of rows to diffuse nd

11: move nd rows to the neighboring area
12: update power information
13: update timing information
14: end while

15: generate new thermal map
16: OUTPUT: optimized layout

For this reason, in this second method we increase the area of hotspot “in-site”
of its original location, which means the cell cluster constituting a hotspot will
grow in dimension as illustrated in Figure 5.5. Cells in the hotspot belonging
to the same row are moved together and the original row ordering is preserved.
In this way, we minimize the introduced wirelength between coupling cells that
are placed in local clusters, either on the same row or adjacent rows.

The movement of hotspot cells might cause overlap with other cells in the cooler
surrounding area. These overlaps are removed by performing placement legal-
ization in the placement tool. As the legalization finds the nearest available
location, the displacement of an overlapped cell from its original location is
small. In Figure 5.5, the red cells within blue circles would otherwise cause
overlaps if placement legalization is not performed. Consequently the hotspot
grows in area and “diffuses” into neighboring area such that power density is
reduced in well defined layout regions.

80 Power Density Reduction in Hotspots

a) original layout.

b) after HSD.

Figure 5.5: Cells in the hotspot diffuse into surrounding area.

5.3 Experiment Results 81

The algorithm of the HotSpot Diffusion method is described in Algorithm 2.
As in the Empty Row Insertion method, we first try the maximum number of
rows to diffuse, which will be vertically moved to neighboring regions in both
directions. If the timing constraint is violated, we revert the layout and decrease
the number of rows to diffuse.

5.3 Experiment Results

We used the design flow shown in Figure 5.2. The two methods, Empty Row
Insertion and HotSpot Diffusion are implemented in Tcl scripts that can be
executed directly in Synopsys’ IC Compiler. The advantage of integrating the
methods into physical design tools is that any changes in delay or power con-
sumption can be immediately updated without the need to dump and import
data files between different tools. Commands to interact with IC Compiler are
shown in Appendix B.

To test our temperature reduction methodology, we performed a set of exper-
iments using synthetic benchmarks, which are composed of several multipliers
with different operand widths. The use of synthetic benchmarks makes it easy
to control the location, shape and intensity of hotspots. The benchmark circuits
are synthesized in the 65 nm standard cell library where cells have a uniform
height of 2.6 µm, which is also the height of a placement row.

5.3.1 Empty Row Insertion

The first set of experiments are performed to compare the effectiveness of tem-
perature reduction between Empty Row Insertion and increasing circuit area
uniformly. We will refer to the latter as the General method. The benchmark
circuit is designed to have hotspot of a rectangular shape (shown in Figure 5.6
colored in red). Table 5.4 lists the changes in critical delay, total area, peak tem-
perature and dynamic power of the benchmark circuit. Temperature is reported
as temperature rise above the ambient environment in ◦C.

The first row shows the reference implementation, where the circuit is floor-
planned with the utilization factor (UF) set to 0.6. According to our experience,
typical values for the UF is within the range of 0.4 to 0.7 in order to accommo-
date buffer cells and routing perturbations in the layout. With a UF larger than
0.7, the tool complains about over utilization and reports error in the placement
stage. The peak temperature rise reached 21.7 ◦C above ambient environment

82 Power Density Reduction in Hotspots

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 10

 12

 14

 16

 18

 20

 22

hotspot

Figure 5.6: Thermal map of circuit with a wide hotspot. Temperatures are in
◦C.

in the reference design. In method 2 and 3 of Table 5.4 we relax the UF to
0.5 and 0.4, allowing larger area with the aim of reducing power density. As
mentioned in the previous sections, relaxing the UF results in a uniform increase
in area. The peak temperature in the hotspot dropped from 21.7 ◦C to 17.0 ◦C
as the area increases. However, the decrease in temperature is achieved at the
cost of a very large area overhead.

Method Delay(ns) ∆Delay Area(µm2) ∆Area Temp(◦C) ∆Temp ∆Pdyn

UF=0.6 0.95 - 413× 413 - 21.7 - -
UF=0.5 0.95 0.0% 453× 453 20.0% 19.2 -11.5% 5.3%
UF=0.4 0.95 0.0% 506× 506 49.5% 17.0 -21.7% 9.2%

ERI16 0.98 2.5% 413× 453 9.4% 18.2 -16.3% 1.8%
ERI23 0.99 4.0% 413× 473 14.5% 17.0 -21.5% 2.1%

Table 5.4: Temperature reduction in hotspot through ERI.

Next we apply the ERI method to the reference design. We performed two
experiments inserting 16 and 23 rows which correspond to an area overhead of
9.4% and 14.5% respectively. In ERI16, the peak temperature dropped from
21.7 ◦C to 18.2 ◦C, resulting in a 16.3% reduction. In ERI23, the same amount
of peak temperature reduction is achieved as in the case when the UF is set to

5.3 Experiment Results 83

0.4. The area overhead, on the other hand, is much smaller for ERI showing
the effectiveness of increasing area only in the hotspot region.

However, increasing the area may have a negative impact on circuit’s perfor-
mance as the interconnect between coupling cells can increase in length. One
interesting observation that can be found in Table 5.4 is that as we relax the
UF constraint, the critical delay stays more or less the same reflecting the effort
made by the tool to meet timing constraint. For the ERI method, there is a
slight increase in the circuit’s delay as we are not performing any kind of delay
optimization.

In fact, the extra wire length not only introduces signal delay but also dynamic
power, as the wire capacitance is also increased. Although the increase in power
is relatively small compared with the increase in area and does not cause tem-
perature increase, we can still use it as one of the metrics to compare among
the different methods. In Table 5.4, it can be seen that the increase in dynamic
power for the General method is very significant while for the ERI method the
increase is moderate. Especially, to achieve the same temperature reduction,
the dynamic power overhead for the General method is almost five times more
than the ERI method.

To compare the area efficiency of the General method and the ERI method, we
can compute the ratio of ∆Temp to ∆Area in Table 5.4. For example, the ratio
between ∆Temp to ∆Area for ERI16 is 1.73 while for UF=0.5 is 0.58. This
means for every percentage of area increase, the ERI method get more than one
percent of temperature reduction. The General method, on the other hand, is
less efficient since the area is increased uniformly in the entire circuit.

5.3.2 HotSpot Diffusion

The second set of experiments are performed on a benchmark circuit having
a concentrated hotspot. We use the HotSpot Diffusion method to reduce the
power density in the hotspot region.

The experiment results are shown in Table 5.5. The reference circuit is imple-
mented with the UF set to 0.5. We first relax the UF factor to 0.4 to increase
the area. The peak temperature is reduced by 16.3% with an area overhead
of 25.6% and a timing overhead of 2.91%. Then we apply the HSD method to
further reduce the power density in the hotspot. As can be seen in Table 5.5,
the peak temperature dropped by another 3% with total area stays the same.
The delay increased by 2% due to the extra wirelength between cells.

84 Power Density Reduction in Hotspots

Method Delay(ns) ∆Delay Area(µm2) ∆Area Temp(◦C) ∆Temp
UF=0.5 1.03 - 232× 232 - 2.94 -
UF=0.4 1.06 2.91% 260× 260 25.6% 2.46 -16.3%
hsd 1.08 4.85% 260× 260 25.6% 2.37 -19.4%

Table 5.5: Temperature reduction in hotspot through HSD.

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20 3.0

2.4

1.8

1.2

0.6

0.0

Figure 5.7: Comparison of power density before (left) and after (right) applying
the HSD method. Power density is in W/mm2.

The HSDmethod explicitly spreads cells in the hotspot over a larger area, which
has a direct impact on the power profile of the circuit. In Figure 5.7, we show
the power density map of the benchmark circuit before and after applying the
HSD method. As cells of the hotspot are spreaded in a larger area, the peak
power density is reduced as reflected by the lighter color in the right power
density map.

The time complexity of the two proposed methods is mainly bounded by the
update of timing and power information from the placement tool. For example
in ERI16 in Table 5.4, setting new locations of 16 rows (3,095 standard cells)
in IC Compiler takes about 4 seconds while updating the timing and power
information of the whole design (composed of 27,474 standard cells) takes ap-
proximately 12 seconds. In both methods, we start with the maximum number
of available rows to move according to the area constraint. The row movement
can induce performance degradation due to introduced wirelength. Therefore,
if the timing budget is quite tight, to find the number of rows to move nd that
satisfy both the area and timing constraint will require more iterations, which
results in long exploration time. Suppose 10 iterations are needed in the ERI16
experiment, then the execution time of the method would be around 3 minutes.

5.4 Summary 85

5.4 Summary

In this chapter, we presented two post placement stage temperature reduction
techniques, ERI and HSD. The two methods reduce power density in a hotspot
by increasing its area in an efficient way. Due to the increase in distance between
coupling cells, extra wirelength is inevitably introduced. By observing that cou-
pling cells are placed on the same row or adjacent rows, our methods minimize
the introduced wirelength through preserving relative cell positions in the fi-
nal layout. The experiment results show that the two methods are both more
efficient than generally increasing a block’s area in reducing peak temperature.

86 Power Density Reduction in Hotspots

Chapter 6

Energy and Thermal Aware

Design in FPU

As we have described in Chapter 3, complex Floating-Point (FP) operations such
as division can be implemented in several ways based on different algorithms.
The FP division operation, although infrequent in percentage of instructions,
could contribute a significant portion to the total energy consumption due to
its long latency. In this chapter, we analyze and compare the power and energy
consumption of different algorithms and implementations for FP division and
discuss the potential of digit-recurrence dividers from a thermal perspective.

Based on instruction statistics from a scientific application, we compare the
total energy consumption of all floating point operations between different im-
plementations for division.

For applications having intensive FP operations, the placement of power effi-
cient dividers could be exploited to reduce thermal diffusion from hotspots like
the Fused Multiply-Add (FMA) unit to temperature sensitive blocks like on-chip
cache. The power consumption in leakage dominant block can increase exponen-
tially with temperature and thus can be reduced from lowering its temperature.
Consequently, a larger gain in total energy can be achieved by including digit-
recurrence dividers in the Floating-Point Unit (FPU) design.

88 Energy and Thermal Aware Design in FPU

We will first describe the common metric, energy per operation, which is used to
compare and evaluate the different algorithms and implementations for division.

6.1 Energy Metrics

At the algorithm level of design abstraction, a problem can usually be ap-
proached by different methods. For example, an application can be implemented
in different ways with different timing and latency. When power is a primary
design constraint, a common measure of the power and energy dissipation is
required in order to evaluate and compare different algorithms.

Because the algorithms are in general different and the latency of the opera-
tions varies from case to case, it is convenient to have a measure of the energy
dissipated to complete an operation. This energy-per-operation is given by

Eop =

∫

top

vi dt [J] (6.1)

where top is the time elapsed to perform the operation. Operations are usually
performed in more than one cycle (in n cycles) of clock period TC and the
expression of top is typically top = TC × n. By dividing the energy-per-operation
by the number of cycles we obtain the energy-per-cycle

Epc =
Eop

n
[J]. (6.2)

This term is proportional to the average power dissipation that can be expressed
in its equivalent forms:

Pave =
Epc

TC

= Epcf =
Eop

top
= VDDIave [W] (6.3)

where VDD is the unit supply voltage and Iave its average current. By combining
(6.3) and top we obtain

Eop = Pave × TC × n [J] (6.4)

The term Pave has an impact on the sizing of the power grid in the chip and on
the die temperature gradient, while the term Eop impacts the battery lifetime.

6.2 Implementation of the FP-units 89

6.2 Implementation of the FP-units

To analyze the impact on power dissipation of the different units and to evaluate
the different approaches to division, we implemented the four units for binary64:

. FMA is the fused multiply-add unit of Figure 3.7 modified to execute the
Newton-Raphson (NR) division algorithm.

. FMA soft is the fused multiply-add unit of Figure 3.3 to execute the NR
division algorithm in software.

. r16div is the radix-16 divide unit of Figure 3.6 completed with convert-
and-round unit and sign and exponent computation and update.

. Penryn is the division unit of Figure 3.5 modified to handle binary64
only. That is, the recurrence is composed by two cascaded radix-4 stages
(Figure 3.4.b) plus the same initialization, convert-and-round unit and
sign and exponent processing as the r16div.

All units are synthesized using the design flow described in 4.1.3 to obtain the
maximum speed. Because in our flow we do not use two-phase clocks, for the
Penryn implementation we cascaded the two radix-4 stages of Figure 3.5 into
a single clock cycle.

Power estimation is based on randomly generated input vectors conformed to
IEEE 754 binary64 format. The synthesis results are summarized in Table 6.1,
where Tc is the minimum clock period, Cycles is the number of clock cycles to
finish an FP operation and Latency is the total delay from applying inputs to
obtaining results, that is Tc × Cycles. The average power dissipation Pave is
normalized for all units at 1 GHz. The power dissipation data for the FMA unit
are divided by operation.

As described in Section 3.4, the FMA unit has four pipeline stages. For the
three operations: ADD, MUL and MA fused, the power was measured with the
pipeline full to get the worst case power dissipation necessary to characterize the
thermal behavior (Section 6.4) of the units. For division operations, being an
iterative algorithm, a new instruction has to wait until the previous instruction
finished execution and the power was measured per operation. This explains
why the value Pave for FMA DIV is smaller than the other FMA cases such as
MUL and MA fused.

From the data of Table 6.1, it can be seen that an ADD operation in a FMA
consumes much less power than a MUL operation but the latency is the same.

90 Energy and Thermal Aware Design in FPU

Tc Cycles Latency Area Pave Eop

Unit [ns] [ns] [µm2] [mW] [pJ]
FMA ADD 0.75 4 3.0 114,816 49.7 198.8
FMA MUL 4 3.0 205.2 820.8
FMA MA fused 4 3.0 223.6 894.4
FMA DIV 18 13.5 131.6* 2368.8
FMA DIV soft 41 30.8 94130 55.7* 2283.7
Penryn 0.75 18 13.5 21229 31.5 567.0
r16div 0.75 18 13.5 14054 20.8 374.4

Pave is average power measured at 1 GHz.

* Iterative algorithm, pipeline not full.

Table 6.1: Results of implementations.

A more advanced FMA architecture designed to optimize latency for addition
is discussed in [82], however in this work, we used the basic FMA architecture
since our main purpose is to compare alternatives for implementing division. For
floating-point division, it is clear that the digit-recurrence approach (Penryn
and r16div) is much more convenient in terms of latency, area and power dis-
sipation. For example, with the same latency, FMA DIV consumes more than
4 times power than Penryn and more than 6 times than r16div. The r16div
scheme has the same latency as the Penryn unit for division. It can probably
be clocked with the same scheme used in Intel Core2 FP-units and provide the
same throughput at reduced area and power dissipation.

In terms of energy per operation, the results in Table 6.1 show that in a FMA
unit, the ratio of Eop between ADD and MUL is about 1 / 4 and MA fused con-
sumes slightly more than MUL operations. With the same latency, the energy
per operation Eop is proportional to average power Pave, thus implementing
division in a FMA unit consumes much more energy than Penryn and r16div.
On the other hand, although DIV operation in Penryn and r16div have the
lowest power consumption, the energy consumed in these units are much larger
than ADD operations due to the long latency in DIV operations. The latter
observation motivates the optimization for power consumption in division.

The only argument in favor of the FMADIV is that division is much less frequent
than addition and multiplication and as a result a larger power dissipation for
the operation can be tolerated. The software implementation of division in
FMA has a even longer latency (as shown in Table 6.1), since each iteration
has to go through all the pipeline stages and intermediate results have to be

6.3 Energy Consumption in FP-operations 91

saved in register files. The Eop for the hardware and software implementations
of division in FMA is almost the same, but the former has a much shorter
latency. Therefore in all the experiment results shown hereafter, we refer to the
modified FMA with hardware support for division when comparing division by
multiplication in a FMA and division by digit-recurrence approaches.

6.3 Energy Consumption in FP-operations

6.3.1 Instruction Mix

In [83], the average frequency of floating-point operations in the SPECfp92
benchmark suite is reported. The most common instructions are multiply and
add with MUL accounting for 37% and ADD for 55%. Moreover, the FP adder
consumes nearly 50% of the multiply results which explains why fused multiply-
add units are often used in modern processors. Table 6.2 summarizes the in-
struction mix. The first column shows the mix when none of the MUL and
ADD instructions are fused. The second column shows the mix when 50% of
the MUL instructions are fused with ADD.

not fused fused
ADD 55.0% 44.8%
MUL 37.0% 22.7%
FMA 0% 22.7%
DIV 3.0% 3.7%
OTHERS 5.0% 6.1%

Table 6.2: Instruction mix.

Based on the implementation data in Table 6.1, we can obtain the clock cycle
distribution for all FP operations (shown in Figure 6.1) with the instruction mix
in Table 6.2. Due to the much longer latency of DIV operation, the percentage
of cycles spent in DIV operation is significantly larger than its percentage of
instructions, which emphasizes the importance of optimizing DIV operation in
terms of delay, power and energy consumption.

92 Energy and Thermal Aware Design in FPU

 0

 10

 20

 30

 40

 50

 60

ADD MUL FMA DIV

P
er

ce
nt

ag
e

(%
)

FP Operation

 0

 10

 20

 30

 40

 50

 60

ADD MUL FMA DIV

P
er

ce
nt

ag
e

(%
)

FP Operation

Figure 6.1: Clock cycle distribution for all FP operations: not fused (above)
and fused (below).

6.3 Energy Consumption in FP-operations 93

6.3.2 Energy Consumption in a Scientific Application

To compare the energy consumption of units with different latencies a suitable
metric is the energy consumption per operation (Eop), as described in Eq. (6.4).

Due to the significant reduction in Eop for division as shown in Table 6.1, we
use a digit-recurrence (Penryn or r16div) divider for FP-division. To compare
the energy savings in an application between division by FMA and by digit-
recurrence, we use the SPICE benchmark which has a rather high percentage
of divisions [84].

Since the percentage of MUL instructions that can be fused with ADD is not
mentioned in [84], we list the results of the comparison in Table 6.3 to show the
upper and lower bound of the energy consumption. In Table 6.3, the results
are obtained by assuming two extreme situations that is when none of the MUL
instructions can be fused with ADD (top), which gives the upper bound and
when all MUL can be fused with ADD (bottom), which gives the lower bound.
In all three setups (Penryn, r16div and FMA), the MUL and ADD operations
are implemented by the FMA unit. The DIV operation, on the other hand, is
implemented in Penryn, r16div or FMA, respectively.

Percentage Penryn r16div FMA
[pJ] [pJ] [pJ]

DIV 8.0% 45.4 30.0 190.0
ADD 45.0% 90.3
MUL 26.0% 213.8
Fused MA 0.0% −
Total 79.0% 349.2 333.8 493.8

Percentage Penryn r16div FMA
[pJ] [pJ] [pJ]

DIV 8.0% 45.4 30.0 190.0
ADD 19.0% 38.0
MUL 0.0% −
Fused MA 26.0% 232.9
Total 53.0% 316.3 300.9 460.9

Table 6.3: Energy consumption in SPICE without (top) and with (bottom)
fused multiply-add.

Note that the comparison is based on the four FP arithmetic operations (ADD,

94 Energy and Thermal Aware Design in FPU

MUL, Fused MA, DIV) , which explains why Percentage of “Total” is not 100%
in Table 6.3. Due to the reduction in the number of instructions by fusing MUL
and ADD, there is a reduction in the total number of instructions of the whole
application, which is reflected in a smaller Percentage of “Total” in Table 6.3
(bottom) since we use the top as baseline reference.

Although the division operation is much less frequent than addition and multi-
plication, it dissipates a significant proportion of total energy in all arithmetic
operations (around 10% if implemented in digit-recurrence dividers and 40% if
implemented in FMA). In both cases (fused MA or not) there is a significant re-
duction (around 30%) in energy consumption by using a digit-recurrence divider
to implement binary64 division. Due to the low percentage of DIV instructions,
the r16div unit only consumes slightly less energy than Penryn although its
power consumption is 1/3 less than Penryn.

6.4 Thermal Analysis

In the previous section, we show that using digit-recurrence dividers for DIV
operations consumes much less power and energy than using FMAs. From the
thermal perspective, the low power divider can be placed near the FMA to
reduce the heat flux in the FMA through lateral heat diffusion. In this way, the
divider block help further reduce the high temperature rise in the FMA. Similar
floorplan strategies can be found in high-end multicore processors where caches
are placed beside cores [85] to partially mitigate thermal problems arose from
the excessive heat generated inside the cores.

To perform thermal analysis, we use the model proposed in Chapter 4, which
consists of a conventional RC model of the heat conduction paths around each
thermal element. The FMA unit is laid out with an area of 437µm× 437µm
and the r16div unit is laid out with an area of 437µm× 44µm, which is about
1/10 of the FMA.

Figure 6.2 shows the impact on temperature distribution when a r16div is
placed next to a FMA. Temperatures shown in the figure indicate the rise above
the ambient temperature. The figure above is a thermal map of the FMA
unit alone and the figure below shows the thermal map when a r16div unit is
placed next to the FMA. Power consumption in both units are estimated based
on workload characterized by the instruction mix with fused MA as shown in
Table 6.2. When DIV operations are executed in the r16div unit, the average
power consumption for all FP operations decreased from 132.44 mW to 115.18
mW resulting in a 13.0% reduction.

6.4 Thermal Analysis 95

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 34.8

 35

 35.2

 35.4

 35.6

 35.8

 36

 36.2

 36.4

 36.6

 36.8

 37

FMA

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 27

 27.2

 27.4

 27.6

 27.8

 28

 28.2

 28.4

 28.6

 28.8

 29r16div

FMA

Figure 6.2: Comparison of thermal profiles: FMA alone (above) and FMA plus
r16div (below). Temperatures are in ◦C. Note that the scale does not overlap.

96 Energy and Thermal Aware Design in FPU

In the FMA unit, the hotspots correspond to the tree multiplier and the CPA,
which is reflected by the high temperature colored in red in the thermal map.
The peak temperature rise reached 36.9◦C above ambient. By putting the di-
vider beside the multiplier the peak temperature rise dropped from 36.9◦C to
29.6◦C and the average temperature reduced from 36.0◦C to 28.7◦C.

The peak temperature reduction in the FMA is achieved from two factors. First,
due to the offload of DIV operations to r16div, the average power consumption
in the FMA is reduced, effectively lowering the power density in the FMA.
Second, the r16div introduced a 10% increase in total area, which increased
the cross sectional area of the heat conducting path and reduced the thermal
resistance from junction to ambient. The above two factors result in a peak
temperature reduction of 20%.

6.5 Leakage Optimization in Caches

In previous sections, we show that power and energy can be significantly reduced
by using a digit-recurrence unit for division operations and the divider can also
mitigate thermal problems in the FMA. In fact, the placement of these digit-
recurrence units can be exploited to limit the amount of heat diffusion from
hot blocks such as FMAs to caches as well. Leakage is the dominant fraction
of power consumption in caches [86], so cache is more sensitive to temperature
increase in terms of power. In this section, we use a leakage model to characterize
the temperature reduction and energy savings in a cache block in a multi-core
like architecture.

6.5.1 Leakage Power Model

The leakage power is mainly due to gate tunneling and subthreshold leakage
and has a large temperature dependency as we have described in Section 2.1.

While gate leakage is relatively temperature independent, subthreshold leakage
has an exponential dependence on temperature. The SPICE1 BSIM4 model
is a very elaborate model of modern transistors behavior. We use the BSIM4
models provided by the standard cell library to characterize the temperature
dependency of the cell’s leakage power.

1Here we refer to the actual electrical level simulations run by SPICE, not the benchmark
used in Section 6.3.

6.5 Leakage Optimization in Caches 97

The average power consumption of a 4-bit carry propagate adder is measured
with the input fixed to obtain the static dissipation. Squares in Figure 6.3
show the normalized leakage reported by SPICE as temperature is swept from
20 ◦C to 150 ◦C, which is the typical range of operating temperatures. In
order to approximate the exponential increase of leakage, we use a fourth order
polynomial to accurately fit the SPICE reported data.

Pleak = Pleak0{a(T − T0)
4 + b(T − T0)

3 + c(T − T0)
2 + d(T − T0) + e} (6.5)

The model shall be used in the next section to calculate the amount of leakage
reduction obtained from decrease in temperature. The polynomial is plotted
in Figure 6.3 using a curve. As shown in the figure, leakage power more than
doubles for every 30 ◦C rise in temperature. At high temperatures the rate
of increase in leakage power is very fast, which means that even a few degrees
of increase in temperature can induce a large amount of leakage power. Con-
sequently, containing the high temperature rise is very important in limiting
static dissipation in leakage dominant blocks such as on-chip cache.

 0

 5

 10

 15

 20

 25

 20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 L
ea

ka
ge

 P
ow

er

Temperature (C)

SPICE simulation
Our leakage model

Figure 6.3: Temperature dependent leakage model derived from SPICE simula-
tion.

98 Energy and Thermal Aware Design in FPU

6.5.2 Experiment Setup

In our experiments we made the assumption based on [86] that 70% of the total
power consumption in cache is from leakage. We performed three experiments
using five different configurations of FMA, r16div and a cache block. The
configurations are summarized in Table 6.4 with config1 and config3 as baseline
references.

FMA r16div
config1 2 0
config2 2 2

config3 4 0
config4 4 2
config5 4 4

Table 6.4: Number of units in each configuration.

The size of the cache block is 875 µm× 160 µm, which can accommodate approx-
imately 16 KB in a 65 nm process according to our estimation2. The physical
dimension of the FMA unit and the r16div unit are the same as in Section 6.4
with the FMA 10 times larger than the r16div.

6.5.3 Experiment Results

In Figure 6.4 we show the impact on temperature distribution when two r16div
units are placed in between the FMAs and a cache block. Temperatures shown
in the figure indicate the rise above the ambient temperature which is 50◦C in
our experiments. Again, power consumption in the FMA and divider units are
estimated based on workload characterized by the instruction mix with fused
MA as shown in Table 6.2. The right figure has more thermal cells in the grid
due to its increased area.

The area occupied by the FMAs has a higher temperature which is reflected by
the red (dark) color. The div units reduce the average temperature rise in the
cache block from 23.1◦C to 18.1◦C. This means the absolute temperature in the
cache block reduces from 73.1◦C to 68.1◦C. From our temperature dependent

2In [2], a 6T SRAM cell is reported to occupy an area of 20×22λ in a 130 nm process,
where λ is half of the channel length. In a 65 nm process, λ is approximately 33 nm and the
area of a SRAM cell would be around 0.5 µm2.

6.5 Leakage Optimization in Caches 99

 0 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

 14

CACHE

FMA0 FMA1

 0 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

 14

 18

 20

 22

 24

 26

 28

 30

 32

CACHE

DIV0 DIV1

FMA0 FMA1

Figure 6.4: Thermal profiles in config1 and config2: FMAs alone (left) and
FMAs plus 2 r16div (right). Temperatures are in ◦C.

leakage model, the decrease results in a 12.3% reduction in leakage. The total
power consumption in the cache block is therefore reduced by 8.6%.

In Figure 6.5 we show a larger circuit composed of a cache block and four FMA
units. The size of the cache block is the same as before. Again, we use r16div
for division operations to save energy and reduce average temperature in cache.
We first try to use two dividers as shown in Figure 6.5 left where the average
temperature in the cache block dropped by 4.8◦C and leakage is reduced by
11.7%. Next, we use four dividers in config5 as shown in Figure 6.5 right. Due
to the larger area introduced by the dividers, the average temperature rise in the
cache block is reduced by 7.3◦C from 25.8◦C to 18.5◦C. The leakage is reduced
by 17.1% and the total power consumption decreased by 12.0% in the cache.

Grid Size Tmax Tmin Tcache ∆Pleak ∆Ptotal

config1 20×14 33.8 21.0 23.1 - -
config2 20×15 28.3 16.5 18.1 -12.3% -8.6%

config3 20×24 42.1 23.4 25.7 - -
config4 20×25 35.8 19.2 20.9 -11.7% -8.2%
config5 20×26 35.5 17.0 18.5 -17.1% -12.0%

Table 6.5: Temperature and power reductions in cache.

Table 6.5 summarizes the experiment results where Grid Size is the size of the
thermal grid when determining temperature distribution in the whole system.
Tmax is the peak temperature rise in the system and Tmin is the minimum
temperature rise in the system. Tcache is the average temperature rise in the
cache block. ∆Pleak and ∆Ptotal are the percentage of leakage and total power

100 Energy and Thermal Aware Design in FPU

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 25

CACHE

FMA0 FMA1

FMA2 FMA3

DIV0 DIV1

 0 2 4 6 8 10 12 14 16 18 20
 0

 5

 10

 15

 20

 25

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

CACHE

DIV0 DIV1
DIV2 DIV3

FMA0 FMA1

FMA2 FMA3

Figure 6.5: Thermal profiles in config4 and config5: FMAs plus 2 r16div (left)
and FMAs plus 4 r16div (right). Temperatures are in ◦C.

reduction in the cache block due to the decrease in temperature.

It is obvious that by using more divider units we can obtain a larger reduction
in cache temperature and thus leakage. However, the cost is increased die area
which might not be desirable. It should be noted that the divider units are power
efficient components for division operations instead of plain empty space. Given
the power and thermal properties of the divider block, designers can decide the
number of units to use based on the frequencies of division operations in the
application.

6.6 Summary

In this chapter, we have compared different implementation of floating-point
division in terms of power and energy per operation. Digit-recurrence dividers
have been shown to dissipate much less power than multiplicative algorithms
such as Newton-Raphson in a FMA. A significant amount of energy can be
saved by including a digit-recurrence divider in the FPU due to the much longer
latency of division operations.

We have also shown how the low power division unit can be used to mitigate

6.6 Summary 101

thermal problems in the FMA and the cache. Similar to the Empty Row In-
sertion method that we have described in Chapter 5, the r16div introduced
area overhead but reduced power density in the hotspots. The difference is that
the extra area from r16div is not dummy cells but power and energy efficient
functional unit for division.

102 Energy and Thermal Aware Design in FPU

Chapter 7

Perspective

In this chapter, we will highlight some of the perspectives enabled through the
work presented in the dissertation. In specific, we will discuss about temperature
aware wire planning in the early design stage, delay overhead optimization in the
proposed temperature reduction techniques and incorporating thermal analysis
into existing Negative Biased Temperature Instability (NBTI) induced aging
analysis modeling tools.

7.1 Thermal Aware Planning and Routing for

Global Wires

The temperature dependent wire delay model as described in Section 4.2 can
be incorporated into wire planning and global routing algorithms. The spatial-
temporal variation in temperature has already caught attention in the area of
clock tree synthesis and optimization. This is because the temperature induced
clock skew, if ignored, can in the worst case result in system failure. As tech-
nology further scales, the peak temperature rise and temperature variation in
global wires can become more significant.

The thermally induced delay variation in signal wires also has to be analyzed

104 Perspective

 0 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Path1

 0 2 4 6 8 10 12 14 16 18 20
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Path2

Figure 7.1: Thermal aware global routing.

and considered in routing algorithms to avoid performance degradation. At the
early design stage, routes of long wires can be planned based on the layout and
the initial thermal analysis, taking into account the temperature variation on the
substrate and at the same time avoiding over congestion when detouring thermal
hotspots. The exact route and dimension of wires can then be determined
during the global and detailed routing stages. Figure 7.1 illustrates two routing
solutions for a three terminal net with the crosses representing the terminals
and dashed lines representing the routes. Path1 (left) has the same wirelength
as Path2 (right), but it is subject to higher temperature. In terms of delay and
reliability, Path2 is more favorable than Path1.

7.2 Delay Overhead Optimization in ERI and

HSD Methods

The two methods proposed in Chapter 5, namely ERI and HSD, results in a
larger peak temperature reduction than the general area enlargement method.
In addition, the introduced dynamic power overhead due to the increase in
wirelength is smaller than the general method. There is, however, a small
amount of timing overhead, although less than 5% even in the worst case.

By identifying timing critical paths, delay optimization can be performed on
these paths to reduce the timing overhead. The delay overhead is mainly caused
by the increase in wirelength, especially in wires connecting cells that were orig-
inally placed far away vertically. These paths need optimization because the

7.3 NBTI Analysis with Detailed Spatial Thermal Distribution 105

proposed methods increase the area occupied by the hotspot vertically, which
exacerbates their delay. Optimization methods can include rearranging the lo-
cation of cells on the critical paths, replacing driving cells of long wires with
larger drive strength and other methods.

7.3 NBTI Analysis with Detailed Spatial Ther-

mal Distribution

As we have discussed in Chapter 2 Section 2.4, the reliability and lifetime of
microelectronic systems can be significantly degraded by the eleveated temper-
ature and thermal gradients. In particular, the Negative Biased Temperature
Instability (NBTI) effect can lead to a shift in the PMOS transistor’s threshold
voltage up to 50 mV over time and severely degrade circuit performance. The
NBTI induced voltage shift is temperature sensitive and increases much faster at
high temperatures. Information of a circuit’s operating temperature is therefore
fundamental to aging analysis caused by NBTI effect.

The scenario is very similar to the wire delay problem that we just discussed,
ignoring the temperature variation along the signal paths can lead to large
errors. Transistors subject to different temperatures exhibit different speed of
NBTI induced aging, e.g. transistors in the hot region age faster than transistors
in the cool region. The difference from the wire delay problem is that the target
of analysis is the transistors on the substrate instead of wires in the metal layers.
The accuracy of existing NBTI models, many of which use a single worst case
temperature for the whole circuit, can be improved by utilizing the detailed
temperature distribution to perform layout and thermal aware analysis.

106 Perspective

Chapter 8

Conclusion

The goal of this work is to investigate power and thermal management tech-
niques in nanometer technologies. The high junction temperature caused by
the increased power density in modern VLSI chips has negative impact on many
characteristics of a CMOS circuit such as delay, static power dissipation and reli-
ability. The need for effective power and thermal management is ever increasing
as manufacturing technology further scales to smaller geometries.

To lower peak temperature, the high local power density in hotspots has to be
reduced. In turn, to lower power density, the power consumption (both dynamic
and static) needs to be reduced using low power techniques. Alternatively, the
area occupied by the hotspot can be increased to enlarge the cross sectional area
of the thermal resistance from the junction to the ambient. This is especially
useful when power can not be further reduced due to the realized functionality.

Increasing the area can have negative impact on power and delay due to the
increase in wirelength. Cells that communicate with each other are usually
laid out in local clusters by placement tools. We show that by maintaining the
structure of these clusters the delay and power overhead can be minimized.

The design of Floating-Point Units (FPUs) was investigated as an example for
power and thermal management. For floating-point division operations, at the
algorithmic level, we used a digit-recurrence approach which consumes much

108 Conclusion

less power and energy than a multiplicative approach. The peak temperature
in the FPU is reduced from two factors. First, the average power consumption
in the FPU is less when division is implemented in a digit-recurrence divider.
Second, the divider block introduced extra area, effectively reducing the power
density of the FPU.

In specific, this work has resulted in the following contributions:

1. We developed a thermal modeling method for solving the equivalent RC
circuit to obtain steady-state heat distribution within a circuit. The ther-
mal simulator provided circuit designers a tool to study thermal distri-
bution and optimization. For example, we observed a thermal gradient
of 6 ◦C at a distance of 500µm, which means that thermal gradients not
only exist at chip level, or in large blocks, but also in blocks of a small
size. With the shrink of transistor’s feature size, thermal gradients within
functional blocks can become more significant.

2. We provided a preliminary investigation of the impact of metal wires on
the heat distribution in the substrate layers. The experiment results con-
clude that although metals like copper have a better thermal conductivity
than silicon, the thermal resistance in wires is much larger than the sub-
strate due to the much smaller cross sectional area. Therefore, it can be
safely assumed that wires do not contribute significantly to heat conduc-
tion between hot and cool cells and lateral thermal diffusion mainly occurs
in the substrate layer.

3. We proposed a temperature aware interconnect delay estimation method
in the early physical design stage and evaluated signal delay in global wires
subject to the nonuniform temperature distribution on the substrate layer.
From the statistics obtained in the MCNC benchmark, it is shown that
the average temperature in global wires can be significantly different and
thermal gradients larger than 20 ◦C were also developed within 40% of all
wires. Consequently, during the wire planning stage it is very important
to consider the nonuniform thermal distribution on the substrate in the
routing algorithm.

4. We proposed and evaluated two post placement stage temperature reduc-
tion techniques. Area management with the explicit goal of increasing area
in the hotspot is an alternative to reducing power consumption for ther-
mal management. The proposed methods are shown to be more effective
and efficient than uniformly increasing a circuit’s area.

5. We compared different algorithms and implementations for floating-point
division in terms of power consumption and energy per operation. Al-

109

though division is less frequent than addition and multiplication, its con-
tribution to power and energy consumption for all FP operations is sig-
nificant due to its much longer latency. Digit-recurrence division units
consume much less power than units using multiplicative algorithms, such
as Newton-Raphson. For the SPICE application, a 30% reduction in en-
ergy can be achieved when division is implemented in a radix-16 digit-
recurrence divider rather than in a FMA unit.

6. We analyzed the impact on the temperature distribution and leakage dis-
sipation in the FPU when digit-recurrence dividers are used for division
operations. The reduction in power not only reduces energy consumption
but also results in a lower peak temperature in the FMA. By serving as
heat spreader for the FMA, the divider further reduces the power den-
sity in the FPU and the peak temperature dropped as much as 7 ◦C. The
power efficient dividers can also be utilized to limit heat diffusion from the
FMA to the cache block and to reduce its temperature induced leakage.
The experiments showed a 17% reduction in leakage power in the cache
block is achieved.

110 Bibliography

Bibliography

[1] R. Mahajan, C. pin Chiu, and G. Chrysler, “Cooling a microprocessor
chip,” Proceedings of the IEEE, vol. 94, no. 8, pp. 1476–1486, Aug. 2006.

[2] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Pearson Education, Inc, 2005.

[3] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its
impact on the design of buffer circuits,” IEEE Journal of Solid-State Cir-
cuits, vol. 19, no. 4, pp. 468–473, Aug. 1984.

[4] A. Alvandpour, P. Larsson-Edefors, and C. Svensson, “Separation and ex-
traction of short-circuit power consumption in digital CMOS VLSI cir-
cuits,” Proc. of the 1998 International Symposium on Low Power Electron-
ics and Design, pp. 245–249, Aug. 1998.

[5] S.-H. Jung, J.-H. Baek, and S.-Y. Kim, “Short circuit power estimation of
static CMOS circuits,” Proc. of the 2001 Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 545–549, 2001.

[6] International Technology Roadmap for Semiconductors (ITRS), 2007,
http://www.itrs.net/.

[7] S. Mukhopadhyay, A. Raychowdhury, and K. Roy, “Accurate estimation
of total leakage in nanometer-scale bulk CMOS circuits based on device
geometry and doping profile,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 24, no. 3, pp. 363–381, Mar.
2005.

112 BIBLIOGRAPHY

[8] F. Fallah and M. Pedram, “Standby and Active Leakage Current Control
and Minimization in CMOS VLSI Circuits,” IEICE Transactions on Elec-
tronics, 2005.

[9] IEEE Standard for Design and Verification of Low Power Integrated Cir-
cuits, IEEE Computer Society Std. 1801, 2009.

[10] “Si2 Common Power Format Specification.” [Online]. Available:
http://www.si2.org/?page=811

[11] W. Shen, Y. Cai, X. Hong, and J. Hu, “An Effective Gated Clock Tree
Design Based on Activity and Register Aware Placement,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 12, pp.
1639–1648, Dec. 2010.

[12] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy, “Ultra Low-
Power Clocking Scheme Using Energy Recovery and Clock Gating,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 17,
no. 1, pp. 33–44, Jan. 2009.

[13] Power Compiler User Guide, Version C-2009.06-SP2 ed., Synopsys, Inc.

[14] D. Chen, J. Cong, Y. Fan, and J. Xu, “Optimality study of resource binding
with multi-Vdds,” Proc. of 43rd ACM/IEEE Design Automation Confer-
ence, pp. 580–585, 2006.

[15] C. Xian, Y.-H. Lu, and Z. Li, “Dynamic Voltage Scaling for Multitasking
Real-Time Systems With Uncertain Execution Time,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 8, pp. 1467–1478, Aug. 2008.

[16] Y. Cho and N. Chang, “Energy-Aware Clock-Frequency Assignment in Mi-
croprocessors and Memory Devices for Dynamic Voltage Scaling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 26, no. 6, pp. 1030–1040, Jun. 2006.

[17] K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock, K. Ishii,
T. Nguyen, and J. Burns, “A 32-bit PowerPC system-on-a-chip with sup-
port for dynamic voltage scaling and dynamic frequency scaling,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 11, pp. 1441–1447, Nov. 2002.

[18] V. Sundararajan and K. Parhi, “Low power synthesis of dual threshold
voltage CMOS VLSI circuits,” Proc. of the 1999 International Symposium
on Low Power Electronics and Design, pp. 139–144, 1999.

[19] X. He, S. Al-Kadry, and A. Abdollahi, “Adaptive leakage control on body
biasing for reducing power consumption in CMOS VLSI circuit,” Proc. of
10th International Symposium on Quality of Electronic Design, pp. 465–
470, Mar. 2009.

http://www.si2.org/?page=811

BIBLIOGRAPHY 113

[20] S. Kim, C. J. Choi, D.-K. Jeong, S. Kosonocky, and S. B. Park, “Reducing
Ground-Bounce Noise and Stabilizing the Data-Retention Voltage of Power-
Gating Structures,” IEEE Transactions on Electron Devices, vol. 55, no. 1,
pp. 197–205, Jan. 2008.

[21] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power
Methodology Manual: For System-on-Chip Design. Springer Publishing
Company, Inc., 2007.

[22] Y. Zhan, S. V. Kumar, and S. S. Sapatnekar, “Thermally Aware Design,”
Foundations and Trends in Electronic Design Automation, no. 3, pp. 255–
370, 2008.

[23] Y. Yang, C. Zhu, Z. Gu, L. Shang, and R. Dick, “Adaptive multi-domain
thermal modeling and analysis for integrated circuit synthesis and design,”
Proc. of the 2006 IEEE/ACM International Conference on Computer-Aided
Design, pp. 575–582, Nov. 2006.

[24] T.-Y. Wang, J.-L. Tsai, and C. Chung-Ping Chen, “Thermal and power in-
tegrity based power/ground networks optimization,” Proc. of Design, Au-
tomation and Test in Europe, vol. 2, pp. 830–835, Feb. 2004.

[25] D. Chen, E. Li, E. Rosenbaum, and S.-M. Kang, “Interconnect thermal
modeling for accurate simulation of circuit timing and reliability,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 19, no. 2, pp. 197–205, Feb. 2000.

[26] M.-N. Sabry, A. Bontemps, V. Aubert, and R. Vahrmann, “Realistic and
efficient simulation of electro-thermal effects in VLSI circuits,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp.
283–289, Sep. 1997.

[27] S. Wunsche, C. Clauss, P. Schwarz, and F. Winkler, “Electro-thermal cir-
cuit simulation using simulator coupling,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp. 277–282, Sep.
1997.

[28] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, and
M. Stan, “HotSpot: a compact thermal modeling methodology for early-
stage VLSI design,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 5, pp. 501–513, May 2006.

[29] P. Li, L. Pileggi, M. Asheghi, and R. Chandra, “Efficient full-chip ther-
mal modeling and analysis,” Proc. of the 2004 IEEE/ACM International
Conference on Computer Aided Design, pp. 319–326, Nov. 2004.

114 BIBLIOGRAPHY

[30] B. Wang and P. Mazumder, “A Logarithmic Full-Chip Thermal Analy-
sis Algorithm Based on Multi-Layer Green’s Function,” Proc. of Design,
Automation and Test in Europe, vol. 1, pp. 1–6, Mar. 2006.

[31] ——, “Accelerated Chip-Level Thermal Analysis Using Multilayer Green’s
Function,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 2, pp. 325–344, Feb. 2007.

[32] Y. Zhan and S. Sapatnekar, “High-Efficiency Green Function-Based Ther-
mal Simulation Algorithms,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 26, no. 9, pp. 1661–1675, Sep.
2007.

[33] N. Rinaldi, “Thermal analysis of solid-state devices and circuits: an ana-
lytical approach,” Solid-State Electronics, vol. 44, no. 10, pp. 1789–1798,
2000.

[34] A. Ajami, K. Banerjee, and M. Pedram, “Modeling and analysis of nonuni-
form substrate temperature effects on global ULSI interconnects,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 24, no. 6, pp. 849–861, Jun. 2005.

[35] J. C. Ku and Y. Ismail, “Area Optimization for Leakage Reduction and
Thermal Stability in Nanometer-Scale Technologies,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 2, pp. 241–248, Feb. 2008.

[36] C. J. M. Lasance, “Thermally driven reliability issues in microelectronic
systems: status-quo and challenges,” Microelectronics Reliability, vol. 43,
no. 12, pp. 1969–1974, 2003.

[37] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal Per-
formance Challenges from Silicon to Systems,” Intel Technology Journal,
(Q3), 2000.

[38] F. d’Heurle, “Electromigration and failure in electronics: An introduction,”
Proceedings of the IEEE, vol. 59, no. 10, pp. 1409–1418, Oct. 1971.

[39] J. Black, “Electromigration failure modes in aluminum metallization for
semiconductor devices,” Proceedings of the IEEE, vol. 57, no. 9, pp. 1587–
1594, Sep. 1969.

[40] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability:
Road to cross in deep submicron silicon semiconductor manufacturing,”
Journal of Applied Physics, vol. 94, no. 1, pp. 1–18, Jul. 2003.

BIBLIOGRAPHY 115

[41] D. Atienza, G. De Micheli, L. Benini, J. Ayala, P. Del Valle, M. DeBole,
and V. Narayanan, “Reliability-aware design for nanometer-scale devices,”
Proc. of the 2008 Asia and South Pacific Design Automation Conference,
pp. 549–554, Mar. 2008.

[42] J.-L. Tsai, C.-P. Chen, G. Chen, B. Goplen, H. Qian, Y. Zhan, S.-M. Kang,
M. Wong, and S. Sapatnekar, “Temperature-Aware Placement for SOCs,”
Proceedings of the IEEE, vol. 94, no. 8, pp. 1502–1518, Aug. 2006.

[43] F. Zanini, D. Atienza, C. Jones, and G. De Micheli, “Temperature sensor
placement in thermal management systems for mpsocs,” Proc. of IEEE
International Symposium on Circuits and Systems, pp. 1065–1068, May
2010.

[44] E. Kursun and C.-Y. Cher, “Temperature variation characterization and
thermal management of multicore architectures,” IEEE Micro, vol. 29,
no. 1, pp. 116–126, Jan.-Feb. 2009.

[45] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin, “Dynamic Thermal
Management through Task Scheduling,” IEEE International Symposium
on Performance Analysis of Systems and software, pp. 191–201, Apr. 2008.

[46] D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” Proc. of 7th International Symposium on
High-Performance Computer Architecture (HPCA), pp. 171–182, Apr.
2001.

[47] B. Schafer and T. Kim, “Hotspots Elimination and Temperature Flatten-
ing in VLSI Circuits,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 16, no. 11, pp. 1475–1487, Nov. 2008.

[48] A. Gupta, N. Dutt, F. Kurdahi, K. Khouri, and M. Abadir, “LEAF: A
System Level Leakage-Aware Floorplanner for SoCs,” Proc. of the 2007
Asia and South Pacific Design Automation Conference (ASP-DAC), pp.
274–279, Jan. 2007.

[49] C. Liu, J. Su, and Y. Shi, “Temperature-aware clock tree synthesis consider-
ing spatiotemporal hot spot correlations,” Proc. of 26th IEEE International
Conference on Computer Design, pp. 107–113, Oct. 2008.

[50] M. Cho, S. Ahmedtt, and D. Pan, “TACO: temperature aware clock-tree
optimization,” Proc. of the 2005 IEEE/ACM International Conference on
Computer-Aided Design, pp. 582–587, Nov. 2005.

[51] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram, L. Benini,
A. Macii, E. Macii, and M. Poncino, “Dynamic Thermal Clock Skew Com-
pensation Using Tunable Delay Buffers,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 16, no. 6, pp. 639–649, Jun. 2008.

116 BIBLIOGRAPHY

[52] A. Gupta, N. Dutt, F. Kurdahi, K. Khouri, and M. Abadir, “Thermal
Aware Global Routing of VLSI Chips for Enhanced Reliability,” Proc. of
9th International Symposium on Quality Electronic Design, pp. 470–475,
Mar. 2008.

[53] K. Lu and D. Pan, “Reliability-aware global routing under thermal consid-
erations,” Proc. of 1st Asia Symposium on Quality Electronic Design, pp.
313–318, Jul. 2009.

[54] A. Coskun, T. Rosing, and K. Whisnant, “Temperature Aware Task
Scheduling in MPSoCs,” Proc. of Design, Automation and Test in Europe,
pp. 1–6, Apr. 2007.

[55] A. Coskun, T. Rosing, K. Whisnant, and K. Gross, “Static and dynamic
temperature-aware scheduling for multiprocessor socs,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 9, pp. 1127–
1140, Sep. 2008.

[56] A. Coskun, T. Rosing, and K. Gross, “Utilizing predictors for effi-
cient thermal management in multiprocessor socs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10,
pp. 1503–1516, Oct. 2009.

[57] F. Mulas, D. Atienza, A. Acquaviva, S. Carta, L. Benini, and G. De Micheli,
“Thermal balancing policy for multiprocessor stream computing plat-
forms,” IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, vol. 28, no. 12, pp. 1870–1882, Dec. 2009.

[58] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, “Temperature-aware microarchitecture,” Proc. of 30th Annual
International Symposium on Computer Architecture, pp. 2–13, Jun. 2003.

[59] IEEE Standard for Floating-Point Arithmetic, IEEE Computer Society Std.
754, 2008.

[60] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[61] S. Oberman, G. Favor, and F. Weber, “AMD 3DNow! technology: ar-
chitecture and implementations,” IEEE Micro, vol. 19, no. 2, pp. 37–48,
Mar./Apr. 1999.

[62] T. Lang and J. Bruguera, “Floating-point multiply-add-fused with reduced
latency,” IEEE Transactions on Computers, vol. 53, no. 8, pp. 988–1003,
Aug. 2004.

[63] M. D. Ercegovac and T. Lang, Division and Square Root: Digit Recurrence
Algorithms and Implementations. Kluwer Academic Publisher, 1994.

BIBLIOGRAPHY 117

[64] H. Baliga, N. Cooray, E. Gamsaragan, P. Smith, K. Yoon, J. Abel, and
A. Valles, “Improvements in the Intel Core2 Penryn Processor Family Ar-
chitecture and Microarchitecture,” Intel Technology Journal, pp. 179–192,
Oct. 2008.

[65] N. Burgess and C. Hinds, “Design issues in radix-4 SRT square root amp;
divide unit,” Conference Record of 35th Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 1646–1650, 2001.

[66] G. Gerwig, H. Wetter, E. Schwarz, and J. Haess, “High performance
floating-point unit with 116 bit wide divider,” Proc. of 16th IEEE Sym-
posium on Computer Arithmetic, pp. 87–94, Jun. 2003.

[67] A. Nannarelli and T. Lang, “Low-power division: comparison among im-
plementations of radix 4, 8 and 16,” Proc. of 14th IEEE Symposium on
Computer Arithmetic, pp. 60–67, 1999.

[68] S. Oberman, “Floating point division and square root algorithms and imple-
mentation in the AMD-K7TM microprocessor,” Proc. of 14th IEEE Sym-
posium on Computer Arithmetic, pp. 106–115, 1999.

[69] NVIDIA. ”Fermi. NVIDIA’s Next Generation CUDA
Compute Architecture”. Whitepaper. [Online]. Avail-
able: http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA
Fermi Compute Architecture Whitepaper.pdf

[70] D. DasSarma and D. Matula, “Measuring the accuracy of ROM reciprocal
tables,” IEEE Transactions on Computers, vol. 43, no. 8, pp. 932–940, Aug.
1994.

[71] D. De Caro, N. Petra, and A. Strollo, “A high performance floating-point
special function unit using constrained piecewise quadratic approximation,”
Proc. of the 2008 IEEE International Symposium on Circuits and Systems,
pp. 472–475, May 2008.

[72] S. Oberman and M. Siu, “A high-performance area-efficient multifunction
interpolator,” Proc. of 17th IEEE Symposium on Computer Arithmetic, pp.
272–279, Jun. 2005.

[73] W. Liu and A. Nannarelli, “Power dissipation in division,” Proc. of 42nd
Asilomar Conference on Signals, Systems and Computers, pp. 1790–1794,
Oct. 2008.

[74] ——, “Appendix to power dissipation in divi-
sion,” IMM, Technical Report 2008-15. [Online]. Available:
http://orbit.dtu.dk/All.external?recid=228622

http://www.nvidia.com/content/PDF/fermi_white_papers/ NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://orbit.dtu.dk/All.external?recid=228622

118 BIBLIOGRAPHY

[75] J. H. L. IV and J. H. L. V, A Heat Transfer Textbook. Phlogiston Press,
2008.

[76] R. L. Boylestad, Introductory Circuit Analysis. Pearson Education, Inc,
2002.

[77] T. Sato, J. Ichimiya, N. Ono, K. Hachiya, and M. Hashimoto, “On-chip
thermal gradient analysis and temperature flattening for SoC design,” Proc.
of the 2005 Asia and South Pacific Design Automation Conference (ASP-
DAC), vol. 2, pp. 1074–1077, Jan. 2005.

[78] W. C. Elmore, “The Transient Response of Damped Linear Networks with
Particular Regard to Wideband Amplifiers,” Journal of Applied Physics,
vol. 19, no. 1, pp. 55–63, Jan. 1948.

[79] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Predictable routing,”
Proc. of the 2000 IEEE/ACM International Conference on Computer Aided
Design, pp. 110–113, 2000.

[80] K. Sankaranarayanan, S. Velusamy, M. Stan, C. L, and K. Skadron, “A case
for thermal-aware floorplanning at the microarchitectural level,” Journal of
Instruction Level Parallelism, vol. 7, 2005.

[81] S. Adya and I. Markov, “Fixed-outline floorplanning: enabling hierarchi-
cal design,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 11, no. 6, pp. 1120–1135, Dec. 2003.

[82] J. Bruguera and T. Lang, “Floating-point fused multiply-add: reduced
latency for floating-point addition,” Proc. of 17th IEEE Symposium on
Computer Arithmetic, pp. 42–51, Jun. 2005.

[83] S. Oberman and M. Flynn, “Design issues in division and other floating-
point operations,” IEEE Transactions on Computers, vol. 46, no. 2, pp.
154–161, Feb. 1997.

[84] J. Hennessy and D. A. Patterson, Computer Architecture: A Quantitive
Approach. Morgan Kaufmann Publishers, 1995.

[85] S. Rusu, S. Tam, H. Muljono, J. Stinson, D. Ayers, J. Chang, R. Varada,
M. Ratta, S. Kottapalli, and S. Vora, “A 45 nm 8-Core Enterprise Xeon
Processor,” IEEE Journal of Solid-State Circuits, vol. 45, no. 1, pp. 7–14,
Jan. 2010.

[86] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction
caches. Leakage power reduction using dynamic voltage scaling and cache
sub-bank prediction,” Proc. of 35th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-35), pp. 219–230, 2002.

Appendix A

Source Code for the Thermal

Simulation Tool

In this chapter, we list the source code for our SPICE simulation based thermal
simulation tool. Each thermal cell in the RC equivalent netlist is an instance of
a SPICE sub-circuit, which models the cuboid in Figure 4.2. The thermal cell
model and the thermal coefficients for different layers are read into SPICE using
the include statement in the netlist preamble. Both files are listed in Section
A.1.

The mapping between standard cells in the layout domain and thermal cells
in the thermal domain is performed by mapv3.pl, which reads the physical
location and power consumption of each standard cell and maps them to a two
dimensional array of thermal cells. The output is a list of power values in each
thermal cell, which is read by makespicev3.pl to generate the SPICE netlist.
These two scripts are listed in Section A.2 and Section A.3.

Some auxiliary scripts help with parsing the output of SPICE simulation and
generating a colored thermal map. These scripts are listed in Section A.4.

120 Source Code for the Thermal Simulation Tool

A.1 SPICE Subcircuit Model for Thermal Cells

SPICE sub-circuit model for the thermal cells.

.SUBCKT c e l l N E S W T B

. param r e s n=’L/(2∗ (kn∗(W∗H))) ’

. param r e s s=’L/(2∗ (ks ∗(W∗H))) ’

. param r e s e=’W/(2∗ (ke ∗(L∗H))) ’

. param res w=’W/(2∗ (kw∗(L∗H))) ’

. param r e s u=’H/(2∗ (ku∗(W∗L))) ’

. param r e s d=’H/(2∗ (kd∗(W∗L))) ’
∗ . param cap=’ ro∗cp ∗(W∗L∗H) ’
R N cen t r a l N r e s n
R S c en t r a l S r e s s
RW cen t r a l W res w
R E cen t r a l E r e s e
R U cen t r a l T r e s u
R D cen t r a l B r e s d
∗Ccentra l c en t r a l 0 cap
Ipower 0 c en t r a l DC=Ipw
.ENDS c e l l

Global parameter file contains thermal coefficients for different layers.

∗ thermal conduc t iv i ty s i l i c o n [k]=W/(C∗m)
. param k package=5
. param k sub s t r a t e=63
. param k dev i c ex=28
. param k dev i c ey=14
. param k dev i c e z=69
. param k wirexy =20.7
. param k wi r e z=4.26
. param k bumpxy=0.05
. param k bumpz=0.25
. param k s i d e=0
∗ dens i ty [ro]=kg/mˆ3
. param ro=2330
∗ s p e c i f i c heat [cp]=J/(Kg∗C)
. param cp=712.8
∗ c e l l d imens ions
. param L=20.0u
. param W=20.0u
∗ ambient temperature
. param Vam=0

Mapping from Standard Cells to Thermal Cells 121

A.2 Mapping from Standard Cells to Thermal

Cells

#!/ usr / b in / pe r l
use Data : : Dumper ;
use Sto rab l e ;
use Getopt : : Long ;

#######################################
#From c e l l p lacement and c e l l power f i l e s
#To thermal g r i d power
#######################################

my $counter =0;
my $ s c a l e f a c t o r =1;
my ($ce l l name , $ c e l l power , $ c e l l a r e a , $ c e l l w id th ,

$ c e l l h e i g h t , $ c e l l x , $ c e l l y) ;
my $ c e l l h e i g h t =2.6 ; #2.6 um
my %a l l c e l l s ;
my ($maxwidth , $maxheight) ;
$maxwidth=0;
$maxheight=0;
my ($minX , $minY) ;
$minX=100;
$minY=100;
my ($ o r i g i n o f f s e t X , $ o r i g i n o f f s e t Y) ;
$ o r i g i n o f f s e t X =0;
$ o r i g i n o f f s e t Y =0;
my $tota lpower ;
my @grid ;
my $xgr id d imens ion =20;
my $ygr id d imens ion =20;
my $xgr ids tep , $yg r id s t ep ;
my $verbose ;
my $powe r f i l e , $ p h y s i c a l f i l e ;
my $pr int power ;

GetOptions (”xmax=i ” => \ $xgr id d imens ion ,
”ymax=i ” => \ $ygr id d imens ion ,
” verbose” => \ $verbose ,
” s c a l e=f ” => \ $ s c a l e f a c t o r ,
” he ight=f ” => \ $ c e l l h e i g h t ,
”power=s ” => \ $powe r f i l e ,

122 Source Code for the Thermal Simulation Tool

” phy s i c a l=s ” => \ $ p h y s i c a l f i l e ,
” pr int power ” => \ $pr int power) ;

die (” P lease s p e c i f y phy s i c a l and power f i l e names .\n”)
unless (defined ($ p owe r f i l e) and defined ($ p h y s i c a l f i l e
)) ;

die (”Cannot open phy s i c a l in fo rmat ion f i l e ! ”) i f (! open
PHYSICAL, $ p h y s i c a l f i l e) ;

die (”Cannot open power in fo rmat ion f i l e ! ”) i f (! open POWER
, $ p owe r f i l e) ;

while(<PHYSICAL>){
i f (/ˆ(−−−−)+$/){

last ;
}

}
while(<PHYSICAL>){

unless(/ˆ(−−−−)+$ /){
i f (/ (\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s

+\((−?[0−9]+\ . [0−9]∗) , (−?[0−9]+\ . [0−9]∗) \) /) {
$ce l l name=$1 ;
$ c e l l a r e a=$4 ;
$ c e l l x=$6 ;
$ c e l l y=$7 ;
$ c e l l w i d th=$ c e l l a r e a / $ c e l l h e i g h t ;
$maxwidth=$6+$c e l l w i d th i f ($6+$ce l l w id th>=

$maxwidth) ;
$maxheight=$7+$ c e l l h e i g h t i f ($7+$ c e l l h e i g h t>=

$maxheight) ;
$minX=$ c e l l x i f ($ c e l l x<=$minX) ;
$minY=$ c e l l y i f ($ c e l l y<=$minY) ;

die (” Ce l l $ce l l name a l r eady e x i s t s ! ”) i f (exists
$ a l l c e l l s { $ce l l name }) ;

$ a l l c e l l s { $ce l l name}−>{ ’ x ’}=$ c e l l x ;
$ a l l c e l l s { $ce l l name}−>{ ’ y ’}=$ c e l l y ;
$ a l l c e l l s { $ce l l name}−>{ ’ width ’}=$ce l l w i d th ;
$ a l l c e l l s { $ce l l name}−>{ ’ he ight ’}=$ c e l l h e i g h t ;

$counter++;
}

} else{
last ;

Mapping from Standard Cells to Thermal Cells 123

}
}

print ”Total : $counter \nWidth : $maxwidth\ tHeight :
$maxheight\nmin X: $minX\nmin Y: $minY\n” i f defined
$verbose ;

$ o r i g i n o f f s e t X=$minX ;
$maxwidth−=$ o r i g i n o f f s e t X ;

foreach $cn (sort keys %a l l c e l l s) {
$ a l l c e l l s {$cn}−>{ ’ x ’}−=$ o r i g i n o f f s e t X ;

}

$ o r i g i n o f f s e t Y=$minY ;
$maxheight−=$ o r i g i n o f f s e t Y ;

foreach $cn (sort keys %a l l c e l l s) {
$ a l l c e l l s {$cn}−>{ ’ y ’}−=$ o r i g i n o f f s e t Y ;

}

print ”Total : $counter \nWidth : $maxwidth\ tHeight :
$maxheight\n” i f defined $verbose ;

$counter =0;

while(<POWER>){
i f (/ˆ(−−−−)+$/){

last ;
}

}
while(<POWER>){

i f (/ Tota l s /){
last ;

} e l s i f (/ (\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+\(\S+\)\s+(\S+)
/){

$ce l l name=$1 ;
$dyn power = $4 ;
$ leak power = $6 ;
$ c e l l p owe r=($dyn power∗ $ s c a l e f a c t o r+$ leak power) ∗1e
−3; # sca l i n g and mW −> W

i f (exists $ a l l c e l l s { $ce l l name }){
$ a l l c e l l s { $ce l l name}−>{ ’ power ’}=$ce l l p owe r ;

124 Source Code for the Thermal Simulation Tool

$tota lpower+=$c e l l p owe r ;
$counter++;

} else{
die (” Ce l l $ce l l name can not be r e cogn i z ed !\n”) ;

}
}

}

my $pd=$tota lpower /($maxwidth∗$maxheight∗1e−6) ;
print ”Total : $counter \nPower : $ tota lpower\nPower Dens ity

: $pd\n” i f defined $verbose ;

$xg r id s t ep=$maxwidth/ $xgr id d imens ion ;
$yg r id s t ep=$maxheight/ $ygr id d imens ion ;

#i n i t i a l i z e g r i d c e l l s
for (my $ i =0; $ i<$xgr id d imens ion ; $ i++){

for (my $ j=0; $j<$ygr id d imens ion ; $ j++){
$g r id [$ i] [$ j]−>{ ’name ’}=”Unit$ { i } $ { j }” ;
$g r id [$ i] [$ j]−>{ ’ x ’}=$ i ∗ $xg r id s t ep ;
$g r id [$ i] [$ j]−>{ ’ y ’}=$j ∗ $yg r id s t ep ;
$g r id [$ i] [$ j]−>{ ’ power ’ }=0;

}
}

#output g r i d c e l l dimensions
print ” xg r id s t ep : $xg r id s t ep \ t y g r i d s t ep : $yg r id s t ep \n” i f

defined $verbose ;

#put c e l l s in t o g r i d
foreach $cn (sort keys %a l l c e l l s) {

my $x=$ a l l c e l l s {$cn}−>{ ’ x ’ } ;
my $y=$ a l l c e l l s {$cn}−>{ ’ y ’ } ;
my $p=$ a l l c e l l s {$cn}−>{ ’ power ’ } ;
my $xindex=sprintf (”%d” , $x/ $xg r id s t ep) ;
my $yindex=sprintf (”%d” , $y/ $yg r id s t ep) ;
print ”$x\ t$y\ t$p\n” i f defined $ p r i n t c e l l p ow e r ;
$g r id [$xindex] [$yindex]−>{ ’ power ’}+=$p ;

}

my @b ig l i s t ;
for (my $ j =0; $j<$ygr id d imens ion ; $ j++){

for (my $ i =0; $ i<$xgr id d imens ion ; $ i++){
push (@b ig l i s t , $ g r id [$ i] [$ j]−>{ ’ power ’ }) ;

Generating SPICE Netlist for the RC Equivalent Circuit 125

print $g r id [$ i] [$ j]−>{ ’ power ’ } . ” \n” ;
}

}

#pr in t Dumper(\% a l l c e l l s) ;
#pr in t Dumper(\@grid) ;

A.3 Generating SPICE Netlist for the RC Equiv-

alent Circuit

#!/ usr / b in / pe r l
use Getopt : : Long ;
use Sto rab l e ;

my $ t i n c r 1=”1u” ;
my $ts top1=”1u” ;
my $xnum o f c e l l s =20;
my $ynum o f c e l l s =20;
my $num of layer s =9;
my $dev i c e l a y e r =5;
my $p r e f i x=” Xce l l ” ;
my $ p owe r f i l e ;
my @layers ;
my %conduc t iv i ty=(

”package” => {
”x” => ”k package” ,
” t ” => ”200u” ,

} ,
” s ub s t r a t e” => {

”x” => ” k sub s t r a t e ” ,
” t ” => ” 12 .5u” ,

} ,
” dev i c e ” => {

”x” => ” k dev i c ex ” ,
”y” => ” k dev i c ey ” ,
”z” => ” k dev i c e z ” ,
” t ” => ”2u” ,

} ,
”wire ” => {

”x” => ” k wirexy ” ,
”z” => ” k wi r e z ” ,
” t ” => ” 3 .1 u” ,

126 Source Code for the Thermal Simulation Tool

} ,
”bump” => {

”x” => ”k bumpxy” ,
”z” => ”k bumpz” ,
” t ” => ”200u” ,

} ,
) ;

my %layermap = (
” laye r1 ” => ”package” ,
” l aye r 2 ” => ” sub s t r a t e” ,
” l aye r 3 ” => ” sub s t r a t e” ,
” l aye r 4 ” => ” sub s t r a t e” ,
” l aye r 5 ” => ” sub s t r a t e” ,
” l aye r 6 ” => ” dev i c e ” ,
” l aye r 7 ” => ”wire ” ,
” l aye r 8 ” => ”wire ” ,
” l aye r 9 ” => ”bump” ,

) ;

GetOptions (”xdimension=i ” => \ $xnum o f c e l l s ,
” ydimension=i ” => \ $ynum o f c e l l s ,
” l a y e r s=i ” => \ $num of layer s ,
” t i n c r=s” => \ $ t inc r 1 ,
” t s top=s” => \ $tstop1 ,
”power=s” => \ $ p owe r f i l e) ;

c r e a t e c e l l s () ;
read power ($ p owe r f i l e) ;

print ”∗Ce l l Based Thermal Model\n” ;
print ” . inc lude thermal . s p i \n” ;
print ” . inc lude global param \n” ;

print ”\n∗∗∗∗∗∗∗∗RC MODEL∗∗∗∗∗∗∗∗\n” ;
p r i n t c e l l s ($ num o f c e l l s) ;
print ”Vambient 1 0 DC Vam\n” ;
print ”\n∗∗∗∗∗∗∗∗SIMULATION∗∗∗∗∗∗∗∗\n” ;
#pr in t ” .OP VOLTAGE\n”;
print ” .TRAN $ t i n c r 1 $ts top1 \n” ;
print ”\n∗∗∗∗∗∗∗∗MEASURE∗∗∗∗∗∗∗∗\n” ;
print ” .OPTION POST PROBE\n” ;
p r in t mea sur e s () ;
p r i n t p r ob e s () ;

Generating SPICE Netlist for the RC Equivalent Circuit 127

print ”\n .END\n” ;

sub c r e a t e c e l l s {
my $x length=$xnum o f c e l l s ;
my $y length=$ynum o f c e l l s ;

for (my $ i =1; $ i<=$xlength ; $ i++){
for (my $ j =1; $j<=$ylength ; $ j++){

for (my $k=1;$k<=$num of layer s ; $k++){
my $ce l l name=”XLayer${k} $ { i } $ { j }” ;
$ l a y e r s [$k] [$ i] [$ j]−>{ ’name ’}=$ce l l name ;
$ l a y e r s [$k] [$ i] [$ j]−>{ ’ power ’ }=0;
$ l a y e r s [$k] [$ i] [$ j]−>{ ’ initTemp ’ }=0;

}
}

}
}

sub read power{
my ($ fn)=@ ;
my $x length=$xnum o f c e l l s ;
my $y length=$ynum o f c e l l s ;
my $counter =0;

die (”Cannot open input power f i l e !\n”) i f (! open POWER,
$fn) ;

while(<POWER>){
chomp ;
my $ i=1+$counter%$x length ;
my $ j=1+$counter / $x length ;
dev ice l a y e r i s l a y e r 6
$ l a y e r s [$ d ev i c e l a y e r] [$ i] [$ j]−>{ ’ power ’}=$;
$ l a y e r s [$ d ev i c e l a y e r] [$ i] [$ j]−>{ ’ initTemp ’ }=0;
$counter++;

}
die (”Number o f c e l l s $xnum o f c e l l s X $ynum o f c e l l s

and number o f powers $counter do not match !\n”)
unless ($counter==$xnum o f c e l l s ∗ $ynum o f c e l l s) ;

}

sub p r i n t c e l l s {
my $ambient=1;
my $x length=$xnum o f c e l l s ;

128 Source Code for the Thermal Simulation Tool

my $y length=$ynum o f c e l l s ;

for (my $k=1;$k<=$num of layer s ; $k++){
my $ l i n e ;
my $mate r i a l=$layermap{” laye r$ {k}” } ;
my $ th i ckne s s=$conduc t iv i ty { $mate r i a l}−>{” t ” } ;

for (my $ i =1; $ i<=$xlength ; $ i++){
for (my $ j =1; $j<=$ylength ; $ j++){
my $north , $east , $south , $west ;
my $curval , $kn , $ke , $ks , $kw , $ku , $kd ;
my $top , $bottom ;
my $btmlayer=$k−1;

$top=” tbLayer${k} $ { i } $ j ” ;
$bottom=”tbLayer${btmlayer } $ { i } $ j ” ;

i f (defined $conduc t iv i ty { $mate r i a l}−>{”z” }){
$ku=$conduc t iv i ty { $mate r i a l}−>{”z” } ;
$kd=$conduc t iv i ty { $mate r i a l}−>{”z” } ;

} else{
$ku=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$kd=$conduc t iv i ty { $mate r i a l}−>{”x” } ;

}

i f ($k==1){
$bottom=$ambient ;

}

i f ($k==$num of layer s) {
$top=$ambient ;

}

$curva l=$ l a y e r s [$k] [$ i] [$ j]−>{ ’ power ’ } ;
$tempval=$ l a y e r s [$k] [$ i] [$ j]−>{ ’ initTemp ’ } ;

#determine connect ions
i f ($j>1 and $j<$y length) {
my $w=$j −1;
$west=”ewLayer${k} $ { i } $w” ;
$ ea s t=”ewLayer${k} $ { i } $ j ” ;
$kw=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ke=$conduc t iv i ty { $mate r i a l}−>{”x” } ;

} e l s i f ($ j==1){

Generating SPICE Netlist for the RC Equivalent Circuit 129

$west=$ambient ;
$ ea s t=”ewLayer${k} $ { i } $ j ” ;
$ke=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$kw=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$kw=” k s i d e ” i f ($k !=1) ; # package l a y e r i s

t r e a t e d d i f f e r e n t l y
} e l s i f ($ j==$ylength) {

my $w=$j −1;
$west=”ewLayer${k} $ { i } $w” ;
$ ea s t=$ambient ;
$kw=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ke=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ke=” k s i d e ” i f ($k !=1) ;

}

i f ($ i>1 and $i<$x length) {
my $n=$i −1;
$north=”nsLayer${k} $ {n} $ j ” ;
$south=”nsLayer${k} $ { i } $ j ” ;
i f (defined $conduc t iv i ty { $mate r i a l}−>{”y” }) {

$kn=$conduc t iv i ty { $mate r i a l}−>{”y” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”y” } ;

} else{
$kn=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”x” } ;

}
} e l s i f ($ i==1){

$north=$ambient ;
$south=” ns l aye r$ {k} $ { i } $ j ” ;
i f (defined $conduc t iv i ty { $mate r i a l}−>{”y” }) {

$kn=$conduc t iv i ty { $mate r i a l}−>{”y” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”y” } ;

} else{
$kn=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”x” } ;

}
$kn=” k s i d e ” i f ($k !=1) ;

} e l s i f ($ i==$xlength) {
my $n=$i −1;
$north=”nsLayer${k} $ {n} $ j ” ;
$south=$ambient ;
i f (defined $conduc t iv i ty { $mate r i a l}−>{”y” }) {

$kn=$conduc t iv i ty { $mate r i a l}−>{”y” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”y” } ;

130 Source Code for the Thermal Simulation Tool

} else{
$kn=$conduc t iv i ty { $mate r i a l}−>{”x” } ;
$ks=$conduc t iv i ty { $mate r i a l}−>{”x” } ;

}
$ks=” k s i d e ” i f ($k !=1) ;

}
$ l i n e .=” $ l a y e r s [$k] [$ i] [$ j]−>{ ’name ’} $north

$ea s t $south $west $top $bottom c e l l kn=$kn ke
=$ke ks=$ks kw=$kw ku=$ku kd=$kd H=$th i ckne s s
InitTemp=$tempval Ipw=$curva l \n” ;

}
}
print ” $ l i n e \n” ;

}
}

sub pr in t mea sur e s{
print ”\n” ;
my $x length=$xnum o f c e l l s ;
my $y length=$ynum o f c e l l s ;
my $counter =1;

for (my $ j=1; $j<=$ylength ; $ j++){
for (my $ i =1; $ i<=$xlength ; $ i++){

print ” .MEASURE Vcentra l$counter MAX V($ l a y e r s [
$ d ev i c e l a y e r] [$ i] [$ j]−>{ ’name ’} . c e n t r a l) \n” ;

$counter++;
}

}
}

sub p r i n t p r ob e s {
print ”\n” ;
my $x length=$xnum o f c e l l s ;
my $y length=$ynum o f c e l l s ;

for (my $ i =1; $ i<=$xlength ; $ i++){
for (my $ j =1; $j<=$ylength ; $ j++){

print ” .PROBE V($ l a y e r s [$ d ev i c e l a y e r] [$ i] [$ j]−>{ ’
name ’} . c e n t r a l) \n” ;

}
}

}

Auxiliary Scripts 131

A.4 Auxiliary Scripts to Generate a Thermal

Map from SPICE Simulation Results

readtemp.pl reads the output of SPICE simulation and extracts the tempera-
ture values.

#!/ usr / b in / pe r l
use Data : : Dumper ;
use Getopt : : Long ;

my $ s t a r t f l a g =0;
my $ f l a g =0;
my @temperatures ;
my $ so r t ;

GetOptions (” s o r t ” => \ $ so r t) ;

while(<>){
my $ l i n e ;

chomp ;
$ l i n e=$;
i f ($ s t a r t f l a g==1){

$ f l a g =1;
}
i f (/ temper \s+a l t e r /){

$ s t a r t f l a g =1;
}
i f (/ˆ\ s+25.0000\s+1.0000\s+$/){

$ f l a g =0;
}
i f ($ f l a g==1){
my @values=sp l i t /\s+/, $ l i n e ;
push @temperatures , @values [1 . . 4] ;

}
}

my @sorted=sort {$b <=> $a} @temperatures ;
i f (defined $ so r t) {

print ”@sorted\n” ;
} else{

print ”@temperatures\n” ;
}

132 Source Code for the Thermal Simulation Tool

#pr in t Dumper(@temperatures) ;

map3d.pl takes the temperatures as input and outputs in tuple (x, y, value).

#!/ usr / b in / pe r l
use Getopt : : Long ;

my $xmax=40 , $ymax=40;
my $h ;
my $counter =0;

GetOptions (”xmax=i ” => \$xmax ,
”ymax=i ” => \$ymax ,
” hotspot” => \$h) ;

while(<>){
chomp ;
my $y=sprintf (”%d” , $counter /$xmax) + 0 . 5 ;
my $x=($counter % $xmax) + 0 . 5 ;
my $va l=$;
$va l=$val−318 i f defined $h ;
print ”$x\ t$y\ t$va l \n” ;
$counter++;

}

thermalplot.sh is a wrapper for gnuplot scripts which read the data file con-
taining tuples (x, y, value) and plot them in a thermal map.

#!/ bin / sh

gnuplot −p e r s i s t << EOF
set pm3d imp l i c i t
set s i z e r a t i o 1 . 0
set view map
#se t cbrange [2 0 : 3 5]
set pa l e t t e rgbformulae 22 ,13 ,−31
set dgr id3d $1 , $2
set t i c s l e v e l 0
set yrange [0 : $2]
set term po s t s c r i p t eps enhanced co l o r
set output ”$4 . eps ”
sp l o t ”$3 . dat ” w pm3d t ””
EOF

Appendix B

Synopsys Commands in the

ERI and HSD Methods

B.1 Floorplanning in Synopsys’ IC Compiler

In the benchmark circuits for the Empty Row Insertion and HotSpot Diffusion
methods, we place multipliers in specific regions to force the location of hotspots.
To achieve this, plan groups are used to restrict the placement of cells to a spe-
cific region of the core area. Following is an example, which places module MULT2
in a rectangular region specified by the lower left and upper right coordinates.

create_plan_groups -rectangle {{$x0 $y0} {$x1 $y1}} {MULT2}

To remove a defined plan groups, simply use the remove_plan_groups com-
mand.

134 Synopsys Commands in the ERI and HSD Methods

B.2 Commands for Information Retrieval and

Cell Movement

Various information regarding cells, nets, timing paths can be retrieved with the
get_attribute command. For example, the following command can be used
to get the maximum delay, which returns the delay in nanoseconds in a scalar
value that can be directly used by other scripts:

get_attribute [get_timing_paths -delay_type max] arrival

To get the maximum delay on paths through a certain cell:

get_attribute [get_timing_paths -through $cell_name] arrival

To get the timing slack of a specified path:

set mypath [get_timing_paths -through $cell_name]

get_attribute $mypath slack

To get the coordinates of a certain cell, one can use:

get_location $cell_name

To set the location of a given cell to specified coordinates:

set_attribute [get_cells -all $cell_name] origin {$x0 $y0}

To create placement bounds during the placement stage:

create_bounds -coordinate [list $x0 $y0 $x1 $y1] -exclusive $cells

The above command creates a rectangular bound, which only allows specified
cells to be placed inside. Once the bound is created, the layout needs to be
legalized with the command legalize_placement.

IC Compiler does not automatically recompute the changes in wire length and
wire capacitance when the layout is changed by the user. Therefore, in order to
obtain the updated timing and power reports, first make IC Compiler extract
the resistance and capacitance associated with wires:

extract_rc

Scripts for the Empty Row Insertion Method 135

B.3 Scripts for the Empty Row InsertionMethod

The ERI method is implemented in perl scripts utilizing the existing mapv3.pl

listed in Chapter A. As a result, in the following we only list the code snippet
that is different from mapv3.pl. The script parses the physical file and computes
new coordinates for the cells in the hotspot region. Tcl commands to set new
locations for these cells are output in a text file, which can be subsequently read
into IC Compiler.

while(<PHYSICAL>){
i f (/ˆ(−−−−)+$/){

last ;
}

}
while(<PHYSICAL>){

unless(/ˆ(−−−−)+$/) {
i f (/ (\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s+(\S+)\s

+\((−?[0−9]+\ . [0−9]∗) , (−?[0−9]+\ . [0−9]∗) \) /){
my $ce l l name=$1 ;
my $ c e l l a r e a=$4 ;
my $ c e l l o r i e n t=$5 ; # 0 , 0−mirror , 180 , 180−mirror
my $ c e l l x=$6 ;
my $ c e l l y=$7 ;
my $ c e l l o r i g i n x=$ c e l l x ;
my $ c e l l o r i g i n y=$ c e l l y ;
my $ c e l l w i d th=$ c e l l a r e a / $ c e l l h e i g h t ;

i f ($ c e l l o r i e n t eq ”0−mirror”) {
$ c e l l o r i g i n x=$ c e l l x+$ c e l l w i d th ;

} e l s i f ($ c e l l o r i e n t eq ”180”) {
$ c e l l o r i g i n x=$ c e l l x+$ c e l l w i d th ;
$ c e l l o r i g i n y=$ c e l l y+$ c e l l h e i g h t ;

} e l s i f ($ c e l l o r i e n t eq ”180−mirror”) {
$ c e l l o r i g i n y=$ c e l l y+$ c e l l h e i g h t ;

}

$maxwidth=$6+$c e l l w i d th i f ($6+$ce l l w id th>=
$maxwidth) ;

$maxheight=$7+$ c e l l h e i g h t i f ($7+$ c e l l h e i g h t>=
$maxheight) ;

$minX=$ c e l l x i f ($ c e l l x<=$minX) ;
$minY=$ c e l l y i f ($ c e l l y<=$minY) ;

136 Synopsys Commands in the ERI and HSD Methods

die (” Ce l l $ce l l name a l r eady e x i s t s ! ”) i f (exists
$ a l l c e l l s { $ce l l name }) ;

$ a l l c e l l s { $ce l l name}−>{ ’ x ’}=$ c e l l x ;
$ a l l c e l l s { $ce l l name}−>{ ’ y ’}=$ c e l l y ;
$ a l l c e l l s { $ce l l name}−>{ ’ o r i g i nx ’}=$ c e l l o r i g i n x ;
$ a l l c e l l s { $ce l l name}−>{ ’ o r i g i ny ’}=$ c e l l o r i g i n y ;
$ a l l c e l l s { $ce l l name}−>{ ’ o r i e n t ’}=$ c e l l o r i e n t ;
$ a l l c e l l s { $ce l l name}−>{ ’ width ’}=$ce l l w i d th ;
$ a l l c e l l s { $ce l l name}−>{ ’ he ight ’}=$ c e l l h e i g h t ;

$a l l r ows { $ c e l l y}−>{$ce l l name}=$ a l l c e l l s {
$ce l l name } ;

$counter++;
}

} else{
last ;

}
}

my $row counter , $y increment ;
foreach my $row (sort { $a <=> $b } keys %a l l r ows) {

i f ($row>=$s ta r t y and $row<=$endy) {
$row counter++;
$y increment=$row counter ∗ 2 . 6 ;

} e l s i f ($row<$ s t a r t y) {
$y increment =0;

}

foreach my $ce l l name (sort { $a l l r ows {$row}−>{$b}−>{ ’ x
’ } <=> $a l l r ows {$row}−>{$a}−>{ ’ x ’ } } keys %{$a l l r ows
{$row}}){

i f ($y increment !=0){
my $icc command ;
my $old y , $new y , $ o l d o r i g i ny , $new or ig iny ;

$o ld y=$ a l l c e l l s { $ce l l name}−>{ ’ y ’ } ;
$ o l d o r i g i n y=$ a l l c e l l s { $ce l l name}−>{ ’ o r i g i ny ’ } ;
$new y=$o ld y+$y increment ;
$new or ig iny=$ o l d o r i g i n y+$y increment ;

$ a l l c e l l s { $ce l l name}−>{ ’ y ’}=$new y ;
$a l l r ows {$row}−>{$ce l l name}−>{ ’ y ’}=$new y ;

Scripts for the HotSpot Diffusion Method 137

$ a l l c e l l s { $ce l l name}−>{ ’ o r i g i ny ’}=$new or ig iny ;
$a l l r ows {$row}−>{$ce l l name}−>{ ’ o r i g i ny ’}=

$new or ig iny ;

$icc command=” s e t a t t r i b u t e [g e t c e l l s −a l l ${
ce l l name }] o r i g i n { $ a l l c e l l s { $ce l l name}−>{’
o r i g i nx ’} $ a l l c e l l s { $ce l l name}−>{’ o r i g i ny ’}}” ;

print ”$icc command\n” i f defined $command ;
}

}
}

$maxheight+=$y increment ;
print ”Total : $counter \nWidth : $maxwidth\ tHeight :

$maxheight\n” i f defined $verbose ;

B.4 Scripts for the HotSpot Diffusion Method

proc inRegion { c e l l l o c a t i o n Region } {
set c e l l x [lindex $ c e l l l o c a t i o n 0]
set c e l l y [lindex $ c e l l l o c a t i o n 1]
set Rx0 [lindex $Region 0]
set Ry0 [lindex $Region 1]
set Rx1 [lindex $Region 2]
set Ry1 [lindex $Region 3]

i f { $ c e l l x >= $Rx0 && $ c e l l y >= $Ry0 && $ c e l l x < $Rx1
&& $ c e l l y < $Ry1} {

return 1
} else {

return 0
}

}

f o r e a c h i n c o l l e c t i o n mycel l [g e t c e l l s] {
set ce l l name [g e t a t t r i b u t e $mycel l fu l l name]
set c e l l l o c a t i o n [g e t l o c a t i o n $mycel l]
set c e l l x [lindex $ c e l l l o c a t i o n 0]
set c e l l y [lindex $ c e l l l o c a t i o n 1]

i f { [inRegion $ c e l l l o c a t i o n $HS]} {

138 Synopsys Commands in the ERI and HSD Methods

i f { [info exists a l l r ows ($ c e l l y)]} {
set l [l length $a l l r ows ($ c e l l y)]
set i 0
for {} { $i<$ l } { incr i } {

i f { $ c e l l x < $xarray ([lindex $a l l r ows ($ c e l l y) $ i
]) } {

break ;
}

}
set a l l r ows ($ c e l l y) [l insert $a l l r ows ($ c e l l y) $ i

$ce l l name]
} else {

set a l l r ows ($ c e l l y) $ce l l name
}
set xarray ($ce l l name) [lindex $ c e l l l o c a t i o n 0]

}
}

set rowheight 2 . 6
set max 14
set rows [l sort −real −decreasing [array names a l l r ows]]
set extra 0
set i 0
for {} { $i<$max} { incr i } {

set y1 [lindex $rows $ i]
set y1 1 [expr {$y1 + $rowheight∗ ($max−$i+$extra) }]
foreach mycel l $ a l l r ows ($y1) {

s e t c e l l l o c a t i o n $mycel l −coordinates [l i s t $xarray (
$mycel l) $y1 1]

}
}
set rows [l sort −real −increasing [array names a l l r ows]]
set i 0
for {} { $i<$max} { incr i } {

set y1 [lindex $rows $ i]
set y1 1 [expr {$y1 − $rowheight∗ ($max−$i) }]
foreach mycel l $ a l l r ows ($y1) {

s e t c e l l l o c a t i o n $mycel l −coordinates [l i s t $xarray (
$mycel l) $y1 1]

}
}

remove bounds −all
l e g a l i z e p l a c emen t

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	2 Power Dissipation and Heat Transfer in CMOS VLSI circuits
	2.1 Power Dissipation in CMOS circuits
	2.2 Design for Low Power
	2.3 Heat Transfer and Distribution
	2.4 Technology Scaling and Thermal Issues
	2.5 Thermal Management Techniques

	3 Floating Point Units
	3.1 Floating-Point Representation
	3.2 Floating-Point Addition
	3.3 Floating-Point Multiplication
	3.4 Floating-Point Fused Multiply-Add
	3.5 Floating-Point Division

	4 Thermal Modeling
	4.1 A SPICE Simulation Based Thermal Modeling Method
	4.2 Wire Delay Estimation under Substrate Temperature Variation
	4.3 Summary

	5 Power Density Reduction in Hotspots
	5.1 Motivation
	5.2 Design Methodology
	5.3 Experiment Results
	5.4 Summary

	6 Energy and Thermal Aware Design in FPU
	6.1 Energy Metrics
	6.2 Implementation of the FP-units
	6.3 Energy Consumption in FP-operations
	6.4 Thermal Analysis
	6.5 Leakage Optimization in Caches
	6.6 Summary

	7 Perspective
	7.1 Thermal Aware Planning and Routing for Global Wires
	7.2 Delay Overhead Optimization in ERI and HSD Methods
	7.3 NBTI Analysis with Detailed Spatial Thermal Distribution

	8 Conclusion
	A Source Code for the Thermal Simulation Tool
	A.1 SPICE Subcircuit Model for Thermal Cells
	A.2 Mapping from Standard Cells to Thermal Cells
	A.3 Generating SPICE Netlist for the RC Equivalent Circuit
	A.4 Auxiliary Scripts

	B Synopsys Commands in the ERI and HSD Methods
	B.1 Floorplanning in Synopsys' IC Compiler
	B.2 Commands for Information Retrieval and Cell Movement
	B.3 Scripts for the Empty Row Insertion Method
	B.4 Scripts for the HotSpot Diffusion Method

