586,510 research outputs found

    Free-piston Stirling engine conceptual design and technologies for space power, phase 1

    Get PDF
    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis

    Efficient Data Structures for Partial Orders, Range Modes, and Graph Cuts

    Get PDF
    This thesis considers the study of data structures from the perspective of the theoretician, with a focus on simplicity and practicality. We consider both the time complexity as well as space usage of proposed solutions. Topics discussed fall in three main categories: partial order representation, range modes, and graph cuts. We consider two problems in partial order representation. The first is a data structure to represent a lattice. A lattice is a partial order where the set of elements larger than any two elements x and y are all larger than an element z, known as the join of x and y; a similar condition holds for elements smaller than any two elements. Our data structure is the first correct solution that can simultaneously compute joins and the inverse meet operation in sublinear time while also using subquadratic space. The second is a data structure to support queries on a dynamic set of one-dimensional ordered data; that is, essentially any operation computable on a binary search tree. We develop a data structure that is able to interpolate between binary search trees and efficient priority queues, offering more-efficient insertion times than the former when query distribution is non-uniform. We also consider static and dynamic exact and approximate range mode. Given one-dimensional data, the range mode problem is to compute the mode of a subinterval of the data. In the dynamic range mode problem, insertions and deletions are permitted. For the approximate problem, the element returned is to have frequency no less than a factor (1+epsilon) of the true mode, for some epsilon > 0. Our results include a linear-space dynamic exact range mode data structure that simultaneously improves on best previous operation complexity and an exact dynamic range mode data structure that breaks the Theta(n^(2/3)) time per operation barrier. For approximate range mode, we develop a static succinct data structure offering a logarithmic-factor space improvement and give the first dynamic approximate range mode data structure. We also consider approximate range selection. The final category discussed is graph and dynamic graph algorithms. We develop an optimal offline data structure for dynamic 2- and 3- edge and vertex connectivity. Here, the data structure is given the entire sequence of operations in advance, and the dynamic operations are edge insertion and removal. Finally, we give a simplification of Karger's near-linear time minimum cut algorithm, utilizing heavy-light decomposition and iteration in place of dynamic programming in the subroutine to find a minimum cut of a graph G that cuts at most two edges of a spanning tree T of G

    Linear-Space Data Structures for Range Mode Query in Arrays

    Full text link
    A mode of a multiset SS is an element a∈Sa \in S of maximum multiplicity; that is, aa occurs at least as frequently as any other element in SS. Given a list A[1:n]A[1:n] of nn items, we consider the problem of constructing a data structure that efficiently answers range mode queries on AA. Each query consists of an input pair of indices (i,j)(i, j) for which a mode of A[i:j]A[i:j] must be returned. We present an O(n2−2ϵ)O(n^{2-2\epsilon})-space static data structure that supports range mode queries in O(nϵ)O(n^\epsilon) time in the worst case, for any fixed ϵ∈[0,1/2]\epsilon \in [0,1/2]. When ϵ=1/2\epsilon = 1/2, this corresponds to the first linear-space data structure to guarantee O(n)O(\sqrt{n}) query time. We then describe three additional linear-space data structures that provide O(k)O(k), O(m)O(m), and O(∣j−i∣)O(|j-i|) query time, respectively, where kk denotes the number of distinct elements in AA and mm denotes the frequency of the mode of AA. Finally, we examine generalizing our data structures to higher dimensions.Comment: 13 pages, 2 figure

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido
    • …
    corecore