10 research outputs found

    Dynamic Planar Embeddings of Dynamic Graphs

    Full text link
    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the face boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping components that are connected to the rest of the graph by at most two vertices. Given vertices u,vu,v, linkable(u,v)(u,v) decides whether uu and vv are linkable in the current embedding, and if so, returns a list of suggestions for the placement of (u,v)(u,v) in the embedding. For non-linkable vertices u,vu,v, we define a new query, one-flip-linkable(u,v)(u,v) providing a suggestion for a flip that will make them linkable if one exists. We support all updates and queries in O(log2n^2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour.Comment: Announced at STACS'1

    Dynamic Planar Embeddings of Dynamic Graphs

    Get PDF
    We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An edge can be inserted across a face between two vertices on the boundary (we call such a vertex pair linkable), and edges can be deleted. The planar embedding can also be changed locally by flipping components that are connected to the rest of the graph by at most two vertices. Given vertices u,v, linkable(u,v) decides whether u and v are linkable, and if so, returns a list of suggestions for the placement of (u,v) in the embedding. For non-linkable vertices u,v, we define a new query, one-flip-linkable(u,v) providing a suggestion for a flip that will make them linkable if one exists. We will support all updates and queries in O(log^2 n) time. Our time bounds match those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a spanning tree of the dual graph. The primal and dual trees are interpreted as having the same Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over the two trees via their common Euler tour

    Worst-Case Deterministic Fully-Dynamic Biconnectivity in Changeable Planar Embeddings

    Get PDF

    Fully-dynamic Planarity Testing in Polylogarithmic Time

    Full text link
    Given a dynamic graph subject to insertions and deletions of edges, a natural question is whether the graph presently admits a planar embedding. We give a deterministic fully-dynamic algorithm for general graphs, running in amortized O(log⁥3n)O(\log^3 n) time per edge insertion or deletion, that maintains a bit indicating whether or not the graph is presently planar. This is an exponential improvement over the previous best algorithm [Eppstein, Galil, Italiano, Spencer, 1996] which spends amortized O(n)O(\sqrt{n}) time per update.Comment: Updated version of paper submitted to STOC'20. This version features a complete rewrite of section 4.4 (do-separation-flips). The new version fixes an overlooked case in the previous version (the two fundamental cycles we find do not necessarily share an edge) and contains a detailed case-by-case proof of correctnes

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum
    corecore