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Abstract: A new sensor topology meant to extract figures of merit of radio-frequency analog inte-
grated circuits (RF-ICs) was experimentally validated. Implemented in a standard 0.35 µm comple-
mentary metal-oxide-semiconductor (CMOS) technology, it comprised two blocks: a single metal-
oxide-semiconductor (MOS) transistor acting as temperature transducer, which was placed near the
circuit to monitor, and an active band-pass filter amplifier. For validation purposes, the temperature
sensor was integrated with a tuned radio-frequency power amplifier (420 MHz) and MOS transistors
acting as controllable dissipating devices. First, using the MOS dissipating devices, the performance
and limitations of the different blocks that constitute the temperature sensor were characterized.
Second, by using the heterodyne technique (applying two nearby tones) to the power amplifier (PA)
and connecting the sensor output voltage to a low-cost AC voltmeter, the PA’s output power and its
central frequency were monitored. As a result, this topology resulted in a low-cost approach, with
high linearity and sensitivity, for RF-IC testing and variability monitoring.

Keywords: CMOS thermal sensor; CMOS built-in sensor; CMOS integrated circuits; measurement of
RF CMOS circuits; built-in test and measurement

1. Introduction

The temperature in a surface point of an integrated circuit (IC) depends on the power
dissipated by the devices placed nearby (so-called self-heating and thermal coupling),
the structure and materials that constitute the packaging (which determine the thermal
impedances of the different devices) and the ambient temperature [1]. Traditionally, off-
chip temperature measurement set-ups have been used to detect unexpected hot spots
within digital circuits [2–5]. Hot spots might appear either due to the presence of a defect
in the circuit structure [6–9] or by a nonuniform power dissipation on the die surface,
which is a common situation in microprocessors [4,10]. In complex digital systems, such
as microprocessors, temperature sensors are built-in within the same silicon die in order
to ensure reliable system performance, i.e., they perform power-temperature monitoring
to control the activation of cooling systems, to modulate microprocessor supply voltage
or clock frequency, or to assert if the workload of a specific microprocessor block can
be increased or should be reduced to avoid nonuniform power distributions [11–18].
Nevertheless, thermal monitoring is not restricted to digital circuits, but used as well in
analog circuits. Most commonly, thermal measurements of analog circuits are usually
performed to extract the thermal resistance of devices [19,20], especially in power devices.
More recently, temperature measurements are done in high frequency analog circuits to
perform testing applications. The test of high frequency analog circuits is a challenging
task, as the presence of a defect or the effects of process-voltage-temperature variations
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and device aging, does not usually produce a catastrophic circuit failure, but a degradation
of circuit performance and specifications [21–25], which compromises yield. A strategy
to compensate these performance degradations is to build in monitor circuits with the
analog circuit (called hereafter the circuit under test (CUT)) to track variations in their
performance [26–30] and, in the eventual case of detecting a circuit degradation, to activate
a feedback in the CUT bias to compensate for them. Recently, several studies have proved
that by measuring the temperature in a surface point near the CUT, it is feasible to monitor
the performances of radio frequency (RF) and millimeter wave (mmW) circuits [30–37]
or the presence of structural defects [38,39]. The use of built-in temperature sensors to
monitor high-frequency analog circuits is attractive. On the one hand, the sensor does not
load any node of the CUT, avoiding the need of a CUT-sensor codesign. On the other hand,
thanks to the Joule effect, there is a frequency down-conversion of the high-frequency
information in the electrical domain to low frequency in the thermal domain in such a
way that the same temperature sensor can be used to monitor different CUTs working at
different frequency bands.

In this scenario, the goal of temperature measurements is to get solely a signature of
the power dissipated by the CUT, as this power carries information of the high frequency
electrical signals while rejecting any temperature variation due to changes in the ambient
temperature or the case-to-ambient thermal resistance (e.g., the activation of a cooling
system). To this end, one strategy is the use of differential temperature sensors embedded
in the same silicon die [37–41]. Such sensors possess two sensing devices (temperature
transducers T1 and T2). Whereas T1 is placed close to the CUT, T2 is placed far from it. This
placement ensures that only T1 measures the temperature changes caused by the power
dissipation of the CUT, but both T1 and T2 detect common-mode temperature changes,
being eventually rejected. Generally, the two sensing devices form the differential pair of
an operational transconductance amplifier (OTA), which operates in open-loop to have a
high sensitivity [38–40]. Although these sensors have been proved useful to perform the
test of analog high-frequency CUTs, they have several limitations. Firstly, the OTA output
can be easily saturated by mismatches produced because of manufacturing variability
and the DC temperature gradients generated by the DC CUT bias [36,38]. Secondly, since
the OTA operates in open loop, the gain (and hence the sensitivity to temperature) is
quite sensitive to integrated circuit (IC) manufacturing process variations [37]. Thirdly,
mismatches, circuit topology and device limitations reduce the rejection to common mode
temperature changes.

These limitations have motivated the design of a novel circuit topology that we
presented in [42] (Figure 1). One sensing device (T1 placed near the CUT) is connected to an
active band-pass filter (BPF). The filter’s band-pass is centered at ∆f so that the bandwidth
(and hence the noise) is limited around the frequency of interest. The BPF’s zero at the origin
rejects slow temperature variations (provoked by either ambient temperature changes or
the DC CUT power dissipation). To achieve a CUT thermal signature within the frequency
band of the sensor, we propose to excite the CUT with a heterodyne technique [41,43]. The
technique consists of applying two tones, whose frequencies are f 1 and f 2 = f 1 + ∆f, to
the CUT input. This driving strategy generates a spectral component of power dissipated
by the CUT devices (and hence of temperature) at ∆f, whose magnitude depends on
the CUT figures of merit at f 1. For ∆f values higher than a certain threshold (fixed by
both the die thickness and semiconductor thermal properties [40]), the amplitude of this
temperature component is no longer dependent on the package materials and package
mounting thermal properties, i.e., the silicon die is seen by the CUT, from a thermal point
of view, as a semi-infinite medium, independent of the thermal boundary conditions
(including ambient temperature). This heterodyne technique is not new: it has been already
used with differential temperature sensors connecting the sensor’s output node to a lock-in
amplifier (LIA) locked at ∆f [33,35]. To reduce costs, the BPF output signal is proposed to
be measured using a low-cost digital multimeter (DMM), off-chip in this work, but that
allows an easier integration than the LIA if a complete built-in test approach is required.
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Figure 1. Circuit under test (CUT) with heterodyne driving. Temperature sensor made of a single
metal -oxide semiconductor (MOS), transistor temperature transducer (T1), an active Band Pass Filter
(BPF), and a Digital Multimeter (DMM). Temperature variations at ∆f carry information about the
CUT figures of merit at f 1.

The main novelty and first goal of this paper is to present the first experimental
characterization of this sensor topology, focusing on its sensitivity, noise and linearity. To
this end, we implemented a realization of this sensor topology in a standard 0.35 µm CMOS
technology (VDD = 3.3 V) together with MOS transistors acting as controllable dissipating
devices. The second goal is to assess the temperature sensor for RF CUT monitoring. For
that purpose, a tuned (420 MHz) class-A radio-frequency power amplifier (PA) is built-in
together with the sensor, which shows its capability to monitor the PA central frequency
and the output power delivered to the load (antenna).

Taking this into account, the paper is organized as follows: the sensor topology
and design are described in Section 2. The sensor’s block characterization and full sensor
validation are carried out in Section 3. Section 4 presents the PA used as CUT, the placement
of the transducer within the PA layout and two application cases for this temperature sensor
as a built-in RF monitor. Finally, Section 5 draws the main conclusions.

2. Sensor Description and Design

Figure 2 shows the proposed sensor schematic. It was made of two blocks: (a) the
temperature transducer and (b) the active BPF. The goal of the temperature transducer
is to generate a voltage at the node Vot proportional to the working temperature of the
transistor T1, which is placed in the silicon die at the proximity of the CUT. On the other
hand, the aim of the active BPF is to provide signal amplification at the output node Vo if
the input signal Vif has its frequency within the passing band. The main figures of merit of
the BPF frequency response are represented in Figure 2c: the low-frequency (fp1) and high-
frequency (fp2) poles, which determine the pass-band, and the band-pass gain Av. Three
different circuits were implemented in the IC: only (a) with Vot connected to an output pad;
only (b) with Vif connected to an input pad and (a) and (b) with Vot internally shorted to
Vif. A detailed description and theoretical analysis of each block is in the following two
subsections, with emphasis on sensitivity, noise and linearity.

2.1. Temperature Transducer Description

The temperature transducer T1 was an nMOS transistor (dimensions: W = 24 µm,
L = 1.5 µm) connected in diode configuration and biased with a DC constant current (IB in
Figure 2). A small bias current placed the transistor in the weak inversion region, having
an expected sensitivity of −1.5 mV/K at IB = 20 nA. With other dimensions and bias,
transducer sensitivities in the range [−1.6 mV/K, 5 mV/K] can be achieved, as reported
in [44,45]. To create such a small bias current, a current mirror with a ratio IB/Iext = 1/1000
was implemented. The internal current mirror in conjunction with an operational amplifier
(OA) in voltage follower configuration ensures a low parasitic capacitance at node N1 and
a low output impedance, enhancing the dynamic transducer behavior.
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2.2. Band Pass Filter Amplifier: Noise and Linearity Analysis

The output of the temperature transducer was connected to an active BPF. The trans-
ducer signal is AC-coupled, amplified and filtered, and appeared at the output superposed
on a DC level of VDD/2. Capacitors C1 = 50 pF and C2 = 100 fF set the band-pass gain Av
which was designed to be:

|Av| ∼=
C1

C2
= 500 (54 dB). (1)

Having a zero at the origin, the pass-band is determined by the low (fp1) and high (fp2)
poles (cut-off frequencies), which are respectively:

fp1 =
1

2·π·R2C2
(2)

fp2 =
GBW
|Av|

(3)

Since the OA gain-bandwidth (GBW) product is 2.4 MHz, this results in a theoret-
ical value for fp2 of 4.8 kHz. To have a low fp1, resistor values in the order of GΩ are
required, thus R2 was implemented with two subthreshold biased pMOS, as shown in
Figure 3 [46–49]. These MOS had W = 2 µm and L = 10 µm, and the external voltage VBIAS
applied to their gate allows tuning to its equivalent resistance. From Equations (1) and (3),
in a first order analysis, fp2 and Av should be independent from VBIAS.
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Table 1 shows the values, obtained from simulations, of the R2 incremental resistance
as a function of VBIAS (assuming both R2 terminals, N1 and N2, at VDD/2) as well as the
BPF’s low and high cut-off frequencies. Note how fp1 is highly sensitive to VBIAS, which
opens a discussion on its optimum value. As explained above, transducer signal consisted
of a tone at a frequency ∆f, which should fall within the filter passband. From the values in
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Table 1, ∆f around 1–2 kHz are reasonable choices. The filter output would be measured
with a DMM that evaluates the total RMS voltage. Then, a narrow band-pass (high fp1)
seems desirable in order to filter out as much noise as possible and reduce the measurement
noise level. But, on the other hand, the amplified signal at the output node modulates the
R2 value, thus producing distortion. The effect of this R2 nonlinearity on the overall sensor
nonlinearity is relevant whenever R2 has a significant contribution to the signal path, i.e.,
when ∆f is around fp1 or lower. On the contrary, at ∆f values well above fp1, the effects of
R2, including its nonlinearity, become negligible on the output linearity and gain. From
this point of view, a low fp1 is desirable.

Table 1. Active band pass filter (BPF) simulated characteristics.

VBIAS
(V)

R2
(GΩ)

fp1
(Hz)

fp2
(kHz)

Av_max
(dB)

Noise
(µV2

RMS)
THDmax

(dB)

1.15 1.47 973 5.5 54.8 2.04 −15.7
1.2 6.42 248 4.6 54.7 2.22 −29.9
1.25 28.5 55 4.6 54.5 2.46 −52.7

In order to assess the effect of the different fp1 choices on the sensor noise and linearity,
Table 1 shows simulation results of the filter alone (no transducer included). Noise was
evaluated after integrating the power spectral density at the filter output up to 100 kHz,
while the maximum harmonic distortion (THDMAX) was also evaluated at the filter output
obtained for a 1 kHz input sinusoid just before output clipping. Simulations show how
linearity was dramatically degraded as fp1 was set near the signal frequency, while could
be improved as fp1 is moved away from the signal. The price to pay was a moderate
noise degradation. In view of these simulation results, VBIAS = 1.2 V (fp1 = 248 Hz) was
selected as a good default setting, which can be increased (fp1 decreased) to produce a more
linear response.

3. Sensor Implementation and Validation

The sensor was designed and manufactured in the CMOS 0.35 µm process. This
microelectronic process provides four metal layers and two polysilicon layers. Capacitances
C1 and C2 were implemented with polysilicon capacitors. The supply voltage (VDD) was
3.3 V (unipolar), and the IC was packaged in a QFN56. Its validation was performed first
by each block standing alone and finally both connected, as detailed below.

3.1. Temperature Transducer

To characterize its frequency response, the circuit in Figure 2a was implemented
as stand-alone, with the node Vot connected to an output pad. Besides, a large diode-
connected nMOS transistor acting as a heater (W = 450 µm, L = 1 µm and 15 fingers) was
placed at a 5 µm distance from the transducer (Figure 4). The heater was biased with a gate
(drain) voltage, vin(t):

Vin(t) = VDCh + A· cos(2π· fi·t), (4)

where VDCh is the heater bias voltage, A is the AC amplitude, and fi is its frequency.
Assuming a linear response, the current flowing through the heater is:

Iin(t) = IDCh + gm A· cos(2π· fi·t), (5)

where gm is the heater AC transconductance at Vin = VDCh, and IDCh is the DC drain to
source current when Vin = VDCh.
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Multiplying Equations (4) and (5), the power dissipated by the heater in the frequency
domain can be described as the sum of different spectral components. If we focus on the
spectral component at the frequency fi (called pfi), it can be written as:

p f i(t) = PA· cos(2π· fi·t), (6)

where PA is the power dissipation amplitude at the frequency fi. The above-mentioned
heater dimensions enabled us to easily have PA in the mW range while applying a low
input voltage. pfi(t) causes a temperature oscillation tS(t) at the temperature transducer
with the same frequency fi:

tS(t) = TA· cos(2π· fi·t + ΦA), (7)

where TA is the temperature amplitude and ϕA is the phase shift between ts and pfi. Both
thermal amplitude and phase shift depend on the silicon physical properties (thermal
conductivity and specific heat), the input frequency fi and the distance between the heater
and the transducer [40]. The close proximity between the heater and the transducer
ensures a good thermal coupling even in the MHz frequency range [32,40,50,51]. Then, the
transducer output voltage can be written as:

Vot(t) = VGST1 + VA· cos(2π· fi·t + ΦA), (8)

where VGST1 is the DC gate-to-source voltage in T1, needed to sustain the drain current
IB, and VA is the voltage amplitude generated by the oscillating temperature of amplitude
TA. Here we assume that there is no phase shift between the transducer temperature and
the output voltage, i.e., the pole induced by the node N1 in Figure 2b is at a frequency
much higher than fi. Being a temperature-to-voltage transducer, its sensitivity is defined as
VA/TA. However, as the goal of the sensor was to monitor the CUT characteristics through
its power dissipation, the sensitivity expressed as VA/PA had a greater interest, and will be
evaluated in this work.

In order to characterize the transducer response, the heater has was excited with
the different input voltage levels (VL) reported in Table 2. PA values in this table were
calculated from the experimental I-V characteristics of the heater. Figure 5 shows the
measured transducer sensitivity as a function of the frequency (transducer biased with
IB = 20 nA). Here, the amplitude VA was measured with an LIA (Signal Recovery 7265DSP)
locked at fi with a constant time of 1 s.
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Table 2. Excitation applied to the heater.

VL VDCh (V) A (mVRMS) PA (mW)

1 1.67 7.8 0.44
2 1.67 15 0.84
3 1.67 23 1.29
4 1.67 31 1.75
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The frequency response in Figure 5 shows a low-pass behavior corresponding to the
thermal coupling from the heater to the transducer, which agrees with the theoretical,
simulations and experimental data previously reported in [52]. In this particular set-up,
the coupling attenuation increased for frequencies higher than 3 kHz. Besides that, the
independence of the transducer’s sensitivity on the amplitude PA proves the transducer
linear behavior.

3.2. Band Pass Filter Amplifier

The circuit in Figure 2b was also implemented as stand-alone, with input (Vif) and
output nodes (Vo) connected, respectively, to input and output pads.

Figure 6 shows the measured frequency response of the BPF voltage gain. Input Vif(t)
is a sinusoidal voltage of 20 mVRMS attenuated by a factor of 100 with an off-chip resistive
voltage divider. Filter characterizations were done for the three VBIAS values reported
in Table 1. For each VBIAS, the output voltage amplitude was measured using either the
LIA or a DMM (HP 33401A) AC-coupled. The LIA was set with a time constant of 1 s,
which implied that the measure was integrating the signal (and noise) in a bandwidth of
1 Hz. On the other hand, the DMM was integrating the signal and noise along all the filter
bandwidth (i.e., the output harmonics were integrated as well).

Table 3 summarizes the BPF characteristics extracted from the responses in Figure 6,
considering LIA measurements. Comparing Tables 1 and 3, measured characteristics show
a reasonable agreement to the simulation predictions.
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Table 3. Active BPF measured characteristics.

VBIAS (V) fp1 (Hz) fp2 (kHz) Av_max (dB)

1.15 1258 5.1 54.1
1.2 350 3.9 54.9

1.25 79 3.9 54.6

More importantly, measurements done with a simple DMM had very good agreement
with those made with the LIA for frequencies equal and higher than the BPF central
frequency. However, DMM results were higher than the LIA ones when the input signal
frequency was equal or smaller than fp1. As predicted by simulations, output-voltage
nonlinearities became relevant when the input frequency was equal or smaller than fp1,
due to the R2 modulation. Those nonlinearities produced significant harmonics, which
were captured with the DMM, thus producing a slightly higher gain measurement. Finally,
DMM results showed an equivalent noise at the filter output of 4 mVRMS, which, according
to Section 2, translated into an equivalent noise at the temperature sensor’s input of
7.54 mK (@ IB = 20 nA). As predicted by simulations, the noise level at the output was
almost independent from VBIAS: fp1 may change over one order of magnitude, but its
values were in the range of tens-hundreds of Hz, with small effect after integrating over
the whole bandwidth.

The effects of the manufacturing variability on R2 were also evaluated. Figure 7 shows
the effect of R2 sample-to-sample variability on the measured fp1 values, as a function of
VBIAS in three different IC samples. In all these situations, the maximum gain measured
was 54.5 ± 0.43 dB, in agreement with the expected gain independence with VBIAS.

3.3. Overall Sensor Characterization

Besides the stand-alone temperature transducer (Figure 2a) and the stand-alone BPF
(Figure 2b), the complete circuit in Figure 2 was also implemented with the transducer’s
output connected to the input of the BPF, and with a nMOS transistor such as that depicted
in Figure 4 as a controllable heater. Then, when the dissipating device is biased with vin(t)
as in Equation (4), the sensor’s output voltage can be written as:

VO(t) =
VDD

2
+ AO· cos(2π· fi·t + ΦO), (9)



Sensors 2021, 21, 805 9 of 16

where AO is the amplitude of the sinusoidal component of VO(t) at the frequency fi. The
filter introduces a phase shift (ϕO − ϕA) − ϕA is defined in Equations (7) and (8).
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Figure 7. fp1 as a function of VBIAS. Measurements performed in three different samples.

Figure 8 shows AO,RMS (RMS value of AO from Equation (9)) as a function of the
frequency when measured with the DMM (@ IB = 20 nA, VBIAS = 1.2 V), using the different
VLs in Table 2 for the heater excitation. The frequency response reported a central frequency,
fc, of about 2 kHz for all the VL. The overall frequency response is the concatenation of the
transducers’ and BPF frequency responses. For frequencies smaller than 100 Hz or higher
than 10 kHz (the exact frequency depends on the particular bias), the sensor’s output
voltage reached the noise level, which is 40 mVRMS. This noise level is higher than that
observed in Figure 6, meaning that it was dominated by the heater-transducer circuits.
The noise level sets the PA threshold that the sensor is able to detect. To calculate this
threshold, Figure 9 shows the sensor’s sensitivity (AO/PA) as a function of the frequency,
when measured with the LIA. The maximum sensitivity was about 140 mV/mW. Therefore,
40 mVRMS corresponded to an equivalent noise floor in PA of 285 µW.
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If we now consider the sensor’s linearity, the overlapping points in Figure 9 show that
the sensor sensitivity was not affected by the PA level when fi was equal or higher than fc.
On the other hand, the sensitivity depended on the amplitude PA dissipated by the heater
when fi was smaller than fc: The R2 nonlinear behavior affected the sensor linearity. These
results have implications in the way the CUT must be driven when a test is done using
a heterodyne excitation (Figure 1): ∆f should be higher than fp1. The exact value of ∆f is
determined by the expected range of values of the amplitude PA dissipated by the CUT,
which determines the required sensor sensitivity and the noise level. For instance, from
Figures 8 and 9, if ∆f = 2.5 kHz the sensor’s sensitivity is 134 mW/mV. This sensitivity
allows the sensor to detect the PA dissipated by the heater when driven by the VL 1. On
the other hand, if ∆f = 10 kHz the sensor’s sensitivity is 54 mW/mV, and the amplitude
PA dissipated by the heater when driven by the VL 1 is below the noise level, whereas the
sensor can barely detect the amplitude PA when driven by the VL 2. This indicates that ∆f
higher than the sensor’s central frequency can be a good choice to sense large PA levels.
On the other hand, if ∆f = fc, high values of PA might drive the sensor to saturation.

4. Use Case: RF Tuned Class-A Power Amplifier Monitoring
4.1. Circuit and Experimental Set Up Description

The BPF temperature sensor was integrated with a narrowband RF power amplifier
(PA) used as a CUT. The schematic of the RF PA is shown in Figure 10. It is a class-A cascode
amplifier with off-chip load, fully described in [32]. The cascode transistor M2 was made
of three transistors in parallel connection (inset in Figure 10). The overall M2 dimensions
were W = 1173 µm (implemented with 51 fingers), and L = 0.5 µm. The MOS temperature
transducer was placed in the free space existing between two of these transistors. When
the DC bias of the PA was VDD = 3.3 V and Vcnt = 3 V, it had a current consumption of
22 mA. Experimental characterization of the PA reported a central frequency of 420 MHz,
a maximum gain of 12 dB and a 1 dB compression point referred to the input of −4 dBm.
To minimize parasitics in the RF measurements, the chip was directly soldered to the board
(chip on board).

In order to demonstrate the sensor monitoring capability, the PA was AC driven
with a heterodyne approach: two sinusoidal signals of input power Pi and frequencies
(fRF − ∆f /2) and (fRF + ∆f /2). This driving generated power dissipation in transistor M2,
with a spectral component at ∆f and an amplitude P∆f . Previous work [32,33] indicated
that P∆f depended on both the voltage gain of the amplifier at fRF and on the input-
output matching at the same frequency. As elaborated in Section 3, this power dissipation



Sensors 2021, 21, 805 11 of 16

generated an AC sensor output voltage superimposed to VDD/2, whose content at ∆f can
be written as:

vO(t) = AO· cos(2π· fi·t + ΦO). (10)
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Figure 10. Schematic of the RF power amplifier used as CUT. The temperature transducer is placed
close the cascode transistor M2. Inset shows a photo of the IC layout, with the placement of the active
transistor M1, cascode transistor M2 (formed with three equal transistors connected in parallel), and
the MOS acting as temperature transducer.

4.2. Output Power Monitoring

Figure 11 shows the sensor’s output voltage amplitude AO as a function of the total
output power delivered by the PA to a 50 Ω load. The temperature transducer was biased
with a current IB = 20 nA and the sensor’s filter with VBIAS = 1.2 V. The PA was driven with
two tones with fRF = 420 MHz (its central frequency) and ∆f = 1 kHz. Pi was swept to get
a total output power delivered to the load ranging from −40 dBm to 0 dBm. This output
power range was below the 1 dB compression point, ensuring constant PA gain for all the
cases. The PA output power was measured with the Agilent E4443A spectrum analyzer.
The sensor output voltage was measured with both the DMM in AC mode, and the LIA
locked at ∆f.
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Sensors 2021, 21, 805 12 of 16

Focusing on DMM measurements, the sensor tracked the power delivered to the load
when it was in the range [−25 dBm, −6 dBm] Below this range (−27 dBm, as labelled
in Figure 11), DMM readings reached the noise level (which was 12 mVRMS,). At the
other end of the sensor’s linear range above −6 dBm, the sensor output signal became
clipped. LIA measurements show that the sensor was able to track the output power
delivered to the load for values lower than −6 dBm, with very good agreement with
DMM measurements in the range [−19 dBm, −6 dBm]. When the sensor output voltage
became clipped, DMM measurements were slightly higher than LIA ones as DMM AC
measurements take into account both the sensor’s output fundamental and the harmonics
generated by the clipping.

If the sensor must track the PA output power for values higher than −6 dBm, the
sensor sensitivity (AO/PA) should be reduced. For example, reducing AO/PA by a factor of
ten would enable us to measure up to 4 dBm instead of −6 dBm. This would allow, for
example, extending the sensor linear response up to the PA compression, and thus be able
to monitor its 1-dB compression point.

Several strategies can be followed to reduce the sensor sensitivity: (i) increasing
the distance between the CUT and the temperature transducer T1 in the IC layout [40];
(ii) decreasing the BPF gain below the current Av = 500, which opens the possibility to
implement BPF amplifiers with tunable gain for dynamic range extension and (iii) changing
the transducer’s T1 dimensions or bias [43,44]. All these strategies require either a custom
layout depending on the target measurements or the design of additional complex circuits,
such as tunable gain networks or a programmable transducer bias. Nevertheless, there is
another strategy that can be used without redesigning the sensor or the sensor placement.
As pointed out by Figure 9 and discussed in Section 3, the sensor sensitivity can be reduced
by choosing a ∆f value higher than fc. To illustrate this sensitivity reduction, Figure 12
shows the AO,RMS measured with the DMM when increasing ∆f above 1 kHz, for three
constant PA output power values. Focusing on Pout = −6 dBm, with ∆f = 1 kHz the sensor
output had already reached the saturation level observed in Figure 11. As ∆f was increased,
the measured output amplitude decreased (i.e., the sensor enters in the linear range), thus
enabling the possibility to monitor higher output powers. Finally, when ∆f = 200 kHz,
the DMM output reached the noise level, and Pout = −6 dBm became the PoutNOISE_LEVEL.
From Figure 12, PoutNOISE_LEVEL was −21 dBm when ∆f = 10 kHz, and −11 dBm when
∆f = 100 kHz. Therefore, ∆f selection allowed us to easily adjust the linear response of the
sensor to different ranges of dissipated power.
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4.3. Central Frequency Monitoring

Figure 13 shows the RF power delivered to the load at the frequency (fRF + ∆f/2),
measured with the RF spectrum analyzer connected to the PA’s output; and the sensor’s
output voltage measured with the DMM in AC mode; both as a function of fRF.
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Figure 13. Sensor’s output measured with the DMM, superposed to power delivered to the load
at the frequency (fRF + ∆f/2) as a function of fRF. ∆f = 1 kHz, and total PA input power = −20 dBm
(−23 dBm/tone). Sensor output voltage represented as in [33].

Sensor and PA had the same bias than the one reported in the previous section. In this
experiment, the only swept input variable was the frequency fRF (from 120 to 920 MHz). In
all the measurements, ∆f = 1 kHz, and the total PA input power was −20 dBm (−23 dBm
each tone), i.e., the PA had a linear behavior. The spectrum analyzer measurements
indicated that the PA central frequency was 420 MHz, which agreed with the frequency fRF
where the sensor’s output amplitude at ∆f was maximum [31].

5. Conclusions

A single MOS transistor used as a temperature transducer connected to a BPF amplifier
was presented, characterized and assessed for IC testing applications. The overall sensor
circuit was implemented in a standard 0.35 µm CMOS technology, and was built-in with
devices acting as controlled heat sources, and an RF power amplifier was used as a CUT.
As strong points, heterodyne measurements could be done with a simple DMM, allowing
a simplification of the measurement set-up. As the LIA was not required, there was no
need for locking the frequencies of all the generators involved in the set-up measurements.
Moreover, the task of the DMM could be easily integrated with the CUT, allowing a
complete built-in self-test (BIST) solution. As weak point, as DMM integrated noise on
a wider bandwidth, DMM readings did not reach the sensitivity levels achieved with an
LIA. The sensor characterization showed that the nonlinear R2 behavior did not affect the
sensor’s linearity as long as ∆f was higher than the first BPF’s cut-off frequency. Moreover,
the sensor sensitivity could be reduced by selecting a ∆f higher than the BPF’s central
frequency, allowing extension of the sensor’s dynamic range. As a proof of concept, we
showed the feasibility of the circuit to track the output power delivered to the load and the
central frequency of a RF class-A power amplifier.

Future directions of our research are the usage of temperature sensors as monitors in
circuits used to compensate the effects of time-variability (e.g., aging) in RF circuits.
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