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Abstract
Efficient, exact parameterized algorithms are a vibrant theoretical research area. Recent solving
competitions, such as the PACE challenge, show that there is also increasing practical interest
in the parameterized algorithms community. An important research question is whether such al-
gorithms can be built to efficiently solve specific problems in practice, that is, to be competitive
with established solving systems. In this paper, we consider Answer Set Programming (ASP), a
logic-based declarative modeling and problem solving framework. State-of-the-art ASP solvers
generally rely on Sat-based algorithms. In addition, DynASP2, an ASP solver that is based on a
classical dynamic programming on tree decompositions, has recently been introduced. DynASP2
outperforms modern ASP solvers when the goal is to count the number of solutions of programs
that have small treewidth. However, for quickly finding one solutions, DynASP2 proved uncom-
petitive. In this paper, we present a new algorithm and implementation, called DynASP2.5, that
shows competitive behavior compared to state-of-the-art ASP solvers on problems like Steiner
tree for low-treewidth graphs, even when the task is to find just one solution. Our implementation
is based on a novel approach that we call multi-pass dynamic programming.
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1 Introduction

Answer set programming (ASP) is a logic-based declarative modeling language and problem
solving framework [13], where a program is defined by a set of rules over propositional atoms
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and is interpreted under an extended stable model semantics [15]. Problems are usually
modeled in ASP in such a way that the solutions (called answer sets) of a program directly
correspond to the solutions of the considered problem instance. Computational problems
for disjunctive, propositional ASP, such as deciding whether a program has an answer set,
are complete for the second level of the polynomial hierarchy [8]. In consequence, finding
answer sets usually involves a Sat part (finding a model of the program) and an Unsat part
(minimality check). A variety of ASP solvers based on techniques of Sat solvers are readily
available [3, 11] and have proven to be very successful in solving competitions.

Recently, a dynamic programming based solver (DynASP2 ) that builds upon ideas from
parameterized algorithms has been proposed [10]. The running time of the underlying
algorithm is double exponential in the treewidth of the input program and linear in its size
(a so-called fixed-parameter linear algorithm). DynASP2 roughly works as follows. First, it
computes a tree decomposition of the incidence graph of the given input program. Second, it
solves the program via dynamic programming (DP) on the tree decomposition, traversing
the tree exactly once bottom-up. Both the Sat and Unsat tasks are considered in a single
pass. Once the root node has been reached, complete solutions for the input program can
be constructed, if any exist. The exhaustive nature of DP algorithms, where all potential
solutions are computed locally for each node of the tree decomposition, works well when all
solutions are indeed needed, e.g., for counting answer sets. However, this approach is not
competitive when the task is to construct just one answer set, since space requirements can
be quite extensive, resulting in long running times. Another downside is the fact that DP
algorithms on tree decompositions may exhibit running times that vary considerably, even
on tree decompositions of the exact same width [2].

In this paper, we propose a multi-pass algorithm, called M-DPSINC, for dynamic program-
ming on tree decompositions, as well as a new implementation (DynASP2.5). In contrast to
classical DP algorithms for problems on the second level of the polynomial hierarchy, M-DPSINC
traverses the given tree decomposition multiple times in a bottom-up fashion. During the
first pass, it computes and stores sets of atoms that are relevant for the Sat part (finding a
model of the program) up to the root. In the second pass, it computes and stores sets of
atoms that are relevant for the Unsat part (checking for minimality). Finally, in the third
pass, it links those sets from past two passes together that might lead to an answer set. This
allows us to discard candidates that do not lead to answer sets early on.

In addition, we present technical improvements (including working on non-nice tree
decompositions) and employ dedicated customization techniques for selecting tree decompo-
sitions. These improvements are the main ingredients to speed up the solving process for DP
algorithms. Experiments indicate that DynASP2.5 is competitive, even for quickly finding
some answer set, when solving the Steiner tree problem on graphs of low treewidth. In
particular, DynASP2.5 are able to solve instances that have an upper bound on the incidence
treewidth of 14 (whereas DynASP2 could solve instances of treewidth at most 9) on our
benchmark set1.

Contributions. Our main contributions can be summarized as follows:
1. We establish a novel fixed-parameter linear algorithm (M-DPSINC), which works in multiple

passes and computes Sat and Unsat parts separately.
2. We present an implementation (DynASP2.5)2 and an experimental evaluation.

1 The set is available at https://github.com/daajoe/dynasp_experiments/tree/ipec2017.
2 The sources of our solver are available at https://github.com/daajoe/dynasp/releases/tag/v2.5.0.

https://github.com/daajoe/dynasp_experiments/tree/ipec2017
https://github.com/daajoe/dynasp/releases/tag/v2.5.0
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Related Work. An ASP solver (DynASP2) that is based on single pass DP on tree
decompositions was recently introduced [10]. The solver is dedicated to counting answer sets
for the full ground ASP language. The present paper extends these results by a multi-pass DP
algorithm. In contrast to systems that use encodings in Monadic Second-Order (MSO) [14],
our approach directly treats ASP. Bliem et al. [5] introduced a multi-pass approach and an
implementation (D-FLATˆ2) for DP on tree decompositions solving subset minimization
tasks. Their approach allows to specify DP algorithms by means of ASP. In D-FLATˆ2 one
can see ASP as a meta-language to describe what needs to be done at each node of the tree
decomposition, whereas our work presents an algorithm dedicated to find some answer set
of a program. Further, we require specialized adaptations to the ASP problem semantics,
including three valued evaluation of atoms, handling of non-nice tree decompositions, and
optimizations in join nodes to be competitive. We use in our solver the heuristic tree
decomposition library htd [1]. For other systems we refer to the PACE challenge [7].

2 Formal Background

Tree Decompositions. Let G = (V,E) be a graph, T = (N,F, n) a rooted tree, and
χ : N → 2V a function that maps each node t ∈ N to a set of vertices. We call the sets
χ(·) bags and N the set of nodes. Then, the pair T = (T, χ) is a tree decomposition (TD)
of G if the following conditions hold: (i) for every vertex v ∈ V there is a node t ∈ N with
v ∈ χ(t); (ii) for every edge e ∈ E there is a node t ∈ N with e ⊆ χ(t); and (iii) for any three
nodes t1, t2, t3 ∈ N , if t2 lies on the unique path from t1 to t3, then χ(t1) ∩ χ(t3) ⊆ χ(t2).
We call max{|χ(t)| − 1 | t ∈ N} the width of the TD. The treewidth tw(G) of a graph G is
the minimum width over all possible TDs of G. For some arbitrary but fixed integer k and a
graph of treewidth at most k, we can compute a TD of width 6 k in time 2O(k3) · |V | [6].
Given a TD (T, χ) with T = (N, ·, ·), for a node t ∈ N we say that type(t) is leaf if t has
no children; join if t has children t′ and t′′ with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); int
(“introduce”) if t has a single child t′, χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; rem (“removal”) if
t has a single child t′, χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)|+ 1. If every node t ∈ N has at most
two children, type(t) ∈ {leaf, join, int, rem}, and bags of leaf nodes and the root are empty,
then the TD is called nice. For every TD, we can compute a nice TD in linear time without
increasing the width [6]. Later, we traverse a TD bottom up. Therefore, let post-order(T, t)
be the sequence of nodes in post-order of the induced subtree T ′ = (N ′, ·, t) of T rooted at t.

Answer Set Programming (ASP). ASP is a declarative modeling and problem solving
framework that combines techniques of knowledge representation and database theory. Two
of the main advantages of ASP are its expressiveness and, when using non-ground programs,
its advanced declarative problem modeling capability. Prior to solving, non-ground programs
are usually compiled into ground ones by a grounder. There are classes of non-ground
programs that preserve the treewidth of the input instance after grounding [4]. In this
paper, we restrict ourselves to ground ASP programs. For a comprehensive introduction,
see, e.g., [13]. Let `, m, n be non-negative integers such that ` ≤ m ≤ n, a1, . . . , an

distinct propositional atoms, and l ∈ {a1,¬a1}. A choice rule is an expression of the form
{a1; . . . ; a`} ← a`+1, . . . , am,¬am+1, . . . ,¬an with the intuitive meaning that some subset of
{a1, . . . , a`} is true if all atoms a`+1, . . . , am are true and there is no evidence that any atom
of am+1, . . . , an is true. A disjunctive rule is of the form a1∨· · ·∨a` ← a`+1, . . . , am,¬ am+1,
. . ., ¬an, which, intuitively, means that at least one atom of a1, . . . , a` must be true if all atoms
a`+1, . . . , am are true and there is no evidence that any atom of am+1, . . . , an is true. A rule r

IPEC 2017
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is either a disjunctive or a choice rule. Let Hr := {a1, . . . , a`}, B+
r := {a`+1, . . . , am}, and

B−r := {am+1, . . . , an}. Usually, for a rule r, if B−r ∪B+
r = ∅, we simply write Hr instead of

Hr ← . For a rule r, let at(r) := Hr∪B+
r ∪B−r denote its atoms and Br := B+

r ∪{¬b | b ∈ B−r }
its body. A program P is a set of rules, where at(P ) :=

⋃
r∈P at(r) denotes its atoms. A

set M ⊆ at(P ) satisfies a rule r if (i) r is a disjunctive rule and (Hr ∪ B−r ) ∩M 6= ∅ or
B+

r 6⊆ M or (ii) r is a choice rule. Note that choice rules are always satisfied. M is a
(classical) model of P , denoted by M � P , if M satisfies every rule r ∈ P . The reduct
of a rule r with respect to M , denoted by rM , is defined (i) for a choice rule r as the set
{a← B+

r | a ∈ Hr ∩M,B−r ∩M = ∅} of rules and (ii) for a disjunctive rule r as the singleton
{Hr ← B+

r | B−r ∩M = ∅}. PM :=
⋃

r∈P r
M is called the (GL) reduct of P with respect

to M . A set M ⊆ at(P ) is an answer set of a program P , if M � P and there does not exist
a proper subset M ′ (M , such that M ′ � PM .

I Example 1. Consider program P , consisting of the following nine rules:

P = {

rab︷ ︸︸ ︷
{eab};

rbc︷︸︸︷
{ebc};

rcd︷ ︸︸ ︷
{ecd};

rad︷ ︸︸ ︷
{ead};

rb︷ ︸︸ ︷
ab ← eab;

rd︷ ︸︸ ︷
ad ← ead;

rc1︷ ︸︸ ︷
ac ← ab, ebc;

rc2︷ ︸︸ ︷
ac ← ad, ecd;

r¬c︷ ︸︸ ︷
← ¬ac}. The

set A = {eab, ebc, ab, ac} is an answer set of P , as {eab, ebc, ab, ac} is a minimal model of the
reduct PA = {eab ←; ebc ←; ab ← eab; ad ← ead; ac ← ab, ebc; ac ← ad, ecd}. Now, consider
program R = {a ∨ c← b; b← c,¬g; c← a; b ∨ c← e; h ∨ i← g,¬c; a ∨ b; g ← ¬i; c; {d} ← g}.
The set B = {b, c, d, g} is an answer set of R, since B is a minimal model of the reduct RB =
{a ∨ c← b; c← a; b ∨ c← e; a ∨ b; g; c; d← g}.

In this paper, we mainly consider the output answer set problem, that is, output an
answer set for an ASP program. The decision version of this problem is Σp

2-complete.

Graph Representations of Programs. In order to use TDs for ASP solving, we need
dedicated graph representations of programs. The incidence graph I(P ) of P is the bipartite
graph that has the atoms and rules of P as vertices and an edge a r if a ∈ at(r) for some
rule r ∈ P [10]. The semi-incidence graph S(P ) of P is a graph that has the atoms and
rules of P as vertices and (i) an edge a r if a ∈ at(r) for some rule r ∈ P as well as
(ii) an edge a b for distinct atoms a, b ∈ Hr where r ∈ P is a choice rule. Since, for every
program P , the incidence graph I(P ) is a subgraph of the semi-incidence graph, we have that
tw(I(P )) ≤ tw(S(P )). Further, by definition of TDs and the construction of a semi-incidence
graph, head atoms of each choice rule occur together in at least one bag of the TD.

Sub-programs. Let T = (T, χ) be a nice TD of the semi-incidence graph S(P ) of a program
P . Also, let T = (N, ·, n) and t ∈ N . The bag-program is defined as Pt := P ∩ χ(t). The
set at≤t := {a | a ∈ at(P ) ∩ χ(t′), t′ ∈ post-order(T, t)} is called atoms below t, the program
below t is defined as P≤t := {r | r ∈ Pt′ , t′ ∈ post-order(T, t)}, and the program strictly below
t is P<t := P≤t \ Pt. Since χ(n) = ∅, it holds that P≤n = P<n = P and at≤n = at(P ).

3 A Single Pass DP Algorithm

DynASP2 [10], a dynamic programming-based ASP solver, splits the input program P into
bag-programs based on the structure of a given nice tree decomposition for P and evaluates
each bag-program in turn, storing results in tables for each TD node. The algorithm works
as shown in Figure 1 (following the red DynASP2 arrow) and executes the following steps:
1. Construct a graph representation G(P ) of the given input program P .
2. Compute a TD T of the graph G(P ) by means of some heuristic, thereby decomposing P

into several smaller bag-programs and fixing an ordering in which P will be evaluated.
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Solve local
probl. A(t, . . . )

Store results
in A-Tabs[t] 1. Construct graph G

Store witnesses
in W-Tabs[t]

Compute wit-
nesses of W(t, . . . )

Visit next node
t in post-order Done?

no

yes

2. Comp. TD T of G 3.I done?
no

yes

Visit next node
t in post-order

Purge non-witnesses
Store counter-wit-
nesses in C-Tabs[t]

Compute counter-
wits. of C(t, . . . )

3.II done?
no

yes

Visit next node
t in post-order

Purge non-
counter-witnesses

Store result in
W,C-Tabs[t]

Link counter-wits.
to witnesses

4. Print solution 3.III done?
no

yes
Visit next node
t in post-order

3.I. DPW(T )

3.II. DPC(T )

3.III. DPLW,C(T ,W-Tabs,C-Tabs)

3. DPA(T )

←−DynASP2 DynASP2.5−→

Figure 1 Control flow for DP-based ASP solvers DynASP2 (left) and DynASP2.5 (right).

Listing 1: Algorithm DPA(T ) for Dynamic Programming on TD T for ASP [9].
In: Table algorithm A, nice TD T = (T, χ) with T = (N, ·, n) of G(P ) according to A.
Out: A-Tabs: maps each TD node t ∈ T to some computed table τt.

1 for iterate t in post-order(T,n) do
2 Child-Tabst := {A-Tabs[t′] | t′ is a child of t in T}
3 A-Tabs[t]← A(t, χ(t), Pt, at≤t,Child-Tabst)

3. Algorithm DPA(T ) (see Listing 1 above) specifies the general scheme for this step, assuming
that an algorithm A, which strongly depends on the graph representation, is given. Such
an algorithm A is called a table algorithm that specifies, how the individual bag-programs
for each tree node are evaluated. DPA(T ) works as follows: Traverse the tree decomposition
T in post-order. For every node t ∈ T in the tree decomposition T = ((T,E, n), χ),
run A to compute the table for node t (denoted A-Tabs[t]). Intuitively, each tuple, which
we refer to as row, in the table represents a witness for the existence of a solution for
the bag-program at node t. A-Tabs[t] is computed by taking, as input, the tables of
the child nodes of t, and extending them according to the bag-program Pt. Each row
in A-Tabs[t] consists of a witness set (a set of atoms relevant for the Sat part of the
problem), and a family of counter-witness sets (sets of atoms relevant for the Unsat
part) [10]. This directly follows the definition of answer sets, namely, being models of P
and subset-minimal with respect to PM .

4. For root node n, check if a “solution row” exists in table A-Tabs[n] and print the solution
to the output ASP problem.

With the above general algorithm in mind, we are now ready to propose SINC, a new
table algorithm for solving ASP on the semi-incidence graph (see Listing 2). DPSINC merges
two earlier algorithms for the primal and incidence graph [10].

As in the general approach, SINC computes and stores witness sets, and their correspond-
ing counter-witness sets. However, in addition, for each witness set and counter-witness set,
respectively, we need to store so-called satisfiability states (or sat-states, for short), since the
atoms of a rule may no longer be contained in one single bag of the TD of the semi-incidence
graph. Therefore, we need to remember in each TD node, how much of a rule is already
satisfied. The following describes this in more detail.

IPEC 2017
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Listing 2: Table algorithm SINC(t, χt, Pt, at≤t,Child-Tabst).
In: Bag χt, bag-program Pt, atoms-below at≤t, child tables Child-Tabst of t. Out: Tab. τt.

1 if type(t) = leaf then τt ← {〈∅, ∅, ∅〉} ; /* For Abbreviations see below. */
2 else if type(t) = int, a ∈ χt \ Pt is introduced and τ ′ ∈ Child-Tabst then
3 τt ← {〈M+

a , σ ∪ SatPr(Ṗ (t)
t ,M+

a ), {〈C+
a , ρ ∪ SatPr(Ṗ (t,M+

a )
t , C+

a )〉 | 〈C, ρ〉 ∈ C} ∪
4 {〈C, ρ ∪ SatPr(Ṗ (t,M+

a )
t , C)〉 | 〈C, ρ〉 ∈ C} ∪ {〈M,σ ∪ SatPr(Ṗ (t,M+

a )
t ,M)〉}〉 | 〈M,σ, C〉 ∈ τ ′}

5 ∪ {〈M,σ ∪ SatPr(Ṗ (t)
t ,M), {〈C, ρ ∪ SatPr(Ṗ (t,M)

t , C)〉 | 〈C, ρ〉 ∈ C} 〉 | 〈M,σ, C〉 ∈ τ ′}
6 else if type(t) = int, r ∈ χt ∩ Pt is introduced and τ ′ ∈ Child-Tabst then
7 τt ← {〈M,σ ∪ SatPr({ṙ}(t),M), {〈C, ρ ∪ SatPr({ṙ}(t,M), C)〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}
8 else if type(t) = rem, a 6∈ χt is removed atom and τ ′ ∈ Child-Tabst then
9 τt ← {〈M−a , σ, {〈C−a , ρ〉 | 〈C, ρ〉 ∈ C}〉 | 〈M,σ, C〉 ∈ τ ′}

10 else if type(t) = rem, r 6∈ χt is removed rule and τ ′ ∈ Child-Tabst then
11 τt ← {〈M,σ−r ,

{
〈C, ρ−r 〉 | 〈C, ρ〉 ∈ C, r ∈ ρ

}
〉 | 〈M,σ, C〉 ∈ τ ′, r ∈ σ}

12 else if type(t) = join and τ ′, τ ′′ ∈ Child-Tabst with τ ′ 6= τ ′′ then
13 τt ← {〈M,σ′ ∪ σ′′, {〈C, ρ′ ∪ ρ′′〉 | 〈C, ρ′〉 ∈ C′, 〈C, ρ′′〉 ∈ C′′} ∪ {〈M,ρ ∪ σ′′〉 | 〈M,ρ〉 ∈ C′} ∪
14 {〈M,σ′ ∪ ρ〉 | 〈M,ρ〉 ∈ C′′}〉 | 〈M,σ′, C′〉 ∈ τ ′, 〈M,σ′′, C′′〉 ∈ τ ′′}

For set S and element s, we denote S+
s ←S ∪ {s} and S−s ←S \ {s}.

By definition of TDs and the semi-incidence graph, for every atom a and every rule r of
a program, it is true that if atom a occurs in rule r, then a and r occur together in at least
one bag of the TD. As a consequence, the table algorithm encounters every occurrence of an
atom in any rule. In the end, on removal of r, we have to ensure that r is among the rules
that are already satisfied. However, we need to keep track of whether a witness set satisfies
a rule, because not all atoms that occur in a rule occur together in a bag. Hence, when
our algorithm traverses the TD and an atom is removed we still need to store this sat-state,
as setting this atom to a certain truth value influences the satisfiability of the rule. Since
the semi-incidence graph contains a clique on every set A of atoms that occur together in a
choice rule head, those atoms A occur together in a bag in every TD of the semi-incidence
graph. For that reason, we do not need to incorporate choice rules into the satisfiability
state, in contrast to the algorithm for the incidence graph [10].

In Algorithm SINC (detailed in Listing 2), a row u in the table τt is a triple 〈M,σ, C〉.
The set M ⊆ at(P ) ∩ χ(t) represents a witness set. The family C of rows represents counter-
witnesses, which we will discuss in more detail below. The sat-state σ for M represents
rules of χ(t) satisfied by a superset of M . Hence, M witnesses a model M ′ ⊇ M where
M ′ � P<t ∪ σ. For that reason, a witness set together with its sat-state is called a witness.
We use the binary operator ∪ to combine sat-states, which ensures that rules satisfied in at
least one operand remain satisfied. For a node t, our algorithm considers a local-program
depending on the bag χ(t). Intuitively, this provides a local view on the program.

I Definition 2. Let P be a program, T = (·, χ) a TD of S(P ), t a node of T and R ⊆ Pt.
The local-program R(t) is obtained from R ∪ {← Br | r ∈ R is a choice rule, Hr ( at≤t}3 by
removing all literals a and ¬a from every rule where a 6∈ χ(t).

I Example 3. Observe P (t4)
t4

= {← ebc, rb} and P (t5)
t5

= {c←} for Pt4 and Pt5 of Figure 2.

Since the local-program P (t) depends on the considered node t, we may have different
local-programs for for node t and its child t′. In particular, the programs {r}(t) and {r}(t′)

might already differ for a rule r ∈ χ(t) ∩ χ(t′). In consequence for satisfiability with respect

3 We require to add {← Br | r ∈ R is a choice rule, Hr ( at≤t} in order to decide satisfiability for corner
cases of choice rules involving counter-witnesses of Line 3 in Listing 2.
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∅ t1

eab t2

rab, eab t3

eab t4

rb, eab t5

rb, eab, ab
t6

rbc, ebc, ab

t10

rc1, ebc, ab

t12

rc1, act15

∅ t18

rad, ead t20

rd, ead, ad t23

rcd, ecd, ad t27

rc2, ecd, ad t29

rc2, ac t32

r¬c, ac

t34

∅ t36T:

〈M3.i, σ3.i〉 τ3
〈{eab}, {rab}〉
〈∅, {rab}〉

〈M32.i, σ32.i〉
〈{ac}, {rc2}〉
〈∅, {rc2}〉
〈∅, ∅〉

τ32

〈M6.i, σ6.i〉 τ6

〈{eab, ab}, {rb}〉
〈{eab}, ∅〉
〈{ab}, {rb}〉
〈∅, {rb}〉

〈M12.i, σ12.i〉
〈{ebc, ab}, ∅〉
〈{ebc}, {rc1}〉
〈{ab}, {rc1}〉
〈∅, {rc1}〉

τ12

〈M1.i, σ1.i〉 τ1
〈∅, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{eab}, {rab}, {〈∅, ∅〉}〉
〈∅, {rab}, ∅〉
〈M1.i, σ1.i, C1.i〉 τ1

〈∅, ∅, ∅〉

〈M6.i, σ6.i, C6.i〉 τ6

〈{eab, ab}, {rb}, {
〈{eab}, ∅〉}〉
〈{eab}, ∅, ∅〉
〈{ab}, {rb}, {〈∅, {rb}〉}〉
〈∅, {rb}, ∅〉

〈M12.i, σ12.i, C12.i〉 τ12

〈{ebc, ab}, ∅, {〈{ebc}, {rc1}〉}〉
〈{ebc, ab}, ∅, ∅〉
〈{ebc}, {rc1}, ∅〉
〈{ab}, {rc1}, {〈∅, {rc1}〉}〉
〈{ab}, {rc1}, ∅〉
〈∅, {rc1}, ∅〉

〈M32.i, σ32.i, C32.i〉
〈{ac}, {rc2}, {
〈{ac}, {rc2}〉,
〈∅, {rc2}〉}〉
〈{ac}, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, {
〈∅, {rc2}〉}〉
〈∅, {rc2}, ∅〉
〈∅, ∅, {〈∅, {rc2}〉}〉
〈∅, ∅, ∅〉

τ32

Figure 2 A TD T of the semi-incidence graph S(P ) for program P from Example 1 (center).
Selected DP tables after DPMOD (left) and after DPSINC (right) for nice TD T .

to sat-states, we need to keep track of a representative of a rule. We achieve this by a
function Ṙ(t) : R → 2R(t) that maps a rule in R ⊆ Pt for bag-program Pt to its local-
program, i.e., Ṙ(t)(r) :={r}(t) for r ∈ R. When we compute newly satisfied rules for witness
set M and a set R of rules, we use the function Ṙ(t). Formally, SatPr(Ṙ(t),M) :={r | (r, S) ∈
Ṙ(t),M � S} for M ⊆ χ(t) \ Pt using program S = Ṙ(t)(r) constructed by Ṙ(t) and r ∈ R.

Example 4 provides an explanation of the part of SINC that deals with witnesses only.
Therefore, the resulting algorithm MOD computes only models and is obtained from SINC,
by taking only the first two row positions into account (red and green text in Listing 2).
The remaining position (blue text) can be seen as an algorithm CMOD that computes
counter-witnesses (see [9, Ex. 4]). Note that we discuss selected cases, and we assume that
each row in a table τt is identified by a number, i.e., row i corresponds to ut.i = 〈Mt.i, σt.i〉.

I Example 4. Consider program P from Example 1, TD T = (·, χ) in Figure 2, and the
tables τ1, . . . , τ34, which illustrate computation results obtained during post-order traversal
of T by DPMOD. Figure 2 (left) does not show every intermediate node of TD T . Table
τ1 = {〈∅, ∅〉} as type(t1) = leaf (see Line 1 in Listing 2). Table τ3 is obtained via introducing
rule rab, after introducing atom eab (type(t2) = type(t3) = int). It contains two rows due to
two possible truth assignments using atom eab (Line 3–5). Observe that rule rab is satisfied
in both rows M3.1 and M3.2, since the head of choice rule rab is in at≤t3 (see Line 7 and
Definition 2). Intuitively, whenever a rule r is proven to be satisfied, sat-state σt.i marks r
as satisfied since an atom of a rule of S(P ) might only occur in one TD bag. Consider
table τ4 with type(t4) = rem and rab ∈ χ(t3) \ χ(t4). By definition of TDs of S(P ), we have
encountered every occurrence of any atom in rab. Thus, MOD enforces that only rows where
rab is marked satisfied in τ3, are considered for table τ4. The resulting table τ4 consists of
rows of τ3 with σ4.i = ∅, where rule rab is proven satisfied (rab ∈ σ3.1, σ3.2, see Line 11).
Note that between nodes t6 and t10, an atom and rule remove as well as an atom and rule
introduce node is placed. Observe that the second row u6.2 = 〈M6.2, σ6.2〉 ∈ τ6 does not
have a “successor row” in τ10, since rb 6∈ σ6.2. Intuitively, join node t34 joins only common
witness sets in τ17 and τ33 with χ(t17) = χ(t33) = χ(t34). In general, a join node marks rules
satisfied, which are marked satisfied in at least one child (see Line 13–14).
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Listing 3: Algorithm DPLW,C(T ,W-Tabs,C-Tabs) for linking counter-witnesses to witnesses.
In: Nice TD T = (T, χ) with T = (N, ·, n) of a graph S(P ), mappings W-Tabs[·], C-Tabs[·].
Out: W,C-Tabs: maps t ∈ T to some pair (τWt , τCt ) with τWt ∈W-Tabs[t], τCt ∈ C-Tabs[t].

1 Child-Tabst :={W,C-Tabs[t′] | t′ is a child of t in T}
/* Get for a node t tables of (preceding) combined child rows (CCR) */

2 CCRt :=Π̂τ ′∈Child-Tabstτ
′ /* For Abbreviations see below. */

/* Get for a row ~u its combined child rows (origins) */
3 origt(~u) :={S | S ∈ CCRt, ~u ∈ τ, τ = W(t, χ(t), Pt, at≤t, fw(S))}

/* Get for a table S of combined child rows its successors (evolution) */
4 evolt(S) :={~u | ~u ∈ τ, τ = C(t, χ(t), Pt, at≤t, τ ′), τ ′ ∈ S}
5 for iterate t in post-order(T,n) do

/* Compute counter-witnesses (≺-smaller rows) for a witness set M */
6 subs≺(f,M, S) :={~u | ~u ∈ C-Tabs[t], ~u ∈ evolt(f(S)), ~u = 〈C, · · · 〉, C ≺M}

/* Link each witness ~u to its counter-witnesses and store the results */
7 W,C-Tabs[t]← {(~u, subs((fw,M, S) ∪ subs⊆(fcw,M, S))

| ~u∈W-Tabs[t], ~u= 〈M, · · · 〉, S ∈ origt(u)}
For set I = {1, . . . , n} and sets Si, we define Πi∈ISi :=S1 × · · · × Sn = {(s1, . . . , sn) : si ∈ Si}. Moreover,
for Πi∈ISi, let Π̂i∈ISi :={{{s1}, . . . , {sn}} | (s1, . . . , sn) ∈ Πi∈ISi}. If for each S ∈ Π̂i∈ISi and
{si} ∈ S, si is a pair with a witness and a counter-witness part, let fw(S) :=

⋃
{(Wi,Ci)}∈S{{Wi}} and

fcw(S) :=
⋃
{(Wi,Ci)}∈S{{Ci}} restrict S to the witness or counter-witness parts, respectively.

Since we already explained how to obtain models, we only briefly describe how to compute
counter-witnesses. Family C consists of rows (C, ρ), where C ⊆ at(P ) ∩ χ(t) is a counter-
witness set to M . Similar to the sat-state σ, the sat-state ρ for C under M represents
whether rules of the GL reduct PM

t are satisfied by a superset of C. A counter-witness set
together with its sat-state is called a counter-witness. Thus, C witnesses the existence of
C ′ ( M ′ satisfying C ′ � (P<t ∪ ρ)M ′ since M witnesses a model M ′ ⊇M where M ′ � P<t.
In consequence, there exists an answer set of P if the root table contains 〈∅, ∅, ∅〉.

In order to decide the satisfiability of counter-witness sets, we require local-reducts similar
to local-programs (see Definition 2 and below).

I Definition 5. Let P be a program, T = (·, χ) be a TD of S(P ), t be a node of T , R ⊆ Pt

and M ⊆ at(P ). We define local-reduct R(t,M) as [R(t)]M and Ṙ(t,M) : R → 2R(t,M) as
Ṙ(t,M)(r) :={r}(t,M) for any r ∈ R.

Note that one can now easily refine SatPr(·, ·) such that it takes as first argument
arbitrary functions mapping from rules to programs. In particular, one can then pass the
function Ṙ(t,M) for a set R of rules, and a witness set M ⊆ χ(t) \ Pt, as used in Listing 2.

I Proposition 6 (?, c.f. [10]). Let P be a program and k :=tw(S(P )). Then, the algorithm
DPSINC runs in time O(22k+2 · ‖S(P )‖) and is correct.

4 DynASP2.5: Implementing a III Pass DP Algorithm

The classical DP algorithm DPSINC (Step 3 of Figure 1) follows a single pass approach. It
computes both witnesses and counter-witnesses in one step by traversing the given TD
exactly once. In particular, it exhaustively stores all potential counter-witnesses, even those
where the associated witness does not lead to a solution at the root node. In addition, there

5 Due to space limitations, proofs of statements marked with “?” have been omitted.



J. K. Fichte, M. Hecher, M. Morak, and S. Woltran 17:9

can be a high number of duplicates among the counter-witnesses, which are stored separately.
In this section, we propose a multi-pass algorithm, M-DPSINC, for DP on TDs and a new
implementation (DynASP2.5), which tackles this issue by adapting and extending concepts
for DP on TDs presented in [5]. Our novel algorithm allows for an early cleanup (purging)
of witnesses that do not lead to answer sets. As a consequence, this (i) avoids to construct
expendable counter-witnesses. Moreover, multiple passes enable us to store witnesses and
counter-witnesses separately which, in turn, (ii) avoids storing duplicates of counter-witnesses
and (iii) allows for highly space-efficient data structures (pointers) in practice when linking
witnesses and counter-witnesses together. Figure 1 (following the blue arrows) presents the
control flow of the new multi-pass approach DynASP2.5, where M-DPSINC introduces a much
more elaborate computation in Step 3 (cf. Figure 1).

4.1 The Algorithm
Algorithm M-DPSINC executed as Step 3 runs DPMOD, DPCMOD and new Algorithm DPLMOD,CMOD
in three respective passes (3.I, 3.II, and 3.III) as follows:

3.I. First, we run the algorithm DPMOD, which computes, via a bottom-up traversal, a table
MOD-Tabs[t] of witnesses for every node t in the tree decomposition. Then, via a top-
down traversal, it purges those witnesses from tables MOD-Tabs[t] that do not extend to
a witness in the table for the parent node; these witnesses can never be used to construct
a model (nor answer set) of the program.

3.II. For this step, let CMOD be a table algorithm computing only counter-witnesses of
SINC (blue parts of Listing 2). We execute DPCMOD, which computes all counter-witnesses
for all the witnesses at once and stores the resulting tables in CMOD-Tabs[·]. For every
node t, table CMOD-Tabs[t] contains possible counter-witnesses for subset-minimality.
Again, irrelevant rows are purged.

3.III. Finally, via a bottom-up traversal, for every node t in the TD, witnesses and counter-
witnesses are linked using algorithm DPLMOD,CMOD (see Listing 3). DPLMOD,CMOD takes
previous results and maps rows in MOD-Tabs[t] to a set of rows in CMOD-Tabs[t].

We already explained the table algorithms DPMOD and DPCMOD in the previous section. The
main part of our multi-pass algorithm is the algorithm DPLMOD,CMOD based on the general
algorithm DPLW,C (Listing 3) with W = MOD, C = CMOD, which links those separate
tables together. Before we quickly discuss the core of DPLW,C in Line 5–7, note that Line 2–4
introduce auxiliary definitions. Line 2 combines rows of the child nodes of given node t, which
is achieved by a product over sets where we drop the order and keep sets only. For a row ~u,
Line 3 determines its preceding combined rows that lead to ~u, using table algorithm W. Via
algorithm C, Line 4 derives the succeeding rows (called evolution rows) of a certain child row
combination τ ′ (called origin row). In the actual implementation, origin and evolution rows
are not computed, but represented via pointer data structures, directly linking to W-Tabs[·]
and C-Tabs[·], respectively. Then, the table algorithm DPLW,C applies a post-order traversal
and links witnesses to counter-witnesses in Line 7. DPLW,C searches for origins (orig) of a
witness ~u, uses the counter-witnesses (fcw) linked to these origins, and then determines the
evolution (procedure evol) in order to derive counter-witnesses (procedure subs) of ~u.

I Example 7. Let k be some integer and Pk be the program that consists of the rules
rc :={a1, · · · , ak} ← f , r2 :=← ¬a2, . . ., rk :=← ¬ak, and rf :=← ¬f and rcf :={f} ← .
The rules r2, . . . , rk simulate that only specific subsets of {a1, · · · , ak} are allowed. Rules rf

and rcf enforce that f is set to true. Let T = (T, χ, t3) be a TD of the semi-incidence
graph S(Pk) of program Pk where T = (V,E) with V = {t1, t2, t3}, E = {(t1, t2), (t2, t3)},
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〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉
〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a1, a2}, {r2}, {
〈{a1}, ∅〉,
〈{a2}, {r2}〉, 〈∅, ∅〉}〉
〈{a1, f}, {rf}, ∅〉
〈{a1}, ∅, {〈∅, ∅〉}〉
〈{a2, f}, {rf , r2}, ∅〉
〈{a2}, {r2}, {〈∅, ∅〉}〉
〈{f}, {rf}, ∅〉
〈∅, ∅, ∅〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, {
〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉,
〈{a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1, a2}, {rc, rcf}, {〈{a1}, {rc, rcf}〉,
〈{a2}, {rc, rcf}〉, 〈∅, {rc, rcf}〉}〉
〈{a1, f}, {rc, rcf}, {〈{f}, {rcf}〉,
〈{a1}, {rc}〉, 〈∅, {rc}〉}〉
〈{a1}, {rc, rcf}, {〈∅, {rc, rf}〉}〉
〈{a2, f}, {rc, rcf}, {〈{a2}, {rc}〉,
〈{f}, {rcf}〉}〉
〈{a2}, {rc, rcf}, {〈∅, {rc, rcf}〉}〉
〈{f}, {rc, rcf}, {〈∅, {rc}〉}〉
〈∅, {rc, rcf}, ∅〉

〈C1.i, ρ1.i〉 τCMOD
1

〈{a1, f}, {rcf}〉, 〈{a2, f}, {rcf}〉,
〈{f}, {rcf}〉, 〈{a1, a2}, {rc}〉, 〈{
a1}, {rc}〉, 〈{a2}, {rc}〉, 〈∅, {rc}〉

〈M1.i, σ1.i, C1.i〉 τ1

〈{a1, a2, f}, {rc, rcf}, ∅
〈{a2, f}, {rc, rcf}, ∅〉

〈M2.i, σ2.i, C2.i〉 τ2

〈{a1, a2, f}, {rf , r2}, ∅〉
〈{a2, f}, {rf , r2}, ∅〉

〈M3.i, σ3.i, C3.i〉 τ3

〈{a1, a2, f}, ∅, ∅〉
〈{a2, f}, ∅, ∅〉

Figure 3 Selected DP tables after DPSINC (left) and after M-DPSINC (right) for TD T .

χ(t1) = {a1, · · · , ak, f, rc, rcf}, χ(t2) = {a1, · · · , ak, r2, · · · , rk, rf}, and χ(t3) = ∅. Figure 3
(left) illustrates the tables for program P2 after DPSINC, whereas Figure 3 (right) presents
tables after M-DPSINC was run, which, mainly due to cleanup, are exponentially smaller
in k. Observe that in Pass 3.II, M-DPSINC “temporarily” materializes counter-witnesses for τ1
only, presented in table τCMOD

1 . Hence, using multi-pass algorithm M-DPSINC results in an
exponential speedup. Note that we can extend the program such that we have the same
effect for a TD of minimum width and even if we take the incidence graph. The program Pk

and the TD T also reveal that a different TD of the same width, where f occurs very early
in the bottom-up traversal, would result in a smaller table τ1 even when running DPSINC.

I Theorem 8 (?). For a program P of semi-incidence treewidth k = tw(S(P )), the algo-
rithm M-DPSINC is correct and runs in time O(22k+2 · ‖P‖).

4.2 Implementation Details
Efficient implementations of dynamic programming algorithms on TDs are not a by-product of
computational complexity theory and involve tuning and sophisticated algorithm engineering.
For that reason, we present additional details about implementing the M-DPSINC algorithm
into our prototypical multi-pass solver DynASP2.5.

Even though normalizing a TD (computing a nice TD) can be achieved without increasing
its width, a normalization may artificially introduce additional atoms. Normalization causes
several additional intermediate join nodes among such artificially introduced atoms requiring
a significant amount of total unnecessary computation in practice. That is why, we use
non-nice tree decompositions. In order to still ensure the theoretical runtime bounds, we
limit the number of children per node to a constant. Moreover, linking counter-witnesses to
witnesses efficiently is crucial. The main challenge is to deal with situations where a witness
might be linked to a different family of counter-witnesses depending on different predecessors
of the row (hidden in set notation of Line 9 in Listing 3). In these cases, DynASP2.5 eagerly
creates a “clone” in form of a very light-weighted proxy to the original row and ensures that
only the original row (if at all required) serves as a counter-witness during Pass 3. Together
with efficient caches of counter-witnesses, DynASP2.5 reduces the overhead caused by clones
in practice.

Dedicated data structures are vital. In DynASP2.5, sets of witnesses and satisfied rules
are represented via constant-size bit vectors. We use 32-bit integers to represent whether
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Clasp 3.3.0 34 - - - - 334.5

DynASP2 68 - - - - -

DynASP2.5 28 0.5 3.5 16.6 264.4 285.0

...depgraph 24 10.9 3.4 15.3 251.3 280.9

...joinsize 32 0.7 3.5 16.5 278.3 299.0

Figure 4 Cactus plots showing best and average runtime among five TDs (left). Number of
Timeouts (TO) and average runtime among solved instances (right).

an atom is set to true or a rule is satisfied in the respective bit positions according to the
bag. A restriction to 32-bit integers seems reasonable as we assume, because of practical
memory limitations, that our approach works well on TDs of width ≤ 20. Since state-of-
the-art computers handle constant-sized integers extremely efficiently, DynASP2.5 allows for
efficient projections and joins of rows, as well as subset checks. In order to not recompute
counter-witnesses (in Pass 3.II) for different witnesses, we use a three-valued notation of
counter-witness sets consisting of atoms set to true (T), false (F), or false but true in the
witness set (TW) to build the reduct. Note that only atoms occurring in negations or choice
rules are among the (TW)-atoms, since only these atoms “affect” the corresponding reducts.

Minimum width is not the only optimization goal when computing TDs by means of
heuristics. Instead, using customized TDs that not only optimize the width, but also some
other, relevant feature, works seemingly well in practice [2]. While DynASP2.5 (M-DPSINC)
does not take additional TD features into account, we also implemented a variant (DynASP2.5
depgraph), which prefers one out of ten TDs that intuitively speaking avoids to introduce
head atoms of some rule r in node t, without having encountered every body atom of r
below t, similar to atom dependencies in the program [12]. The variant DynASP2.5 joinsize
minimizes bag sizes of child nodes of join nodes, c.f. [1].

4.3 Experimental Evaluation
We performed experiments to investigate the runtime behavior of DynASP2.5 and its variants,
in order to evaluate whether our multi-pass approach can be beneficial and has practical
advantages over the classical single pass approach (DynASP2). Further, we considered the
dedicated ASP solver clasp 3.3.0. Clearly, we cannot hope to solve programs with graph
representations of high treewidth. However, programs involving real-world graphs such as
graph problems on transit graphs admit TDs of acceptable width to perform DP on TDs.
To get a first intuition, we focused on the Steiner tree problem (St) for our benchmarks.

We mainly inspected the CPU time using the average over five runs per instance (five
fixed seeds allow for some variance in the heuristic TD computation). For each run, we
limited the environment to 16 GB RAM and 1200 seconds CPU time. We used clasp with
improvements for unsatisfiable cores [3] enabled and solution printing/recording disabled.
We also benchmarked clasp with branch-and-bound, which, however, timed out on almost
every instance. The left plot in Figure 4 shows the result of always selecting the best among
five TDs, whereas the right plot shows the average running time. The table in Figure 4
reports average running times (TD computation and Passes 3.I, 3.II, 3.III) among the solved
instances and the total number of timeouts (TO). We consider an instance to time out
when all five TDs exceeded the limit. For the variants depgraph and joinsize, runtimes for
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computing and selecting among ten TDs are included. Our empirical benchmark results
confirm that DynASP2.5 exhibits competitive runtime behavior even for TDs of treewidth
around 14. Compared to clasp, DynASP2.5 is capable of additionally delivering the number
of optimal solutions. In particular, the depgraph variant shows promising runtimes.

5 Conclusion

In this paper, we presented a novel approach for ASP solving based on ideas from parameter-
ized complexity. Our algorithms run in linear time assuming bounded treewidth of the input
program. Our solver applies DP in three passes, thereby avoiding redundancies. Experimental
results indicate that our ASP solver is competitive for certain classes of instances with small
treewidth, where the latest version of the well-known solver clasp hardly keeps up. An
interesting question for future research is whether a linear amount of passes (incremental
DP) can improve the runtime behavior.
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