9 research outputs found

    Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test

    Get PDF
    Field test is performed in diverse environments, in which temperature varies across a wide range. As temperature affects a circuit delay greatly, accurate temperature monitors are required. They should be placed at various locations on a chip including hot spots. This paper proposes a flexible ring-oscillator-based monitor that accurately measures voltage as well as temperature at the same time. The measurement accuracy was confirmed by circuit simulation for 180 nm, 90 nm and 45 nm technologies. An experiment using test chips with 180 nm technology shows its feasibility.2014 IEEE 23rd Asian Test Symposium (ATS), 16-19 Nov. 2014, Hangzhou, Chin

    Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays

    Get PDF
    In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices

    Using temperature as observable of the frequency response of RF CMOS amplifiers

    Get PDF
    The power dissipated by the devices of an integrated circuit can be considered a signature of the circuit's performance. Without disturbing the circuit operation, this power consumption can be monitored by temperature measurements on the silicon surface. In this paper, the frequency response of a RF LNA is observed by measuring spectral components of the sensed temperature. Results prove that temperature can be used to debug and observe figures of merit of analog blocks in a RFIC. Experimental measurements have been done in a 0.25 mum CMOS process. Laser probing techniques have been used as temperature sensors; specifically, a thermoreflectometer and a Michaelson interferometer.Peer ReviewedPostprint (author's final draft

    Differential temperature sensors: Review of applications in the test and characterization of circuits, usage and design methodology

    Get PDF
    Differential temperature sensors can be placed in integrated circuits to extract a signature ofthe power dissipated by the adjacent circuit blocks built in the same silicon die. This review paper firstdiscusses the singularity that differential temperature sensors provide with respect to other sensortopologies, with circuit monitoring being their main application. The paper focuses on the monitoringof radio-frequency analog circuits. The strategies to extract the power signature of the monitoredcircuit are reviewed, and a list of application examples in the domain of test and characterizationis provided. As a practical example, we elaborate the design methodology to conceive, step bystep, a differential temperature sensor to monitor the aging degradation in a class-A linear poweramplifier working in the 2.4 GHz Industrial Scientific Medical—ISM—band. It is discussed how,for this particular application, a sensor with a temperature resolution of 0.02 K and a high dynamicrange is required. A circuit solution for this objective is proposed, as well as recommendations for thedimensions and location of the devices that form the temperature sensor. The paper concludes with adescription of a simple procedure to monitor time variability.Postprint (published version

    BPF-based thermal sensor circuit for on-chip testing of RF circuits

    Get PDF
    A new sensor topology meant to extract figures of merit of radio-frequency analog integrated circuits (RF-ICs) was experimentally validated. Implemented in a standard 0.35 µm complementary metal-oxide-semiconductor (CMOS) technology, it comprised two blocks: a single metaloxide-semiconductor (MOS) transistor acting as temperature transducer, which was placed near the circuit to monitor, and an active band-pass filter amplifier. For validation purposes, the temperature sensor was integrated with a tuned radio-frequency power amplifier (420 MHz) and MOS transistors acting as controllable dissipating devices. First, using the MOS dissipating devices, the performance and limitations of the different blocks that constitute the temperature sensor were characterized. Second, by using the heterodyne technique (applying two nearby tones) to the power amplifier (PA) and connecting the sensor output voltage to a low-cost AC voltmeter, the PA’s output power and its central frequency were monitored. As a result, this topology resulted in a low-cost approach, with high linearity and sensitivity, for RF-IC testing and variability monitoring.This research was funded by Spanish AEI–Agencia Estatal de Investigación–grant number PID2019-103869RB-C33. (X.P.) has also received founds from the Spanish Ministry of Science, Innovation and Universities through Agencia Estatal de Investigación (AEI) (projects: HIPERCELLS, RTI2018-098392B-I00, and “Fiabilidad Inteligente”, PCI2020-112028).Peer ReviewedPostprint (published version

    Analytical approach to design of proportional-to-the-absolute-temperature current sources and temperature sensors based on heterojunction bipolar transistors

    Get PDF
    Embedded temperature sensors based on proportional-to-the-absolute-temperature (PTAT) current sources have the potential to lay the foundation for low-cost temperature-aware integrated circuit architectures if they meet the requirements of miniaturization, fabrication process match, and precise estimation in a wide range of temperatures. This paper addresses an analytical approach to the minimum-element PTAT circuit design capitalizing on the physics-based modeling of the heterojunction bipolar transistor (HBT) structures. It is shown that a PTAT circuit can be implemented on only two core HBT elements with good accuracy. Derived parametric relations allow a straightforward specification of the thermal gain at the design stage, which affects sensor sensitivity. Further derived current-to-temperature mapping expresses a temperature estimate based on the measured PTAT output current. Numerical examples indicate attainable estimation accuracy of 0.43% in case of a measurement instance taken in the absence of measurement noise.The National Research Foundation of South Africa under Grant UID:74041http://ieeexplore.ieee.org/hb2013ai201

    Monitor amb control strategies to reduce the impact of process variations in digital circuits

    Get PDF
    As CMOS technology scales down, Process, Voltage, Temperature and Ageing (PVTA) variations have an increasing impact on the performance and power consumption of electronic devices. These issues may hold back the continuous improvement of these devices in the near future. There are several ways to face the variability problem: to increase the operating margins of maximum clock frequency, the implementation of lithographic friendly layout styles, and the last one and the focus of this thesis, to adapt the circuit to its actual manufacturing and environment conditions by tuning some of the adjustable parameters once the circuit has been manufactured. The main challenge of this thesis is to develop a low-area variability compensation mechanism to automatically mitigate PVTA variations in run-time, i.e. while integrated circuit is running. This implies the development of a sensor to obtain the most accurate picture of variability, and the implementation of a control block to knob some of the electrical parameters of the circuit.A mesura que la tecnologia CMOS escala, les variacions de Procés, Voltatge, Temperatura i Envelliment (PVTA) tenen un impacte creixent en el rendiment i el consum de potència dels dispositius electrònics. Aquesta problemàtica podria arribar a frenar la millora contínua d'aquests dispositius en un futur proper. Hi ha diverses maneres d'afrontar el problema de la variabilitat: relaxar el marge de la freqüència màxima d'operació, implementar dissenys físics de xips més fàcils de litografiar, i per últim i com a tema principal d'aquesta tesi, adaptar el xip a les condicions de fabricació i d'entorn mitjançant la modificació d'algun dels seus paràmetres ajustables una vegada el circuit ja ha estat fabricat. El principal repte d'aquesta tesi és desenvolupar un mecanisme de compensació de variabilitat per tal de mitigar les variacions PVTA de manera automàtica en temps d'execució, és a dir, mentre el xip està funcionant. Això implica el desenvolupament d'un sensor capaç de mesurar la variabilitat de la manera més acurada possible, i la implementació d'un bloc de control que permeti l'ajust d'alguns dels paràmetres elèctrics dels circuits

    Dynamic surface temperature measurements in ICs

    No full text
    no abstrac
    corecore