
Dynamic Planar Embeddings of Dynamic Graphs
Jacob Holm and Eva Rotenberg

DIKU, Dept. of Computer Science, University of Copenhagen, Denmark
jh@poplar.dk, roden@di.ku.dk

Abstract
We present an algorithm to support the dynamic embedding in the plane of a dynamic graph. An
edge can be inserted across a face between two vertices on the boundary (we call such a vertex
pair linkable), and edges can be deleted. The planar embedding can also be changed locally
by flipping components that are connected to the rest of the graph by at most two vertices.
Given vertices u, v, linkable(u, v) decides whether u and v are linkable, and if so, returns a list of
suggestions for the placement of (u, v) in the embedding. For non-linkable vertices u, v, we define
a new query, one-flip-linkable(u, v) providing a suggestion for a flip that will make them linkable
if one exists. We will support all updates and queries in O(log2 n) time. Our time bounds match
those of Italiano et al. for a static (flipless) embedding of a dynamic graph. Our new algorithm
is simpler, exploiting that the complement of a spanning tree of a connected plane graph is a
spanning tree of the dual graph. The primal and dual trees are interpreted as having the same
Euler tour, and a main idea of the new algorithm is an elegant interaction between top trees over
the two trees via their common Euler tour.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems, G.2.2 Graph Theory

Keywords and phrases dynamic graphs, planar embeddings, data structures

Digital Object Identifier 10.4230/LIPIcs.STACS.2015.434

1 Introduction

We present a data structure for supporting and maintaining a dynamic planar embedding
of a dynamic graph. In this article, a dynamic graph is a graph where edges can be removed
or inserted, and vertices can be cut or joined, but where an edge (u, v) can only be added
if it does not violate planarity. More precisely, the edges around each vertex are ordered
cyclically by the embedding, similar to the edge-list representation of the graph. A corner
(of a face) is the gap between consecutive edges incident to some vertex. Given two corners
cu and cv of the same face f , incident to the vertices u and v respectively, the operation
insert(cu, cv) inserts an edge between u and v in the dynamic graph, and embeds it across f
via the specified corners. We provide an operation linkable(u, v) that returns such a pair of
corners cu and cv if they exist. If there are more options, we can list them in constant time
per option after the first. A vertex may be cut through two corners, and linkable vertices
may be joined by corners incident to the same face, if they are connected, or incident to
any face otherwise. That is, joining vertices corresponds to linking them across a face with
some edge e, and then contracting e.

It may often be relevant to change the embedding, e.g. in order to be able to insert an
edge. In a dynamic embedding, the user is allowed to change the embedding by what we
call flips, that is, to turn part of the graph upside down in the embedding. Of course, the
relevance of this depends on what we want to describe with a dynamic plane graph. If the
application is to describe roads on the ground, flipping orientation would not make much

© Jacob Holm and Eva Rotenberg;
licensed under Creative Commons License CC-BY

32nd Symposium on Theoretical Aspects of Computer Science (STACS 2015).
Editors: Ernst W. Mayr and Nicolas Ollinger; pp. 434–446

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62919625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.434
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


J. Holm and E. Rotenberg 435

sense. But if we have the application of graph drawing or chip design in mind, flips are
indeed relevant. In the case of chip design, a layer of a chip is a planar embedded circuit,
which can be thought of as a planar embedded graph. An operation similar to flip is also
supported by most drawing software.

Given two vertices u, v, we may ask whether they can be linked after modifying the
embedding with only one flip. We introduce a new operation, the one-flip-linkable(u, v)
query, which answers that question, and returns the vertices and corners describing the flip
if it exists.

Our data structure is an extension to a well-known duality-based dynamic representation
of a planar embedded graph known as a tree-cotree decomposition [4]. We maintain top-
trees [1] both for the primary and dual spanning trees. We use the fact that they share a
common (extended) Euler tour - in a new way - to coordinate the updates and enable queries
that either tree could not answer by itself. All updates and queries in the combined structure
are supported in O(log2 n), plus, in case of linkable(u, v), the length of the returned list.

1.1 Dynamic Decision Support Systems
An interesting and related problem is that of dynamic planarity testing of graphs. That is,
we have a planar graph, we insert some edge, is the graph still planar, that is, does there
still exist an embedding of it in the plane?

The problem of dynamic planarity testing appears technically harder than our problem,
and in its basic form it is only relevant when the user is completely indifferent to the actual
embedding of the graph. What we provide here falls more in the category of a decision
support system for the common situation where the desired solution is not completely cap-
tured by the simple mathematical objective, in this case planarity. We are supporting the
user in finding a good embedding, e.g., telling what are the options for inserting an edge
(the linkable query), but leave the actual choice to the user. We also support the users in
changing their mind about the embedding, e.g. by flipping components, so as to make edge
insertions possible. Using the one-flip-linkable query we can even suggest a flip that would
make a desired edge insertion possible if one exists.

1.2 Previous work
Dynamic graphs have been studied for several decades. Usually, a fully dynamic graph is
a graph that may be updated by the deletion or insertion of an edge, while decremental or
incremental refers to graphs where edges may only be deleted or inserted, respectively. A
dynamic graph can also be one where vertices may be deleted along with all their incident
edges, or some combination of edge- and vertex updates [14].

Hopcroft and Tarjan [9] were the first to solve planarity testing of static graphs in linear
time. Incremental planarity testing was solved by La Poutre [12], who improved on work by
Di Battista, Tamassia, and Westbrook [2,3,15], to obtain a total running time of O(α(q, n))
where q is the number of operations, and where α is the inverse-Ackermann function. Ga-
lil, Italiano, and Sarnak [8] made a data structure for fully dynamic planarity testing with
O(n 2/3 ) worst case time per update, which was improved to O(n 1/2 ) by Eppstein et al. [5].
For maintaining embeddings of planar graphs, Italiano, La Poutré, and Rauch [10] present a
data structure for maintaining a planar embedding of a dynamic graph, with time O(log2 n)
for update and for linkable-query, where insert only works when compatible with the embed-
ding. The dynamic tree-cotree decomposition was first introduced by Eppstein et al. [6] who
used it to maintain the MST of a planar embedded dynamic graph subject to a sequence of

STACS 2015



436 Dynamic Planar Embeddings

change-weight(e,∆x) operations in O(logn) time per update. Eppstein [4] presents a data
structure for maintaining the MST of a dynamic graph, which handles updates in O(logn)
if the graph remains plane. More precisely the user specifies a combinatorial embedding
in terms a cyclic ordering of the edges around each vertex. Planarity of the user specified
embedding is checked using Euler’s formula. Like our algorithm, Eppstein’s supports flips.
The fundamental difference is that Eppstein does not offer any support for keeping the em-
bedding planar, e.g., to answer linkable(u, v), the user would in principle have to try all n2

possible corner pairs cu and cv incident to u and v, and ask if insert(cu, cv) violates planarity.
As far as we know, the one-flip-linkable query has not been studied before. Technically

it is the most challenging operation supported in this paper.
The highest lower bound for the problem of planarity testing is Pǎtraşcu’s Ω(logn) lower

bound for fully dynamic planarity testing [13]. From the reduction it is clear that this lower
bound holds as well for maintaining an embedding of a planar graph as we do in this article.

2 Maintaining a dynamic embedding

In this section we present a high-level overview of a data structure to maintain a dynamic
embedding of a planar graph. In the following, unless otherwise stated, we will assume
G = (V,E) is a planar graph with a given combinatorial embedding and that G∗ = (F,E∗)
is its dual.

Our primary goal is to be able to answer linkable(u, v), where u and v are vertices:
Determine if an edge between u and v can be added to G without violating planarity and
without changing the embedding. If it can be inserted, return the list of pairs of corners
(see Definition 3 below). Each corner-pair, (cu, cv), describes a unique place where such an
edge may be inserted. If no such pair exists, return the empty list.

The data structure must allow efficient updates such as insert, remove, cut, join, and
flip. We defer the exact definitions of these operations to Section 2.4.

As in most other dynamic graph algorithms we will be using a spanning tree as the main
data structure, and note:

I Observation 1. If ET ⊆ E induces a spanning tree T in G, then (E \ ET )∗ induces a
spanning tree T ∗ in G∗ called the co-tree of T .

I Observation 2. If u and v are vertices, T is spanning tree, and e is any edge on the
T -path between u and v, then any face containing both u and v lies on the cycle induced by
e∗ in the co-tree T ∗.

Thus the main idea is to search a path in the co-tree. This is complicated by the fact (see
Figure 1) that the set of faces that are adjacent to u and/or to v need not be contiguous
in T ∗, so it is possible for the cycle to change arbitrarily between faces that are adjacent to
any combination of neither, one, or both of u, v.

Our linkable query will consist of two phases. A marking phase, in which we "activate"
(mark) all corners incident to each of the two vertices we want to link (see Section 2.2), and
a searching phase, in which we search for faces incident to "active" (marked) corners at both
vertices (see Section 2.3). But first, we define corners.

2.1 Corners and the extended Euler tour
The concept of a corner in an embedded graph turns out to be very important for our data
structure. Intuitively it is simply a place in the edge list of a vertex where you might insert
a new edge, but as we shall see it has many other uses.



J. Holm and E. Rotenberg 437

u v

Figure 1 The co-tree path may switch arbitrarily
between faces that are adjacent to any combination
of neither, one, or both of u, v.

a

b

c

d

e
f

g
h

i

1

2

3 8

18

17

4
5

6

7
9

10
11

12

13
14

15

16

Figure 2
This graph has extended Euler Tour 1a2b3c4d5b6e7d8f9e. . .18h,
or, to write only the edges: abcdbedfegahgficih. Edges not in
the spanning tree are drawn with dotted lines.

I Definition 3. If G is a non-trivial connected, combinatorially embedded graph, a corner
in G is a 4-tuple (f, v, e1, e2) where f is a face, v is a vertex, and e1, e2 are edges (not
necessarily distinct) that are consecutive in the edge lists of both v and f .
If G = ({v}, ∅) and G∗ = ({f}, ∅), there is only one corner, namely the tuple (f, v).

Note that faces and vertices appear symmetrically in the definition. Thus, there is a one-
to-one correspondence between the corners of G and the corners of G∗. This is important
because it lets us work with corners in G and G∗ interchangeably. Even more interesting is:

I Observation 4. Given a spanning tree T of G, there is a natural extension of the concept
of an Euler tour of T into an extended Euler tour EET(T ) as a cyclic arrangement that
contains each edge in G exactly twice and each corner in G exactly once (see Figure 2).
Furthermore, the corresponding tour EET(T ∗) in G∗ defines exactly the opposite cyclical
arrangement of the corresponding edges and corners in G∗.

Thus, segments of the extended Euler tour translate directly between T and T ∗. By segment,
we mean any contiguous sub-list of the cycle.

The high level algorithm (to be explained in detail later) is now to build a structure
consisting of an arbitrary spanning tree T and its co-tree T ∗ such that we can
1. Find an edge e on the T -path between u and v. This is easy.
2. Mark all corners incident to u and v in T . This is complicated by the existence of vertices

of high degree, so a lazy marking scheme is needed. However, it is easier than marking
them in T ∗ directly, since each vertex has a unique place in T and no place in T ∗.

3. Transfer those marks from T to T ∗ using Observation 4. We can do this as long as the
lazy marking scheme works in terms of segments of the extended Euler tour.

4. Search the cycle induced by e∗ in T ∗ for faces that are incident to a marked corner on
both sides of the path.

2.2 Marking scheme
We need to be able to mark all corners incident to the two query vertices u and v, and we
need to do it in a way that operates on segments of the extended Euler tour. To this end

STACS 2015



438 Dynamic Planar Embeddings

Figure 3 The vertex w
is a boundary vertex of the
green clusters, but not of
their blue parent clusters.

w w

we will maintain a top tree over T (see [1]).
Given a tree T , a top tree for T is a binary tree. At the lowest level, its leaves are the

edges of T . Its internal nodes, called clusters, are sub-trees of T with at most two boundary
vertices. At the highest level its root is a single cluster containing all of T . A non-boundary
vertex of the subset S ⊂ V may not be adjacent to a vertex of V \ S. A cluster with two
boundary vertices is called a path cluster, and other clusters are called leaf clusters. Any
internal node is formed by the merged union of its (at most two) children. All operations
on the top tree are implemented by first breaking down part of the old tree from the top
with O(logn) calls to a split operation, end then building the new tree with O(logn) calls
to a merge operation.

I Observation 5. We can maintain a top tree over T such that each cluster consists of edges
from at most two segments of EET(T ), using O(logn) calls to merge and split per update.
Path clusters will have edges from two segments, and leaf clusters, one segment.

The operation expose on the top tree takes one or two vertices and make them boundary
of the level root cluster. Modifying this only slightly, one may even expose corners, giving
complete control over which EET(T ) segment is available for information or modification.
We may even expose any constant number of vertices or corners, but then at the highest
level of the top tree, in stead of only T , we may have some constant number of clusters.

I Observation 6. Whenever a merge of two clusters in the top tree causes a vertex w to
stop being a boundary vertex (see Figure 3), all corners incident to w are contained in one
or two EET(T ) segments. These segments will be sub-segments of the (one or two) segments
corresponding to the parent cluster C (blue in Figure 3), and will not contain any corners
incident to the (one or two) boundary vertices of C.

Now suppose we associate a (lazy) deactivation count with each corner that is 0 before we
start building the top tree. Define the merge operation on the top tree such that whenever a
merge discards a boundary vertex we deactivate all corners on the at most two segments of
EET(T ) mentioned in Observation 6 by increasing that count (and define the split operation
on the top tree to reactivate them as necessary). When the top tree is complete, the corners
that are still active (have deactivation count 0) are exactly those incident to the boundary
vertices of the root of the top tree. These boundary vertices are controlled by the expose
operation on the top tree and changing the boundary vertices require only O(logn) merges
and splits, so we have now argued the following

I Lemma 7. We can mark/unmark all corners incident to vertices u and v by increasing
and decreasing the deactivation counts on O(logn) segments of the extended Euler tour.

What we really want is to be able to search for the marked corners in T ∗, so instead of
storing the counts (even lazily) in the top tree over T , we will store them in a top tree over
T
∗. Again, each cluster in this top tree covers one or two segments of the extended Euler

tour. For each segment S we keep track of the minimum deactivation count cmin(S), and
a δ(S) that needs to be applied to all corners in the segment. To update the deactivation
counts of an arbitrary segment S, all we need to do is modify the O(logn) clusters that are
affected, which can be done in O(logn) time, leading to



J. Holm and E. Rotenberg 439

I Lemma 8. We can maintain a top tree over T ∗ that has cmin and δ values for each EET
segment in each cluster in O(log2 n) time per change to the marked u and v vertices.

I Observation 9. This is enough for, given a face f and a vertex u, checking whether f is
incident to u.

2.3 Linkable query
Unfortunately, the cmin and δ values discussed in Section 2.2 are not quite enough to let us
find the corners we are looking for. We can use it to ask what marked corners a given face
is incident to, but we do not have enough to find pairs of marked corners on opposite sides
of the same face on the co-tree path.

As noted in Observation 2 all candidates to a common face for two given vertices u and
v, must lie on some path in the dual tree. And a path which is easily found! Since the dual
of a primal tree edge induces a cycle that separates u and v, we may use the path between
the dual endpoints f, g of any edge on the primal tree path between u and v. Furthermore,
once we expose the path (f, g) in the dual tree, if f 6= g, it will have two EET-segments:
the minimum deactivation count of one EET-segment is 0 iff any non-endpoint faces are
incident to v, the other iff any are incident to u. Checking the endpoint faces can be done
(cf. Observation 9), but to find non-endpoint faces we need more structure.

To just output one common face, our solution is for each path cluster in the top tree over
the co-tree to keep track of a single internal face fmin on the cluster path that is incident
to minimally deactivated corners on either side of the cluster path if such a face exists.

I Lemma 10. We can maintain a top tree over T ∗ that has cmin and δ values for each
EET-segment in each cluster and fmin values for each path cluster in O(log2 n) time per
change to the marked u and v vertices.

Proof. Each merge only has to check the at most two fmin values at the children and may
discard or keep them based solely on the cmin and δ values available. J

I Lemma 11. We can support each linkable(u, v) in O(log2 n) time per operation.

Proof. If u and v are not in the same connected component we pick any corners cu and cv

adjacent to u and v and return them. Otherwise we use expose(u, v) on the top tree over T
to activate all corners adjacent to u and v and to find an edge e on the T -path from u to
v (e.g. the first edge on the path). Let f, g be the endpoints of e∗, and call expose(f, g) on
the top tree over T ∗. Let h be the fmin value of the resulting root. We can now test each of
f, g, h using the cmin values to find the desired corners if they exist. J

I Lemma 12. If there are more valid answers to linkable(u, v) we can find k of them in
O(log2 n+ k) time.

Proof. For each leaf cluster and for each side of each path cluster we can maintain the
list of minimally deactivated corners adjacent to each boundary vertex. Then, instead of
maintaining a single face fmin for each path cluster, we can maintain a linked list of all
relevant faces in the same time. And for each side of each face in the list we can point
to a list of minimally deactivated corners that are adjacent to that side. For leaf-clusters,
we point to a linked list of minimally deactivated corners incident to the boundary vertex.
Upon the merge of clusters, face-lists and corner-lists may be linked together, and the point
of concatenation is stored in the resulting merged cluster in case of a future split. Note that
each face occurs in exactly one face-list.

STACS 2015



440 Dynamic Planar Embeddings

As before, to perform linkable(u, v), expose u, v in the primal tree. Let e0 be an edge on
the tree-path between u and v, and expose the endpoints of e∗0 in the dual top tree. Now, the
maintained face-list in the root of the dual top tree contains all faces incident to u, v, except
maybe the endpoints of e∗0, which can be handled separately, as before. The total time is
therefore O(log2 n) for the necessary expose operations, and then O(1) for each reply. J

I Observation 13. If we separately maintain a version of this data structure for the dual
graph, then for faces f, g, linkable(f, g) in that structure lets us find vertices that are incident
to both f and g.

2.4 Updates
In addition to the query, our data structure supports the following set of update operations:

insert(cu, cv) where cu and cv are corners that are either in different connected compon-
ents, or incident to the same face. Adds a new edge to the graph, inserting it between
the edges of cu at one end and between the edges of cv at the other. Returns the new
edge.
remove(e). Removes the edge e from the graph. Returns the two corners that could be
used to insert the edge again.
join(cu, cv) where cu and cv are corners that are either in separate components of the
graph or in the same face. Combines the vertices u and v into a single new vertex w
and returns the two new corners cw and c′w that may be used to split it again using
cut(cw, c

′
w).

cut(cw, c
′
w) where cw and c′w are corners sharing a vertex w. Splits the vertex into two

new vertices u and v and returns corners cu and cw that might be used to join them
again using join(cu, cv).
flip(C) where C is any connected component of the graph. Reverses the order of the
edges at each vertex/face cycle of the component.
When calling remove(e) on a non-bridge tree-edge e, we need to search for a replacement

edge. Luckily, e∗ induces a cycle in the dual tree, and any other edge on that cycle is
a candidate for a replacement edge. If we like, we can augment the dual top tree so we
can find the minimal-weight replacement edge, simply let each path cluster remember the
cheapest edge on the tree-path, and expose the endpoints of e∗. If we want to keep T as a
minimum spanning tree, we also need to check at each insert and join that we remove the
maximum-weight edge on the induced cycle from the spanning tree.

In general, when we need to update both the top trees over T and T ∗ we must be careful
that we first do the splits needed in the top tree over T to make each unchanged sub-tree into
a (partial) top tree by itself, then update the top tree over T ∗ and finally do the remaining
splits and merges to rebuild the top tree over T . This is necessary because the merge and
split we use for T depend on T and T ∗ having related extended Euler tours.

α
αp
α

f2

f1

Figure 4 An articulation flip at the
vertex α.

Any change to the graph, especially to the span-
ning tree, implies a change to the extended Euler
Tour. Furthermore, any deletion or insertion of an
edge implies a merge or split in the dual tree. E.g.
if an edge is inserted across a face, that face is split
in two. As a more complex example, if the non-
bridge tree-edge e = (u, v) is deleted, the replace-
ment edge is removed from the dual tree, and the
endpoints of e∗ are merged.



J. Holm and E. Rotenberg 441

u

v v

u

Figure 5 A separation flip at a separation pair
(blue). The flip makes vertex u linkable with vertex v.

Finally, for flip to work we have to use a version of top trees that is not tied to a specific
clockwise orientation of the vertices. The version in [1] that is based on a reduction to
Frederickson’s topology trees [7] works fine for this purpose.

I Definition 14 (Articulation flip). Having vertex split and vertex join functions, we may
perform an articulation-flip — a flip in an articulation point: Given a vertex α incident to
the face f1 in two corners, c and c′, we may cut through c, c′, obtaining two graphs G1, G2,
having split α in vertices α1 ∈ G1, α2 ∈ G2, and having introduced new corners c1, c2 where
we cut. Now, given a corner αp incident to α1 and incident to some face f2, we may join α1
with α2 by the corners α2, αp, with or without having flipped the orientation of G2.

I Definition 15 (Separation flip). Similarly, given a separation pair α, β, incident to the
faces f, g with corners c1, . . . c4, we may split through those corners, obtaining two graphs.
We may then flip the orientation of one of them, and rejoin. We call this a separation-flip.

3 One-flip linkable query

Given vertices u, v, we have already presented a data structure to find a common face for
u, v. Given they do not share a common face, we will determine if an articulation flip exists
such that an edge between them can be inserted, and given no such articulation-flip exists,
we will determine if a separation-flip that makes the edge insertion (u, v) possible exists.

Let f1 and f2 be faces in G, and let S be a subgraph of G. We say that S separates f1
and f2 if f1 and f2 are not connected in G∗ \ (E[S])∗. Here, E[X] denotes the set of edges
of the subgraph X, E[f ] the edges incident to the face f , and V [f ] the incident vertices.

I Observation 16. Given a cycle C that is induced in T ∪ {e} by some edge e and given
any two faces f1, f2 not separated by C, any face f such that C ∪E[f ] separates f1 and f2
lies on the path f1 · · · f2 in T ∗.

v' v

u

π(v)

π(u)

x

y

π(v')

fu

fv

Figure 6 The faces fu and fv

have five common vertices, and
there are eight flip-components
with respect to them.

Let f1 and f2 be faces of G, and let S = V [f1] ∩
V [f2] be the set of vertices they have in common. Let C
denote the set of corners between vertices in S and faces in
{f1, f2}. The sub-graphs obtained by cutting G through
all the corners of C are called flip-components of G w.r.t.
f1 and f2. Flip-components which are only incident to one
vertex of S can be flipped with an articulation-flip, and
flip-components incident to two vertices can be flipped
with a separation-flip. (See Figure 6.)

I Observation 17. Note that the perimeter of a flip com-
ponent always consists of the union of a path along the
face of fu with a path along the face of fv. One of these
paths is trivial (equal to a point) exactly when u, v are
linkable via an articulation-flip.

Given vertices u, v in G, that are connected and not incident to a common face, we wish
to find faces fu and fv such that u and v are in different flip-components w.r.t. fu and fv.

STACS 2015



442 Dynamic Planar Embeddings

3.1 Finding one face
Let u and v be given vertices, and assume there exists faces fu and fv such that u ∈
V [fu] \ V [fv], v ∈ V [fv] \ V [fu], and u and v are in different flip-components w.r.t. fu and
fv.

u

s

uL
uR

fu

Figure 7 The co-tree path from uL to
uR goes through fu. The proof uses that
the tree-path from u to v goes through
some s ∈ S on the boundary of u’s flip-
component.

Let uL, uR be the left and right faces adjacent
to the first edge on the path from u to v. Similarly
let vL, vR be the left and right faces adjacent to the
first edge on the path from v to u.

I Lemma 18. Face fu is on the T ∗-path uL · · ·uR

and face fv is on the T ∗-path vL · · · vR.

Proof. For symmetry reasons, we need only be con-
cerned with the case fu. The perimeter of a flip-
component consists of edges incident to fu and
edges incident to fv (see Observation 17). Further-
more, in order for u, v to be linkable via a flip, u
needs to lie on the perimeter of its flip-component. We also know that the tree-path from
v to u must go through a point s in S which lies on the boundary of u’s flip-component.
Thus, there must exist a path p in G from π ∈ S to u, consisting only of edges incident to
fu. Note that u /∈ S since u, v were not already linkable. If the first edge eu on the tree path
from u to v is not already incident to fu, then the union of p and the tree must contain an
induced cycle containing eu, separating uL from uR, induced by an edge ei incident to fu.
(See Figure 7.) But then, the co-tree path from uL to uR goes through e∗i , which means it
goes through fu. J

I Lemma 19. If there exists an induced cycle C separating fu from fv such that u /∈ V [C]
and v ∈ V [C], then fu = meet(uL, uR, f) where f ∈ {vL, vR} is the face that is on the same
side of C as u. Here, meet(a, b, c) denotes a’s projection to the path b · · · c.

Proof. By Lemma 18 fu is on the path uL · · ·uR. And since C ∪E[fu] separates f from uL

and uR it is on the paths uL · · · f and uR · · · f by Observation 16. J

I Lemma 20. If there exists an induced cycle C separating fu from fv such that u 6∈
V [C] and v 6∈ V [C], then either fu = meet(uL, uR, vL) = meet(uL, uR, vR) or fv =
meet(vL, vR, uL) = meet(vL, vR, uR).

Proof. Let e be the edge in C \ T , and let eu, ev be the faces adjacent to e that are on the
same side of C as fu and fv respectively. Then e is on all 4 paths in T ∗ with uL or uR at one
end and vL or vR at the other. At least one of u, v is in a different flip-component from e, so
we can assume without loss of generality that u is. By Lemma 18 fu is on the path uL · · ·uR.
And since C∪fu separates uL and uR from eu, fu is on both the paths uL · · · eu and uR · · · eu

by Observation 16. Thus fu = meet(uL, uR, eu) = meet(uL, uR, vL) = meet(uL, uR, vR). J

I Lemma 21. If an induced cycle C separates fu from fv such that u ∈ V [C] and v ∈
V [C], then either fu = meet(uL, vL, vR) = meet(uL, uR, vR) or fu = meet(uR, vL, vR) =
meet(uL, uR, vL) or fv = meet(vL, uL, uR) = meet(vL, vR, uR) or fv = meet(vR, uL, uR) =
meet(vL, vR, uL).

Proof. Let e be the edge in C \ T , and let eu, ev be the faces adjacent to e that are on the
same side of C as fu and fv respectively. Then e is on all 4 paths in T ∗ with uL or vR at one



J. Holm and E. Rotenberg 443

end and vL or uR at the other. Assume that uL and vR are on the side of C containing fu

and uR and vL are on the side of C containing fv. At least one of u, v is in a different flip-
component from e, so assume that v is. By lemma 18 fu is on the path uL · · · eu ⊂ uL · · ·uR.
And since C ∪fu separates uL and eu from vR it is on both the paths uL · · · vR and eu · · · vR

by Observation 16. Thus fu = meet(uL, eu, vR) = meet(uL, vL, vR) = meet(uL, uR, vR).
The remaining cases are symmetric. J

I Theorem 22. If fu, fv exist, either fu ∈ {meet(uL, uR, vL),meet(uL, uR, vR)} or fv ∈
{meet(uL, vL, vR),meet(uR, vL, vR)}.

Proof. If they exist there is at least one induced cycle C separating them. This cycle must
have the properties of at least one of Lemmas 19, 20, or 21. J

By computing the at most two different meet values and checking which ones (if any)
contain u or v we therefore get at most two candidates and are guaranteed that at least one
of them is in {fu, fv} if they exist.

I Lemma 23. Given a top tree over a tree T , with vertices a, b, c ∈ T , we can find
meet(a, b, c) in logarithmic time.

Proof. Split all clusters containing a, b, or c as a non-boundary vertex. There are only
O(logn) of those. After these split-operations, we have a tree with O(logn) vertices. Use
this tree to find meet(a, b, c) in linear time. J

3.2 Finding the other face
I Lemma 24. Let u, v, and fu be given. Then the first edge eL on fu · · · vL or the first edge
eR on fu · · · vR induces a cycle C(eR) or C(eL) in T that separates fu from fv.

Proof. By lemma 18, fv is on vL · · · vR in T ∗, so the first edge on fu · · · fv is also the first
edge on either fu · · · vL or fu · · · vR. J

Thus given the correct fu we can find at most two candidates for an edge e that induces
a cycle C(e) in T that separates fu from fv, and be guaranteed that one of them is correct.

I Observation 25. For each vertex, v, we may consider the projection π(v) of v onto the
cycle C. For each flip-component, X, we may consider the projection π(X) = {π(v) |
v ∈ X}. If X is an articulation-flip component, the projection π(X) is a single point in
S = V [fu] ∩ V [fv]. If X is a separation-flip component, its projection is a segment of the
cycle, π1 · · ·π2, between the separation pair (π1, π2) ⊂ C(e) where π1, π2 ∈ S.

3.2.1 Finding an articulation-flip
Let (x, y) be any edge inducing a cycle C in T ∪ {(x, y)} that separates fu from fv, let
π(u) = meetT (u, x, y) be the projection of u on C.

Now the articulation-flip cases are not necessarily symmetrical. First we present how to
detect an articulation-flip, given u, v, and fu, if fv plays the role of f2 (see Definition 14).

If the flip-component containing v is an articulation-flip component, then π(v) is an
articulation point incident to both fu and fv, but the opposite is not necessarily the case.
Assume π(v) is incident to both fu and fv and let cu denote a corner between π(v) and fu.

Note that if π(v) is an articulation point with corners c1, c2 both incident to fv, then fv is
an articulation point in the dual graph with corners c1, c2 both incident to π(v). Removing

STACS 2015



444 Dynamic Planar Embeddings

Figure 8 If fv is an articulation
point, so is π(v). But then the co-tree
path from uL to vL must go through
fv. Left: Primal graph. Right: Dual
graph.

π(v)

fv

v
u

fv

π(v)

v uL
vR

fv from the dual graph would split its component into several components, and clearly, aside
from fv, only faces in one of these components may contain faces incident to v. Any path in
the co-tree starting and ending in different components w.r.t the split will have the property
that the first face incident to v on that path is fv. (See Figure 8.)

Now, in the case fu = f1 and fv = f2, to find the corner of π(v) incident to fu, we can
simply use query(π(v), u) from before, which will return a corner of fu incident to π(v). To
find the two corners of fv: With the dual structure (see Observation 13) we may mark the
face fv, and expose the vertices u, v. Now, π(v) has a unique place in the face-list of some
cluster — if and only of that place is in the root cluster, and cmin = 0 for both segments
of that cluster, fv plays the role of f2. That is, iff π(v) has a corner incident to fv to one
side, and a corner incident to fv to the other side. In affirmative case, π(v) appears with at
least one corner to either vertex list; those corners can now be used as cutting-corners for
the articulation-flip.

If instead fv played the role of f1, a similar procedure is done with π(u).

I Theorem 26. Given u, v are not already linkable, we can determine whether u, v are
linkable via an articulation-flip in time O(log2 n).

3.2.2 Finding a separation-flip
Assume v, u are not linkable via an articulation-flip, determine if they are linkable via a
separation-flip.

I Lemma 27. Let (x, y) be any edge inducing a cycle C in T∪{(x, y)} that separates fu from
fv, let π(u) = meetT (u, x, y) be the projection of u on C. Let e1, e2 be the edges incident to
π(u) on C. Then at least one of e1, e2 is in the same flip-component as u w.r.t fu and fv.

Proof. This follows from Observation 25: If π(u) is an endpoint of an arc f1 · · · f2, then
only one of the edges is in the same flip-component. If the projection is not an endpoint,
then both of the edges are in the same flip-component. J

I Lemma 28. Let C be any induced cycle separating fu from fv, let eu be an edge on C in
the same flip-component as u, let f1 be the face adjacent to eu that is separated from fu by
C, and let f2 ∈ {vL, vR} be a face on the same side of C as f1. Then fv is the first face on
f1 · · · f2 that contains v.

Proof. C ∪ E[fv] separates f1 and f2, so by Observation 16 fv is on the f1 · · · f2 path. It
must be the first face on that path that contains v because for any face f after that, C∪V [f ]
does not separate f1 and f2, since it can only touch the part of C between u′ = meet(u, x, y)
and v′ = meet(v, x, y) where (x, y) is the edge inducing C. J

3.3 Finding the separation pair and corners
Assume u, v are not linkable and not linkable via an articulation-flip.



J. Holm and E. Rotenberg 445

I Lemma 29. Given u, v, fu, and fv, let (x, y)∗ be any edge on fu · · · fv inducing a sep-
arating cycle C. If π(u) = π(v) = α, then α is one of the separation points if it is adjacent
to both fu and fv, and otherwise no separation pair for u, v exists. The other separation
point, β, is then the first vertex 6= α adjacent to both fu and fv on either α · · ·x or α · · · y.
If instead π(u) 6= π(v), then α, β are amongst the first two vertices adjacent to both fu and
fv either on π(u) · · ·x and v · · ·x, or on u · · · y and v · · · y.

Proof. If the projection of u equals the projection of v, but u and v are in different flip-
components, then the next point incident to both fu and fv along the cycle to either side
will be the one we are looking for. However, (x, y) may be internal in the flip component
containing u or that containing v, and thus one of the searches may return the empty list.
But then the other will return the desired pair of vertices.

If the projections are different, and do not themselves form the desired pair (α, β), then
we may assume without loss of generality that π(v) does not belong to the flip-component
containing u. Let Xv, Xu denote the flip-components containing u and v, respectively. If
(x, y) is in Xv, such that no edge on π(v) · · ·x is incident to both fu and fv, then the first
vertex on π(v) · · · y incident to fu and fv is α. Recall (Observation 25) that π(Xu) is an arc
π1 · · ·π2 ⊂ C, and suppose without loss of generality π1 is on the path u · · · v. If π(u) = π1,
β is the second vertex on the path u to y incident to both fu and fv, as π(u) itself is the
first. Otherwise, the first such vertex on the path is β. If, on the other hand, (x, y) did not
belong to Xv, let x be the vertex of x, y with the property that the path u · · ·x goes through
π(u). Then the first vertices on the paths to x which are incident to fu and fv both, will
be the desired separation pair. J

I Lemma 30. In the scenario above, we may find the first two vertices on the path incident
to both faces in time O(log2 n).

Proof. We use the dual structure (see Observation 13) to search for vertices incident to fu

and fv. Now since the path π(u) · · ·x is a sub-path of the cycle C induced by (x, y) which
separates fu from fv, all corners incident to fv will be on one side, and all corners incident
to fu will be on the other side of the path, or at the endpoints. Thus, we expose fu and fv in
the dual structure, which takes time O(log2 n). Now expose π(u), x in the primal tree. Since
this path is part of the separating cycle, if cmin = 0 for both segments, then the maintained
vertex-list will contain exactly those vertices incident to both faces, and a corner list for each
of them. We now deal separately with the endpoints exactly as with linkable, by exposing
the endpoint faces one by one in the dual structure, and noting whether cmin = 0 and in
that case, the corner list, for each endpoint. J

We conclude with the following theorem.

I Theorem 31. We can maintain an embedding of a dynamic graph under insert, remove,
split, join, and flip, together with queries that
1. Answer whether an edge can be inserted between given endpoints with no other changes

to embedding, and if so, where.
2. Answer whether there exists a flip that would change the answer for query 1 from “no”

to “yes”, and if so, what flip.
The worst case time per operation is O(log2 n).

Acknowledgments We would like to thank Christian Wulff-Nilsen and Mikkel Thorup for
many helpful and interesting discussions and ideas.

STACS 2015



446 Dynamic Planar Embeddings

References
1 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintain-

ing information in fully dynamic trees with top trees. ACM Transactions on Algorithms,
1(2):243–264, 2005.

2 Giuseppe Di Battista and Roberto Tamassia. Incremental planarity testing. In FoCS,
1989., pages 436–441. IEEE, 1989.

3 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25:956–997, 1996.

4 David Eppstein. Dynamic generators of topologically embedded graphs. SODA ’03, pages
599–608, 2003.

5 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification: I. planarity testing and minimum spanning trees. J. CSS, 52(1):3 – 27, 1996.

6 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
planar graph. J. Algorithms, 13(1):33–54, March 1992. Special issue for 1st SODA.

7 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985.

8 Zvi Galil, Giuseppe F. Italiano, and Neil Sarnak. Fully dynamic planarity testing with
applications. J. ACM, 46:28–91, 1999.

9 John Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
October 1974.

10 Giuseppe F. Italiano, Johannes A. La Poutré, and Monika H. Rauch. Fully dynamic
planarity testing in planar embedded graphs (extended abstract). ESA ’93, Proceedings,
pages 212–223, 1993.

11 David R. Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, pages 648–657, 1994.

12 Johannes A. La Poutré. Alpha-algorithms for incremental planarity testing (preliminary
version). In STOC ’94, pages 706–715. ACM, 1994.

13 Mihai Pătraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006. See also STOC’04, SODA’04.

14 Mihai Pătraşcu and Mikkel Thorup. Planning for fast connectivity updates. In FOCS ’07,
pages 263–271, 2007.

15 Jeffery Westbrook. Fast incremental planarity testing. In W. Kuich, editor, ALP, volume
623, pages 342–353. Springer Berlin Heidelberg, 1992.


	Introduction
	Dynamic Decision Support Systems
	Previous work

	Maintaining a dynamic embedding
	Corners and the extended Euler tour
	Marking scheme
	Linkable query
	Updates

	One-flip linkable query
	Finding one face
	Finding the other face
	Finding an articulation-flip
	Finding a separation-flip

	Finding the separation pair and corners


