1,657 research outputs found

    Handling minority class problem in threats detection based on heterogeneous ensemble learning approach.

    Get PDF
    Multiclass problem, such as detecting multi-steps behaviour of Advanced Persistent Threats (APTs) have been a major global challenge, due to their capability to navigates around defenses and to evade detection for a prolonged period of time. Targeted APT attacks present an increasing concern for both cyber security and business continuity. Detecting the rare attack is a classification problem with data imbalance. This paper explores the applications of data resampling techniques, together with heterogeneous ensemble approach for dealing with data imbalance caused by unevenly distributed data elements among classes with our focus on capturing the rare attack. It has been shown that the suggested algorithms provide not only detection capability, but can also classify malicious data traffic corresponding to rare APT attacks

    New Hybrid Data Preprocessing Technique for Highly Imbalanced Dataset

    Get PDF
    One of the most challenging problems in the real-world dataset is the rising numbers of imbalanced data. The fact that the ratio of the majorities is higher than the minorities will lead to misleading results as conventional machine learning algorithms were designed on the assumption of equal class distribution. The purpose of this study is to build a hybrid data preprocessing approach to deal with the class imbalance issue by applying resampling approaches and CSL for fraud detection using a real-world dataset. The proposed hybrid approach consists of two steps in which the first step is to compare several resampling approaches to find the optimum technique with the highest performance in the validation set. While the second method used CSL with optimal weight ratio on the resampled data from the first step. The hybrid technique was found to have a positive impact of 0.987, 0.974, 0.847, 0.853 F2-measure for RF, DT, XGBOOST and LGBM, respectively. Additionally, relative to the conventional methods, it obtained the highest performance for prediction

    SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary

    Get PDF
    The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm is considered \de facto" standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to di erent type of problems. Since its publication in 2002, SMOTE has proven successful in a variety of applications from several di erent domains. SMOTE has also inspired several approaches to counter the issue of class imbalance, and has also signi cantly contributed to new supervised learning paradigms, including multilabel classi cation, incremental learning, semi-supervised learning, multi-instance learning, among others. It is standard benchmark for learning from imbalanced data. It is also featured in a number of di erent software packages | from open source to commercial. In this paper, marking the fteen year anniversary of SMOTE, we re ect on the SMOTE journey, discuss the current state of a airs with SMOTE, its applications, and also identify the next set of challenges to extend SMOTE for Big Data problems.This work have been partially supported by the Spanish Ministry of Science and Technology under projects TIN2014-57251-P, TIN2015-68454-R and TIN2017-89517-P; the Project 887 BigDaP-TOOLS - Ayudas Fundaci on BBVA a Equipos de Investigaci on Cient ca 2016; and the National Science Foundation (NSF) Grant IIS-1447795

    Class imbalance ensemble learning based on the margin theory

    Get PDF
    The proportion of instances belonging to each class in a data-set plays an important role in machine learning. However, the real world data often suffer from class imbalance. Dealing with multi-class tasks with different misclassification costs of classes is harder than dealing with two-class ones. Undersampling and oversampling are two of the most popular data preprocessing techniques dealing with imbalanced data-sets. Ensemble classifiers have been shown to be more effective than data sampling techniques to enhance the classification performance of imbalanced data. Moreover, the combination of ensemble learning with sampling methods to tackle the class imbalance problem has led to several proposals in the literature, with positive results. The ensemble margin is a fundamental concept in ensemble learning. Several studies have shown that the generalization performance of an ensemble classifier is related to the distribution of its margins on the training examples. In this paper, we propose a novel ensemble margin based algorithm, which handles imbalanced classification by employing more low margin examples which are more informative than high margin samples. This algorithm combines ensemble learning with undersampling, but instead of balancing classes randomly such as UnderBagging, our method pays attention to constructing higher quality balanced sets for each base classifier. In order to demonstrate the effectiveness of the proposed method in handling class imbalanced data, UnderBagging and SMOTEBagging are used in a comparative analysis. In addition, we also compare the performances of different ensemble margin definitions, including both supervised and unsupervised margins, in class imbalance learning

    Cost-Sensitive Learning-based Methods for Imbalanced Classification Problems with Applications

    Get PDF
    Analysis and predictive modeling of massive datasets is an extremely significant problem that arises in many practical applications. The task of predictive modeling becomes even more challenging when data are imperfect or uncertain. The real data are frequently affected by outliers, uncertain labels, and uneven distribution of classes (imbalanced data). Such uncertainties create bias and make predictive modeling an even more difficult task. In the present work, we introduce a cost-sensitive learning method (CSL) to deal with the classification of imperfect data. Typically, most traditional approaches for classification demonstrate poor performance in an environment with imperfect data. We propose the use of CSL with Support Vector Machine, which is a well-known data mining algorithm. The results reveal that the proposed algorithm produces more accurate classifiers and is more robust with respect to imperfect data. Furthermore, we explore the best performance measures to tackle imperfect data along with addressing real problems in quality control and business analytics

    Optimizing Dynamic Time Warping’s Window Width for Time Series Data Mining Applications

    Get PDF
    Dynamic Time Warping (DTW) is a highly competitive distance measure for most time series data mining problems. Obtaining the best performance from DTW requires setting its only parameter, the maximum amount of warping (w). In the supervised case with ample data, w is typically set by cross-validation in the training stage. However, this method is likely to yield suboptimal results for small training sets. For the unsupervised case, learning via cross-validation is not possible because we do not have access to labeled data. Many practitioners have thus resorted to assuming that “the larger the better”, and they use the largest value of w permitted by the computational resources. However, as we will show, in most circumstances, this is a naïve approach that produces inferior clusterings. Moreover, the best warping window width is generally non-transferable between the two tasks, i.e., for a single dataset, practitioners cannot simply apply the best w learned for classification on clustering or vice versa. In addition, we will demonstrate that the appropriate amount of warping not only depends on the data structure, but also on the dataset size. Thus, even if a practitioner knows the best setting for a given dataset, they will likely be at a lost if they apply that setting on a bigger size version of that data. All these issues seem largely unknown or at least unappreciated in the community. In this work, we demonstrate the importance of setting DTW’s warping window width correctly, and we also propose novel methods to learn this parameter in both supervised and unsupervised settings. The algorithms we propose to learn w can produce significant improvements in classification accuracy and clustering quality. We demonstrate the correctness of our novel observations and the utility of our ideas by testing them with more than one hundred publicly available datasets. Our forceful results allow us to make a perhaps unexpected claim; an underappreciated “low hanging fruit” in optimizing DTW’s performance can produce improvements that make it an even stronger baseline, closing most or all the improvement gap of the more sophisticated methods proposed in recent years

    Overlap-based undersampling method for classification of imbalanced medical datasets.

    Get PDF
    Early diagnosis of some life-threatening diseases such as cancers and heart is crucial for effective treatments. Supervised machine learning has proved to be a very useful tool to serve this purpose. Historical data of patients including clinical and demographic information is used for training learning algorithms. This builds predictive models that provide initial diagnoses. However, in the medical domain, it is common to have the positive class under-represented in a dataset. In such a scenario, a typical learning algorithm tends to be biased towards the negative class, which is the majority class, and misclassify positive cases. This is known as the class imbalance problem. In this paper, a framework for predictive diagnostics of diseases with imbalanced records is presented. To reduce the classification bias, we propose the usage of an overlap-based undersampling method to improve the visibility of minority class samples in the region where the two classes overlap. This is achieved by detecting and removing negative class instances from the overlapping region. This will improve class separability in the data space. Experimental results show achievement of high accuracy in the positive class, which is highly preferable in the medical domain, while good trade-offs between sensitivity and specificity were obtained. Results also show that the method often outperformed other state-of-the-art and well-established techniques
    • …
    corecore