215 research outputs found

    A DIFFERENT STEERING FUNCTIONALITY WITH DISSIMILAR QOS NECESSITIES

    Get PDF
    Because of the diversity and complexity of applications running over WSNs, the Qi’s guarantee such networks gains growing attention within the research community. Generally, inside a network with light load, both requirements could be readily satisfied. However, a heavily loaded network is affected congestion, which increases the finish-to-finish delay. The work aims to concurrently enhance the fidelity for high-integrity programs and reduce the finish-to-end delay for delay-sensitive ones, even if your network is congested. As part of an info infrastructure, WSNs should be capable of supporting various programs within the same platform. Programs running on a single Wireless Sensor Network (WSN) platform will often have different Service quality (Qi’s) needs. Two fundamental needs are low delay and data integrity. However, in many situations, both of these requirements cannot be satisfied concurrently. Within this paper, in line with the idea of potential in physics, we advise IDDR, a multi-path dynamic routing formula, to solve this conflict. By creating an online hybrid potential field, IDDR separates packets of programs with different Qi’s needs based on the weight designated to every packet, and routes them for the sink through different paths to enhance the data fidelity for integrity-sensitive programs in addition to lessen the finish-to-finish delay for delay-sensitive ones. While using Lyapunov drift technique, we prove that IDDR is stable. Simulation results show IDDR provides data integrity and delay differentiated services

    ACTIVE DIRECTION-FINDING FOR FILES INTEGRITY AND INTERRUPTION SEGREGATED SERVICES IN WIRELESS SENSOR NETWORKS

    Get PDF
    Within this paper, in line with the idea of potential in physics, we advise IDDR, a multi-path dynamic routing formula, to solve this conflict. By creating an online hybrid potential field, IDDR separates packets of programs with various QoS needs based on the weight designated to every packet, and routes them for the sink through different pathways to enhance the information fidelity for integrity-sensitive programs in addition to lessen the finish-to-finish delay for delay-sensitive ones. WSNs have two fundamental QoS needs: low delay and data integrity, resulting in what exactly are known as delay sensitive programs and-integrity programs, correspondingly. Programs running on a single Wireless Sensor Network (WSN) platform will often have different Service quality (QoS) needs. Two fundamental needs are low delay and data integrity. However, in many situations, both of these needs can't be satisfied concurrently. While using Lyapunov drift technique, we prove that IDDR is stable. Simulation results show IDDR provides data integrity and delay differentiated services

    ECHOING QUALITIES OF REDUCED HINDRANCE AND ELEVATED VERACITY ON SAME CHANNEL

    Get PDF
    Two fundamental needs are low delay and data integrity. However, in many situations, both of these needs can't be satisfied concurrently. Within this paper, in line with the idea of potential in physics, we advise IDDR, a multi-path dynamic routing formula, to solve this conflict. Applications running on a single Wireless Sensor Network (WSN) platform will often have different Service quality (QoS) needs. By setting up a virtual hybrid potential field, IDDR separates packets of applications with various QoS needs based on the weight allotted to each packet, and routes them for the sink through different pathways to enhance the information fidelity for integrity-sensitive applications in addition to lessen the finish-to-finish delay for delay-sensitive ones. Simulation results show IDDR provides data integrity and delay differentiated services. While using Lyapunov drift technique, we prove that IDDR is stable

    A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    A Priority-based Fair Queuing (PFQ) Model for Wireless Healthcare System

    Get PDF
    Healthcare is a very active research area, primarily due to the increase in the elderly population that leads to increasing number of emergency situations that require urgent actions. In recent years some of wireless networked medical devices were equipped with different sensors to measure and report on vital signs of patient remotely. The most important sensors are Heart Beat Rate (ECG), Pressure and Glucose sensors. However, the strict requirements and real-time nature of medical applications dictate the extreme importance and need for appropriate Quality of Service (QoS), fast and accurate delivery of a patient’s measurements in reliable e-Health ecosystem. As the elderly age and older adult population is increasing (65 years and above) due to the advancement in medicine and medical care in the last two decades; high QoS and reliable e-health ecosystem has become a major challenge in Healthcare especially for patients who require continuous monitoring and attention. Nevertheless, predictions have indicated that elderly population will be approximately 2 billion in developing countries by 2050 where availability of medical staff shall be unable to cope with this growth and emergency cases that need immediate intervention. On the other side, limitations in communication networks capacity, congestions and the humongous increase of devices, applications and IOT using the available communication networks add extra layer of challenges on E-health ecosystem such as time constraints, quality of measurements and signals reaching healthcare centres. Hence this research has tackled the delay and jitter parameters in E-health M2M wireless communication and succeeded in reducing them in comparison to current available models. The novelty of this research has succeeded in developing a new Priority Queuing model ‘’Priority Based-Fair Queuing’’ (PFQ) where a new priority level and concept of ‘’Patient’s Health Record’’ (PHR) has been developed and integrated with the Priority Parameters (PP) values of each sensor to add a second level of priority. The results and data analysis performed on the PFQ model under different scenarios simulating real M2M E-health environment have revealed that the PFQ has outperformed the results obtained from simulating the widely used current models such as First in First Out (FIFO) and Weight Fair Queuing (WFQ). PFQ model has improved transmission of ECG sensor data by decreasing delay and jitter in emergency cases by 83.32% and 75.88% respectively in comparison to FIFO and 46.65% and 60.13% with respect to WFQ model. Similarly, in pressure sensor the improvements were 82.41% and 71.5% and 68.43% and 73.36% in comparison to FIFO and WFQ respectively. Data transmission were also improved in the Glucose sensor by 80.85% and 64.7% and 92.1% and 83.17% in comparison to FIFO and WFQ respectively. However, non-emergency cases data transmission using PFQ model was negatively impacted and scored higher rates than FIFO and WFQ since PFQ tends to give higher priority to emergency cases. Thus, a derivative from the PFQ model has been developed to create a new version namely “Priority Based-Fair Queuing-Tolerated Delay” (PFQ-TD) to balance the data transmission between emergency and non-emergency cases where tolerated delay in emergency cases has been considered. PFQ-TD has succeeded in balancing fairly this issue and reducing the total average delay and jitter of emergency and non-emergency cases in all sensors and keep them within the acceptable allowable standards. PFQ-TD has improved the overall average delay and jitter in emergency and non-emergency cases among all sensors by 41% and 84% respectively in comparison to PFQ model

    Research routing and MAC based on LEACH and S-MAC for energy efficiency and QoS in wireless sensor network

    Get PDF
    The wireless sensor is a micro-embedded device with weak data processing capability and small storage space. These nodes need to complete complex jobs, including data monitoring, acquisition and conversion, and data processing. Energy efficiency should be considered as one of the important aspects of the Wireless Sensor Network (WSN) throughout architecture and protocol design. At the same time, supporting Quality of Service (QoS) in WSNs is a research field, because the time-sensitive and important information is expected for the transmitting to to the sink node immediately. The thesis is supported by the projects entitled “The information and control system for preventing forest fires”, and “The Erhai information management system”, funded by the Chinese Government. Energy consumption and QoS are two main objectives of the projects. The thesis discusses the two aspects in route and Media Access Control (MAC). For energy efficiency, the research is based on Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. LEACH is a benchmark clustering routing protocol which imposes upon cluster heads to complete a lot of aggregation and relay of messages to the base-station. However, there are limitations in LEACH. LEACH does not suit a wide area in clustering strategy and multi-hop routing. Moreover, routing protocols only focus on one factor, combining the clustering strategy and multi-hop routing mechanism were not considered in routing protocol for performance of network. QoS is supported by the MAC and routing protocol. Sensor MAC(S-MAC) makes the use of the periodically monitoring / sleeping mechanism, as well as collision and crosstalk avoidance mechanism. The mechanism reduces energy costs. Meanwhile, it supports good scalability and avoids the collision. However, the protocols do not take the differentiated services. For supporting QoS,A new route protocol needs to be designed and realized on embed platforms, which has WIFI mode and a Linux operation system to apply on the actual system. This research project was conducted as following the steps: A new protocol called RBLEACH is proposed to solve cluster on a widely scale based on LEACH. The area is divided into a few areas, where LEACH is improved to alter the selecting function in each area. RBLEACH creates routes selected by using a new algorithm to optimize the performance of the network. A new clustering method that has been developed to use several factors is PS-ACO-LEACH. The factors include the residual energy of the cluster head and Euclidean distances between cluster members and a cluster head. It can optimally solve fitness function and maintain a load balance in between the cluster head nodes, a cluster head and the base station. Based on the “Ant Colony” algorithm and transition of probability, a new routing protocol was created by “Pheromone” to find the optimal path of cluster heads to the base station. This protocol can reduce energy consumption of cluster heads and unbalanced energy consumption. Simulations prove that the improved protocol can enhance the performance of the network, including lifetime and energy conservation. Additionally, Multi Index Adaptive Routing Algorithm (MIA-QR) was designed based on network delay, packet loss rate and signal strength for QoS. The protocol is achieved by VC on an embedded Linux system. The MIA-QR is tested and verified by experiment and the protocol is to support QoS. Finally, an improved protocol (SMAC -SD) for wireless sensor networks is proposed, in order to solve the problem of S-MAC protocol that consider either service differentiation or ensure quality of service. According to service differentiation, SMAC-SD adopts an access mechanism based on different priorities including the adjustment of priority mechanisms of channel access probability, channel multi-request mechanisms and the configuring of waiting queues with different priorities and RTS backoff for different service, which makes the important service receive high channel access probability, ensuring the transmission quality of the important service. The simulation results show that the improved protocol is able to gain amount of important service and shortens the delay at the same time. Meanwhile, it improves the performance of the network effectivel

    Designs for the Quality of Service Support in Low-Energy Wireless Sensor Network Protocols

    Get PDF
    A Wireless Sensor Network (WSN) consists of small, low cost, and low energy sensor nodes that cooperatively monitor physical quantities, control actuators, and perform data processing tasks. A network may consist of thousands of randomly deployed self-configurable nodes that operate autonomously to form a multihop topology. This Thesis focuses on Quality of Service (QoS) in low-energy WSNs that aim at several years operation time with small batteries. As a WSN may include both critical and non-critical control and monitoring applications, QoS is needed to make intelligent, content specific trade-offs between energy and network performance. The main research problem is defining and implementing QoS with constrained energy budget, processing power, communication bandwidth, and data and program memories. The problem is approached via protocol designs and algorithms. These are verified with simulations and with measurements in practical deployments. This Thesis defines QoS for WSNs with quantifiable metrics to allow measuring and managing the network performance. The definition is used as a basis for QoS routing protocol and Medium Access Control (MAC) schemes, comprising dynamic capacity allocation algorithm and QoS support layer. Dynamic capacity allocation is targeted at reservation based MACs, whereas the QoS support layer operates on contention based MACs. Instead of optimizing the protocols for a certain use case, the protocols allow configurable QoS based on application specific requirements. Finally, this Thesis designs sensor self-diagnostics and diagnostics analysis tool for verifying network performance. Compared to the related proposals on in-network sensor diagnostics, the diagnostics also detects performance problems and identifies reasons for the issues thus allowing the correction of problems. The results show that the developed protocols allow a clear trade-off between energy, latency, throughput, and reliability aspects of QoS while incurring a minimal overhead. The feasibility of results for extremely resource constrained WSNs is verified with the practical implementation with a prototype hardware platform having only few Million Instructions Per Second (MIPS) of processing power and less than a hundred kBs data and program memories. The results of this Thesis can be used in the WSN research, development, and implementation in general. The developed QoS definition, protocols, and diagnostics tools can be used separately or adapted to other applications and protocols
    corecore