
Adaptive Task Migration Policies for Thermal control in
MPSoCs

David Cuesta1, José L. Ayala1, José I. Hidalgo1, David Atienza2, Andrea Acquaviva3 and Enrico Macii3
1Complutense University, Madrid, Spain

{dcuestag@pdi, jayala@fdi, hidalgo@fis}.ucm.es
2Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

david.atienza@epfl.ch
3Politecnico di Torino, Turin, Italy

{andrea.acquaviva, enrico.macii}@polito.it

Abstract—In deep submicron circuits, high temperatures have created
critical issues in reliability, timing, performance, coolings costs and
leakage power. Task migration techniques have been proposed to manage
efficiently the thermal distribution in multi-processor systems but at the
cost of important performance penalties. While traditional techniques
have focused on reducing the average temperature of the chip, they
have not considered the effect that temperature gradients have in system
reliability. In this work, we explore the benefits of thermal-aware task
migration techniques for embedded multi-processor systems. We propose
several policies that are able to reduce the average temperature of the chip
and the thermal gradients with a negligible performance overhead. With
our techniques, hot spots and temperature gradients are decreased up to
30% with respect to state-of-the-art thermal management approaches.

I. INTRODUCTION

Recent works have demonstrated that large temperature variations
cause low reliability and they also impact leakage current. Tempera-
tures over a threshold in localized areas of the chip (hot spots) can
produce timing delay variations, transient reduction in overall system
performance or permanent damages in the devices [1].

The reliable and efficient functioning of MPSoCs can be satisfied
by guaranteeing the operation below a temperature threshold and
power budget. It is in this control problem where thermal man-
agement and balancing policies come into play. Task and thread
migration policies can be proposed to manage the thermal profile
in embedded multi-processor systems [2]. While traditional dynamic
thermal management (DTM) techniques have already been applied,
they have not considered the spatial and temporal gradients that
determine the mean-time-to-failure of the devices.

Thermal simulation of MPSoCs, where the exploration of the
interaction between the hardware architecture and the software layer
that performs the task migration is crucial, can take an unaffordable
time. Thus, in order to explore the HW/SW interaction, FPGA-based
thermal emulators have been developed [3], [4]. The experimental
work carried out in this work is also developed for an FPGA-based
MPSoC emulation platform [5] that speeds up the simulation time
and provides high flexibility in the thermal analysis.

Thus, this paper focuses on the design an implementation of three
different task migration policies that are able to minimize the average
temperature in MPSoCs as well as the spatial and temporal variations
of the thermal profile. Our results show that they reduce the impact
on the system performance to a minimum as compared to previous
published approaches [5], [2], [6]. The specific contributions of our
work are the following:

• three novel task migration policies based on adaptable weighted
functions of three different factors: average thermal deviation

This work has been partially funded by the Spanish Ministry under contract
TIN2008-00508

between processors, maximum temperature of the overall chip
and thermal gradient between cores.

• the proposed policies minimize the peak temperature and ther-
mal gradients by considering a floorplan-aware task migration
approach, at the same time as the time history of thermal
gradients and thermal deviation of the different processors.

• the reliability of the system is improved by a combined mini-
mization of time-based thermal unbalance (thermal cycles) and
space-based thermal variations (hot spots).

• the experiments has been developed on a realistic MPSoC
emulation platform [5], and the policies have been embedded
in a multi-processor OS to assess its real-life task migration
overheads in performance and temperature profile.

II. RELATED WORK

Load balancing techniques have been studied for general purpose
parallel computers in the last decade [7], [8]. However, embedded
systems and MPSoCs impose constraints, as the low-cost packaging
and the portability, that make necessary to develop new techniques.

Barcelos et al. [9] proposed a hybrid memory organization ap-
proach which supports the task migration algorithms with low-energy
consumption constraints. In this approach, the data to be migrated can
be provided either by the source node or from the shared memory.

In the area of temperature optimization, several approaches have
been proposed. Donald et al. [10] introduced several thermal manage-
ment policies such as dynamic voltage and frequency scaling (DVFS)
and thread migration based on current temperature, but their work do
not consider the thermal history of the cores. This information gives
a meaningful information about the future behavior of the system and
can be exploited to improve the results of the migration.

In [11], Yang et al. showed an execution ordering approach that
swaps hot and cool threads in cores to control the temperature. This
can only be applied once the application has been profiled.

Finally, in [5] it is proposed a heuristic optimization for thermal
balancing in MPSoCs that adapts the current workload of the cores
using DVFS and task migration, according to the standard deviation
of the hottest and coldest cores at each moment in time during the
execution. Although it shows clear benefits for thermal balancing
with respect to previous thermal runaway approaches [10], it can
still produce significant thermal unbalance in non-stable working
conditions. (i.e., periods of small tasks being executed in the MPSoC
or tasks being stop due to I/O processes) as we show in Section V),
because it does not take into account the recent thermal history of
the system but just the instant thermal unbalance.

Our work outperforms previous approaches with the provision
of three task migration policies that optimize the thermal profile
of MPSoCs by balancing dynamically the weight of the on-chip

2010 IEEE Annual Symposium on VLSI

978-0-7695-4076-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ISVLSI.2010.39

110

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147959412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Schematic view of the emulation platform.

thermal gradients, maximum temperature and effect of underlying
floorplan on heat dissipation properties of each core. Moreover, the
proposed policies are able to minimize the risk of system failure
by the minimization of temperature-driven reliability factors, as it
considers thermal unbalance in time and space, as they keep a history
of the thermal profile of the target MPSoC, which minimizes the
number of task migrations.

III. EMULATION PLATFORM

The thermal analysis conducted in this work requires an efficient
mechanism to evaluate the performance and thermal statistics of the
multi-processor system. The accuracy and the fast emulation of the
system are the main constraints for the platform. Also, it is needed
an MPOS that implements and manages the task migration policies.

In this work, we have used a complete FPGA-based estimation
framework, implemented in a Virtex II pro VP30 and based on [4].
Figure 1 shows an schematic view of this emulation platform detailing
a single core system. Using this framework we can retrieve the mem-
ory and processor statistics required by the thermal model and the
migration policies (power consumption, memory misses and memory
hits) by mean of hardware sniffers. This platform also includes a
complete MPOS and task migration support library between the three
cores of the emulated MPSoC (see Figure 5).

In this emulation platform, the collected statistical data are sent to
the host PC through the serial port. In the multiprocessor system, a
dedicated PowerPc is the one in charge of processing and sending
the statistics to the host PC. The host translates the received infor-
mation into temperature values by means of a thermal library. This
thermal library splits the floorplan of the emulated system in unitary
cells, which are modeled as simple RthermalCthermal circuits. The
resolution of the linear equations created by an RC grid provides the
evolution in time of the temperature of the system [12].

The emulated architecture is an homogeneous multi-processor sys-
tem with three 32-bit RISC cores and the PowerPC. These processor
do not include a memory management unit (MMU) and the access
to the cacheable private memories and to a non-cacheable shared
memory is managed by the OS.

Each core runs a uClinux OS. This is based on a Linux 2.4 kernel
for microprocessors without an MMU, but upgraded to support the
interprocessor communication found in our target system. The OS
implements the task migration policies based on task-replication.
Thus, there is a replica of each task in every local OS, but only

Fig. 2. Migration example between three cores.

one processor at a time can execute it. This method requires a
slightly larger private memory to hold the tasks and task intermediate
states/data before migrations, but it speeds up the task migration
phase because the memory allocation required by the replication
of tasks is avoided. Then, the task migration takes place only at
predefined checkpoints chosen by the programmer between phases of
the streaming execution (e.g., between processing different frames).

Several modifications have been done in the OS kernel to support
the floorplan-aware policy. First, the identifier and weight of the cores
(used by the policies to select the candidate in the task migration, as
it will be presented later) are allocated in the shared memory. Second,
the OS can then access this information to apply the task migration
algorithm and achieve the thermal optimization.

Finally, the emulation system has also been upgraded with a
floorplan-temperature visualization tool. This tool communicates with
the thermal library and, in real-time, provides a colored floorplan
thermal map of the emulated MPSoC (see Figure 6). The developed
tool enables a rapid inspection of the hot spots, the evolution in time
of the temperature and the spatial and temporal heat spread.

IV. ADAPTIVE AND FLOORPLAN AWARE POLICIES FOR

THERMAL BALANCING

As previously mentioned, the task migration policies that we
present in this paper are devoted to reduce the thermal gradients and
mean temperature in a multi-processor system, because both facts
affect negatively the reliability and the leakage of the chip [1]. This
assumption is even more critical for embedded systems, where the
power and temperature constraints must be satisfied in parallel with
requirements of high-performance execution.

The FPGA-based multi-processor platform used in our experiments
has been extended with a DVFS policy as an effective way to manage
the voltage and frequency settings of the cores depending on the
working load. The DVFS technique implemented follows the vertigo
policy [13]. To apply the vertigo policy a previous characterization
of the tasks is needed attending to their full-speed-equivalent (FSE),
defined as the load that a task imposes when it is run at full speed
in a core. Therefore, if one core is running a task that loads it, e.g.
45%, the core can adapt its frequency to 45% of its maximum.

Task migration policies are proposed to balance the load in the
processors and, consequently, obtain a homogeneous distribution of
temperature. Figure 2 presents an example. Three cores are running
four tasks with different workload. This workload in the processors is
translated into temperature due to the relation with the electric activity
and dynamic energy; hence, this situation will create a thermal
gradient due to the unbalanced distribution of the load, being core 1
the hottest one. Thermal balance will be achieved migrating one task
from this core to one of the colder processors.

If the temperature of the chip varies slower than the rate of task
migration 1, thermal balance will be achieved. In this case, we can
assume that the real workload of each processor is the average of

1This is a common assumption because the thermal evolution is a slow
diffusion process.

111

Fig. 3. Overhead of the task migration mechanism.

the total, in the example, around 55%. However, task migration must
be applied carefully because it affects the performance of the system
due to the overhead introduced by data transfers.

The following paragraphs analyze the state-of-the-art task migra-
tion techniques, and the policies that we propose to specifically adapt
the workload of the system depending on the state of the processors.

A. Compared state-of-the-art thermal control policies

• Enhanced Migration (Mgr) [6]: moves the task that is running
in a hot core when it exceeds a threshold temperature to
the coolest core. This policy could be considered as an even
improved solution of the original policy of Heat & Run, because
it adds task migration at run-time, as proposed in [5], not just
between stopped or starting tasks.

• Task rotation (Rot) [2]: inspired by a Round Robin mechanism,
migrates a task between processors every time slot. This policy
achieves the thermal balance in the system at the cost of an
important overhead due to the frequent migrations.

• Thermal Thresholds (Thres), presented in [5], moves the task
running in the processor that exceeds an upper or lower threshold
to a destination core. This is chosen considering the weight
of the task that is going to be migrated and its impact on the
workload of the processor.

B. Atomic Policies Pre-Characterization

The definition of our new task migration policies begins with the
characterization of atomic policies in the multi-processor system.
These atomic policies perform simple migrations only according
to the temperature and the workload of the cores. The migration
of the task is executed from one processor to another one with a
negligible computation cost. Figure 3 shows the overhead introduced
by the task replication mechanism for different sizes of the migrated
task. As can be seen, the impact of migrating a 64 KB task (the
one considered in our experimental work) is of 6E5 cycles, which
translates into a delay of 6ms for the worst case, depending on the
operating frequency (from 100 to 500 MHz) of our system. This
delay could have important issues in process’ deadlines for real-time
tasks.

The results of the analysis of these policies are classified in several
sets depending on their response to pre-defined metrics. These metrics
evaluate the capability of the atomic task to reduce the thermal
gradient, the maximum temperature or the mean temperature in the
chip. We also performed a statistic study to classify the policies
in these groups and assign a quality mark that goes from 1 (very
bad response) to 5 (very good response). The granularity of the
classification is enough to represent the variability expected in the
results and to reflect the variations found in the metrics.

Table I shows a reduced sub-set of the atomic policies that have
been considered and their classification after the statistic analysis.

TABLE I
CHARACTERIZATION OF ATOMIC POLICIES

Atomic policy Mean Temperature Max. Temperature Thermal Gradient
Hot-Cold 4 5 4

Warm-Cold 2 2 1
Hot-Warm 5 4 4
Cold-Warm 1 1 1
Warm-Hot 3 3 1
Cold-Hot 1 1 2

In this table, the first column is the name of the atomic policy (it
designs the origin and destination cores in the migration), being hot
the reference for the hottest processor, cold for the coldest one and
warm is the name given for those cores whose temperature is in
between both hottest and coldest ones. As the goal of the analysis
is the characterization of the policies, these will be always activated
and the migrations will take place continuously. Finally, the initial
workloads in the cores of the system are deliberately unbalanced to
force the execution of the atomic policies. Next columns show the
assigned quality mark for every metric.

The pre-characterization study also considered the thermal history
of the cores (cores that have been cold or hot during a certain
period in the past), which brought out the possibility to minimize
the overhead in terms of number of migrations and amount of data
transferred due to migrations.

The time window has been selected as the largest with the
minimum impact on the temperature gradient after a detailed exper-
imental study [5]. This selection of 300 ms for the time window is
independent of the application run by the processors and only should
be revisited in case of a new package.

C. Proposed Policies

1) Heuristic Algorithm (Heu): This algorithm is able to select ef-
ficiently among the atomic policies and achieve the thermal optimiza-
tion with a minimum performance impact. The implementation of this
heuristic is based on the information retrieved by the characterization
phase, which provides the information about the thermal profile under
the execution of the different atomic policies.

The algorithm works as follows: A time window is set and the
workload and thermal information of the processors are collected
at run-time during this time slot. At the end of the time window,
we evaluate the data and compare them with the preferred working
parameters (in terms of mean temperature, gradient and peak tem-
perature). The atomic policy to apply is selected in order to solve
the divergence of metrics between the current state and the desired
one. Figure 4 shows the decision chart that explains the functioning
of this heuristic.

In this figure the Deviation is the difference between the preferred
working value (which is 50oC for the mean temperature, 75oC for
the peak temperature and 6oC difference for the thermal gradient) and
the current state value. These values have been selected to assure a
proper operation of the system. Factor has been tuned experimentally
to balance the importance of the different decision sets, namely,
giving twice more weight to the mean temperature with respect to
the gradient and 1.5 more than the maximum temperature.

The proposed heuristic defines a multi-objective optimization prob-
lem. The implementation of the heuristic applies sequentially the
atomic policies in case of identical unbalance in the three metrics.
In this way, the complexity in the decision process is minimized to
simplify the heuristic. In order to alleviate the constraint imposed by
this simplified thermal controller, an adaptive policy is introduced.

2) Adaptive Policy (Adapt): This policy extends the work per-
formed by the previous approach, collecting data at run-time and

112

Fig. 4. Heuristic algorithm decision chart.

applying the atomic policies to achieve the optimum thermal state.
This policy adapts the selection of the atomic policy by means of
the statistical information of the cores, which predicts the behavior
of the processors attending to the information about the past time.

This policy assigns a probability to every set of atomic policies
(mean temperature, peak temperature, thermal gradient) and updates
this probability every time period as follows:

Pt = Pt−1 +W (1)

Winit = Mpref −Mavg (2)

W =

{
αinc(Tmean, Tpeak, Tgradient) ·Winit Winit > 0

αdec(Tmean, Tpeak, Tgradient) ·Winit Winit < 0
(3)

where W is the weight assigned to the sets every time period; M
represents the different sets of atomic policies, as explained before;
Mpref is the preferred working state and Mavg is the current state.
The expressions for the increase and decrease of the probabilities
are parametrized for every set of atomic policies, and the obtained
probabilities are normalized in order to maintain math consistency.
Mpref is the safe operating state already defined.

Using the previous equations, our extended OS updates the proba-
bilities of selecting atomic policies every time window, and decides
the working state by the execution of these policies. The design
of the Adaptive Policy is supported by the pre-characterization of
atomic policies. This initial study gives us the information of the
best candidates (those atomic policies that obtain the maximum
minimization of the metrics) for a task migration or task swapping
in order to achieve a desired working state.

The atomic policies implemented in this adaptive technique always
migrate a task from a source core to a destination core. As the
temperature of the destination core is the only variable considered in
the decision, more than one processor can satisfy the requirements.
The last proposed policy extends the variables with the placement of
the core for a more accurate selection of the destination core.

3) Floorplan-Aware Policy (FloorAdapt): This policy considers
the information about the floorplan. In this way, the OS is aware
of the location of the cores and accordingly selects the destination
processor in a task migration. This is implemented in the kernel of
the OS with the assignment of different weights to each core. The
smaller this weight is, the better candidate the core is to receive tasks.
This factor is calculated with the following equation:

G = d3edge +
1

d2core
+ dshared (4)

Fig. 5. Floorplan design.

where dedge is the distance to the edge of the chip, dcore is the
distance to another core (which is a heat source), and dshared is
the distance to the shared memory (which is a heat sink [14]). This
expression has been created to resemble the strong influence of the
ambient as a heat sink (cubic factor), the medium influence of the
near cores as heat sources (quadratic factor) and the light influence
of the shared memory as a heat sink (linear factor). The strength of
the factors considers the proximity of the heat/sink and the thermal
resistance of the joint.

Every time window, the thermal history of the processors is
analyzed to solve possible hot spots, critical thermal gradients, or
values over the safe peak temperature (75oC). However, if the system
is still working in a safe state, the task migrations will not occur and
the overhead of the policies will be avoided.

The knowledge of the thermal characteristics of the cores depend-
ing on the placement is a precious information for the task migration
policies. The location of the cores in the chip surface produces very
different thermal behavior due to the proximity to heat sinks or
heat sources which dissipate the temperature. In our floorplan design
shown in Figure 5, core 0 is close to core 2 and both processors are
prone to heat up due to the thermal diffusion from one to the other.
On the other hand, core 1 is far from the other processors but close
to the edge of the chip, which increases the possibility to cool easily.
Therefore, core 1 would be selected to receive a heavy workload in
case of a task migration.

The floorplan-aware policy incorporates this information about the
core placement to adapt and select the probabilities of migrating or
receiving a task.

V. EXPERIMENTAL WORK

The experimental work has been conducted with the emulation
platform described in section III, which has been used to model a
multi-processor system with three working processors (μBlaze) and a
PowerPC serving as the arbiter of the communication. The benchmark
selected for the analysis is a real-life streaming application that loads
the cores. The experiments have been run considering a special
package derived from real-life streaming SoCs [15] for mobile
embedded devices where the temperature can vary as much as 10
degrees in less than a second. The chip package has been selected to
stress the number of required task migrations and, therefore, create
a worst-case scenario for the validation of our techniques. Finally,
the cores in the system can work at different clock frequencies under
selection of the OS: 100, 200, 300, 400 and 500 MHz.

The validation of the task migration techniques has been accom-
plished attending to some pre-defined metrics that cover the spectrum
of thermal aware optimization:

i spatial variation of the temperature of the processors: measured
as the linear distance per area unit between cores at a different
temperature. This metric quantifies the heat spread on the chip
surface and the probability of thermal gradients.

ii mean temperature of the chip: calculated as the arithmetic mean
of the processor and memory temperatures in the chip. This metric

113

TABLE II
INITIAL WORKING STATE.

Core (Freq.) Load [%] Temp. [K]
Core 0 (533 MHz) 44 340
Core 1 (533 MHz) 83 339.5
Core 2 (266 MHz) 29 328.5

relates the temperature of the devices to the energy consumption
and cooling necessities.

iii maximum temperature of the chip: measured as the maximum
temperature value on the chip surface. It is related with the
susceptibility to temperature-driven reliability factors.

The results obtained during the validation phase have been also
compared with the results provided by the policies described in
Section IV.

A. Description of the Application

The software that is executed by the platform is a Software
FM Defined Radio [5] application, which is a typical example in
multimedia streaming. This application is composed of several tasks
that can be assigned to the different processors in the system. The
input data is a digitalized PCM radio signal which has to be processed
in several steps to obtain an equalized base-band audio signal.

B. Evaluation of the Policies

The execution of the application in the emulation platform consists
of two phases. The first one is the initialization of the OS and the
tasks. As this phase does not exhibit a critical thermal state and
it occurs just once during the system boot-up, the task migration
policies are deactivated at this time. When this initial phase finishes,
the thermal and workload state of the system is the one described in
Table II. Our experimental work starts at this point setting a thermal
unbalance that motivates the activation of the migration policies. In
the second phase, when the execution of the application starts, all the
policies described in this paper are evaluated separately.

The analysis performed for the task migration policies is two fold.
Firstly, a visual inspection of the thermal distribution in the chip
surface is done using the developed graphical tool. With this analysis,
the evolution of temperature in real-time is obtained, as shown in
Figure 6. This figure shows an example of the run-time behavior for
the (a) proposed adaptive and the (b) migration [5] policies.

As shown, both policies start similarly, decreasing rapidly the
presence of hot spots. However, as time evolves, the adaptive policy
obtains lower temperature values and a more homogeneous thermal
distribution due to the presence of short-time execution tasks. In fact,
for the SDR benchmark, all the cells in the floorplan are within a
range of temperature of 5 degrees when the adaptive policy is applied,
while differences of more than 15 degrees can be found in certain
periods for the migration policy. Similar results occur with the other
task migration techniques.

Secondly, a statistical study of the distribution of temperatures
in the chip under the execution of the task migration policies is
accomplished. This analysis evaluates which policies have better
results when applied in the multi-processor system. The mean and
sigma values of the temperature for every policy are calculated in the
statistic analysis and fit to a normal distribution (see Figure 7).

As can be derived from the values in the Figure, the best results in
terms of thermal distribution and absolute values are achieved with
the three policies specifically proposed in this paper. In particular, the
adaptive algorithm concentrates the temperature of the cells within a
small range of temperatures centered in the mean temperature (mean
temperature 319.038 with a σ of only 2.53). The curves for the

Fig. 6. Run-time thermal maps: (a) adaptive; (b) migration [6].

Fig. 7. Normalized statistical distributions.

three proposed policies present: lower mean value (translated into a
decrease in the average temperature of the chip) and narrower shape
of the curve (translated in a smaller sigma and, therefore, a decrease
in the thermal gradient of up to 30% with respect to state-of-the-art
techniques [2], [5], [6]).

Another interesting quality factor in the development of task
migration techniques is the number of migrations per unit. As has
been previously discussed, task migration policies introduce a perfor-
mance overhead due to the time required for the memory allocation,
as well as an energy waste. This impact can be characterized by
means of the number of effective migrations per time unit. Figure 8
shows the number of migrations per time unit for all the policies
considered in our study. As can be seen, our proposed policies not
only achieve similar results to the threshold technique [5] in terms of
mean temperature and sigma of the thermal distribution, but they
also decrease the impact on performance by a 40% because less
task migrations are required. Table III summarizes the performance
overhead imposed by every task migration technique, where the
minimum impact of our proposed policies can be observed.

Finally, two factors with a very strong impact on the reliability of

TABLE III
PERFORMANCE OVERHEAD.

Adap FloorAdapt Heu Thres Mgr Rot
Overhead (%) 0.85 0.52 0.85 1.2 0.93 2.4

114

Fig. 8. Number of migrations per time unit.

Fig. 9. Percentage of hot-spots.

the system have been evaluated: the percentage of hot spots in the
chip area, and the thermal cycles. Both metrics have been calculated
assuming that a hot spot in our set-up is represented by a temperature
value over 338 K. Figure 9 shows the percentage of hot spots in
the chip area, averaged along the execution of the benchmark, and
for every migration policy. As can be seen, our Adaptive policy
behaves better than the traditional approaches, only outperformed
by the Rotation policy which, on the contrary, has a strong impact
on performance. The percentage of hot-spots is reduced to 1% and,
therefore, the probability of system failure is minimized.

Figure 10 shows the thermal cycles for the same system config-
uration and task migration policies. As can be seen, our proposed
approaches are able to reduce the thermal cycles to a minimum,
showing better results than the traditional approaches (25% better
than [5] and up to 4× less thermal cycles than [6] and [2]); and,
moreover, with the smallest performance overhead (less than 0.9%
impact on execution time).

VI. CONCLUSIONS

In this paper, we have investigated and proposed OS-level task
migration policies for thermal management in embedded multi-
processor systems. We have showed that the proposed techniques
achieve low and balanced temperatures profiles, diminishing the
percentage of hot spots, thermal cycles, and thermal gradients. As
compared with traditional techniques, our policies incorporate the
floorplan information in the OS, dynamically adapt the migration
to the thermal profile of the application, and improve the thermal
behavior of the chip with a negligible performance overhead.

REFERENCES

[1] Semenov, O. e. A. (2006) Impact of self-heating effect on long-term
reliability and performance degradation in CMOS circuits. IEEE
Transactions on Device and Materials Reliability, 6, 17–27.

Fig. 10. Thermal cycles.

[2] Chaparro, P. e. A. (2007) Understanding the thermal implications of
multi-core architectures. IEEE Transactions on Parallel and Distributed
Systems, 18, 1055–1065.

[3] Carta, S., Acquaviva, A., Del Valle, P. G., Atienza, D., De Micheli, G.,
Rincon, F., Benini, L., and Mendias, J. M. (2007) Multi-processor oper-
ating system emulation framework with thermal feedback for systems-
on-chip. Proceedings of the 17th ACM GLS on VLSI, pp. 311–316.

[4] Atienza, D., Del Valle, P. G., Paci, G., Poletti, F., Benini, L., Micheli,
G. D., Mendias, J. M., and Hermida, R. (2007) HW-SW emulation
framework for temperature-aware design in MPSoCs. ACM Trans. Des.
Autom. Electron. Syst., 12, 1–26.

[5] Mulas, F., Pittau, M., Buttu, M., Carta, S., Acquaviva, A., Benini, L., and
Atienza, D. (2008) Thermal balancing policy for streaming computing
on multiprocessor architectures. Proceedings on DATE, pp. 734–739.

[6] Gomaa, M., Powell, M. D., and Vijaykumar, T. N. (2004) Heat-and-
run: leveraging SMT and CMP to manage power density through the
operating system. SIGOPS Oper. Syst. Rev., 38, 260–270.

[7] Suen, T. T. Y. and Wong, J. S. K. (1992) Efficient task migration
algorithm for distributed systems. IEEE Transactions on Parallel and
Distributed Systems, 3, 488–499.

[8] Chang, H. W. D. and Oldham, W. J. B. (1995, pages = 1301-1315,)
Dynamic task allocation models for large distributed computing systems.
IEEE Transactions on Parallel Distributed computing Systems, 6.

[9] Barcelos, D., Brião, E. W., and Wagner, F. R. (2007) A hybrid memory
organization to enhance task migration and dynamic task allocation in
NoC-based MPSoCs. Proceedings of the 20th annual conference on
Integrated circuits and systems design, pp. 282–287.

[10] Donald, J. and Martonosi, M. (2006) Techniques for multicore thermal
management: Classification and new exploration. Proceedings of the
33rd international symposium on Computer Architecture, pp. 78–88.

[11] Yang, J., Zhou, X., Chrobak, M., Zhang, Y., and Jin, L. (2008) Dynamic
thermal management through task scheduling. Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
software, pp. 191–201.

[12] Paci, G., Marchal, P., Poletti, F., and Benini, L. (2006) Exploring
temperature-aware design in low-power MPSoCs. Proceedings of the
DATE, March, pp. 1–6.

[13] Flautner, K. and Mudge, T. (2002) Vertigo: automatic performance-
setting for Linux. SIGOPS Oper. Syst. Rev., 36, 105–116.

[14] Huang, W., Stant, M. R., Sankaranarayanan, K., Ribando, R. J., and
Skadron, K. (2008) Many-core design from a thermal perspective.
Proceedings of the 45th annual DAC, pp. 746–749.

[15] Skadron, K., Stan, M. R., Sankaranarayanan, K., Huang, W., Velusamy,
S., and Tarjan, D. (2004) Temperature-aware microarchitecture: Model-
ing and implementation. ACM Transactions on Architecture and Code
Optimization, 1, 94–125.

115

