51,075 research outputs found

    Dynamic Parameterized Problems and Algorithms

    Get PDF
    Fixed-parameter algorithms and kernelization are two powerful methods to solve NP-hard problems. Yet, so far those algorithms have been largely restricted to static inputs. In this paper we provide fixed-parameter algorithms and kernelizations for fundamental NP-hard problems with dynamic inputs. We consider a variety of parameterized graph and hitting set problems which are known to have f(k)n^{1+o(1)} time algorithms on inputs of size n, and we consider the question of whether there is a data structure that supports small updates (such as edge/vertex/set/element insertions and deletions) with an update time of g(k)n^{o(1)}; such an update time would be essentially optimal. Update and query times independent of n are particularly desirable. Among many other results, we show that Feedback Vertex Set and k-Path admit dynamic algorithms with f(k)log O(1) n update and query times for some function f depending on the solution size k only. We complement our positive results by several conditional and unconditional lower bounds. For example, we show that unlike their undirected counterparts, Directed Feedback Vertex Set and Directed k-Path do not admit dynamic algorithms with n^{o(1) } update and query times even for constant solution sizes k <= 3, assuming popular hardness hypotheses. We also show that unconditionally, in the cell probe model, Directed Feedback Vertex Set cannot be solved with update time that is purely a function of k

    Exponential Time Paradigms Through the Polynomial Time Lens

    Get PDF
    We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as branching and dynamic programming, and to shed light on the true complexity of various problems. As one instantiation, we model branching using the notion of witness compression, i.e., reducibility to the circuit satisfiability problem parameterized by the number of variables of the circuit. We show this is equivalent to the previously studied notion of `OPP-algorithms\u27, and provide a technique for proving conditional lower bounds for witness compressions via a constructive variant of AND-composition, which is a notion previously studied in theory of preprocessing. In the context of parameterized complexity we use this to show that problems such as Pathwidth and Treewidth and Independent Set parameterized by pathwidth do not have witness compression, assuming NP subseteq coNP/poly. Since these problems admit fast fixed parameter tractable algorithms via dynamic programming, this shows that dynamic programming can be stronger than branching, under a standard complexity hypothesis. Our approach has applications outside parameterized complexity as well: for example, we show if a polynomial time algorithm outputs a maximum independent set of a given planar graph on n vertices with probability exp(-n^{1-epsilon}) for some epsilon>0, then NP subseteq coNP/poly. This negative result dims the prospects for one very natural approach to sub-exponential time algorithms for problems on planar graphs. As two other illustrations (more exploratory) of our approach, we model algorithms based on inclusion-exclusion or group algebras via the notion of "parity compression", and we model a subclass of dynamic programming algorithms with the notion of "disjunctive dynamic programming". These models give us a way to naturally classify various parameterized problems with FPT algorithms. In the case of the dynamic programming model, we show that Independent Set parameterized by pathwidth is complete for this model

    Parameterized Streaming Algorithms for Vertex Cover

    Full text link
    As graphs continue to grow in size, we seek ways to effectively process such data at scale. The model of streaming graph processing, in which a compact summary is maintained as each edge insertion/deletion is observed, is an attractive one. However, few results are known for optimization problems over such dynamic graph streams. In this paper, we introduce a new approach to handling graph streams, by instead seeking solutions for the parameterized versions of these problems where we are given a parameter kk and the objective is to decide whether there is a solution bounded by kk. By combining kernelization techniques with randomized sketch structures, we obtain the first streaming algorithms for the parameterized versions of the Vertex Cover problem. We consider the following three models for a graph stream on nn nodes: 1. The insertion-only model where the edges can only be added. 2. The dynamic model where edges can be both inserted and deleted. 3. The \emph{promised} dynamic model where we are guaranteed that at each timestamp there is a solution of size at most kk. In each of these three models we are able to design parameterized streaming algorithms for the Vertex Cover problem. We are also able to show matching lower bound for the space complexity of our algorithms. (Due to the arXiv limit of 1920 characters for abstract field, please see the abstract in the paper for detailed description of our results)Comment: Fixed some typo

    Fast Dynamic Graph Algorithms for Parameterized Problems

    Full text link
    Fully dynamic graph is a data structure that (1) supports edge insertions and deletions and (2) answers problem specific queries. The time complexity of (1) and (2) are referred to as the update time and the query time respectively. There are many researches on dynamic graphs whose update time and query time are o(G)o(|G|), that is, sublinear in the graph size. However, almost all such researches are for problems in P. In this paper, we investigate dynamic graphs for NP-hard problems exploiting the notion of fixed parameter tractability (FPT). We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion parameterized by the solution size kk. These dynamic graphs achieve almost the best possible update time O(poly(k)logn)O(\mathrm{poly}(k)\log n) and the query time O(f(poly(k),k))O(f(\mathrm{poly}(k),k)), where f(n,k)f(n,k) is the time complexity of any static graph algorithm for the problems. We obtain these results by dynamically maintaining an approximate solution which can be used to construct a small problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm for Cluster Vertex Deletion. Until now, only quadratic time kernelization algorithms are known for this problem. We also give a dynamic graph for Chromatic Number parameterized by the solution size of Cluster Vertex Deletion, and a dynamic graph for bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming the parameter is a constant, each dynamic graph can be updated in O(logn)O(\log n) time and can compute a solution in O(1)O(1) time. These results are obtained by another approach.Comment: SWAT 2014 to appea

    Answer Set Solving with Bounded Treewidth Revisited

    Full text link
    Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter. Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for benchmark instances of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full proofs and more example

    Counting Complexity for Reasoning in Abstract Argumentation

    Full text link
    In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.Comment: Extended version of a paper published at AAAI-1

    Dynamic Parameterized Problems

    Get PDF
    In this work, we study the parameterized complexity of various classical graph-theoretic problems in the dynamic framework where the input graph is being updated by a sequence of edge additions and deletions. Vertex subset problems on graphs typically deal with finding a subset of vertices having certain properties that are of interest to us. In real-world applications, the graph under consideration often changes over time and due to this dynamics, the solution at hand might lose the desired properties. The goal in the area of dynamic graph algorithms is to efficiently maintain a solution under these changes. Recomputing a new solution on the new graph is an expensive task especially when the number of modifications made to the graph is significantly smaller than the size of the graph. In the context of parameterized algorithms, two natural parameters are the size k of the symmetric difference of the edge sets of the two graphs (on n vertices) and the size r of the symmetric difference of the two solutions. We study the Dynamic Pi-Deletion problem which is the dynamic variant of the Pi-Deletion problem and show NP-hardness, fixed-parameter tractability and kernelization results. For specific cases of Dynamic Pi-Deletion such as Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we describe improved FPT algorithms and give linear kernels. Specifically, we show that Dynamic Vertex Cover admits algorithms with running times 1.1740^k*n^{O(1)} (polynomial space) and 1.1277^k*n^{O(1)} (exponential space). Then, we show that Dynamic Feedback Vertex Set admits a randomized algorithm with 1.6667^k*n^{O(1)} running time. Finally, we consider Dynamic Connected Vertex Cover, Dynamic Dominating Set and Dynamic Connected Dominating Set and describe algorithms with 2^k*n^{O(1)} running time improving over the known running time bounds for these problems. Additionally, for Dynamic Dominating Set and Dynamic Connected Dominating Set, we show that this is the optimal running time (up to polynomial factors) assuming the Set Cover Conjecture

    DynASP2.5: Dynamic Programming on Tree Decompositions in Action

    Get PDF
    Efficient, exact parameterized algorithms are a vibrant theoretical research area. Recent solving competitions, such as the PACE challenge, show that there is also increasing practical interest in the parameterized algorithms community. An important research question is whether such algorithms can be built to efficiently solve specific problems in practice, that is, to be competitive with established solving systems. In this paper, we consider Answer Set Programming (ASP), a logic-based declarative modeling and problem solving framework. State-of-the-art ASP solvers generally rely on SAT-based algorithms. In addition, DynASP2, an ASP solver that is based on a classical dynamic programming on tree decompositions, has recently been introduced. DynASP2 outperforms modern ASP solvers when the goal is to count the number of solutions of programs that have small treewidth. However, for quickly finding one solutions, DynASP2 proved uncompetitive. In this paper, we present a new algorithm and implementation, called DynASP2.5, that shows competitive behavior compared to state-of-the-art ASP solvers on problems like Steiner tree for low-treewidth graphs, even when the task is to find just one solution. Our implementation is based on a novel approach that we call multi-pass dynamic programming
    corecore