3,627 research outputs found

    Dynamic critical behavior of the Swendsen--Wang Algorithm for the three-dimensional Ising model

    Full text link
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the three-dimensional Ising model at the critical point. For the dynamic critical exponents associated to the integrated autocorrelation times of the "energy-like" observables, we find z_{int,N} = z_{int,E} = z_{int,E'} = 0.459 +- 0.005 +- 0.025, where the first error bar represents statistical error (68% confidence interval) and the second error bar represents possible systematic error due to corrections to scaling (68% subjective confidence interval). For the "susceptibility-like" observables, we find z_{int,M^2} = z_{int,S_2} = 0.443 +- 0.005 +- 0.030. For the dynamic critical exponent associated to the exponential autocorrelation time, we find z_{exp} \approx 0.481. Our data are consistent with the Coddington-Baillie conjecture z_{SW} = \beta/\nu \approx 0.5183, especially if it is interpreted as referring to z_{exp}.Comment: LaTex2e, 39 pages including 5 figure

    Driven Dynamics of Periodic Elastic Media in Disorder

    Full text link
    We analyze the large-scale dynamics of vortex lattices and charge density waves driven in a disordered potential. Using a perturbative coarse-graining procedure we present an explicit derivation of non-equilibrium terms in the renormalized equation of motion, in particular Kardar-Parisi-Zhang non-linearities and dynamic strain terms. We demonstrate the absence of glassy features like diverging linear friction coefficients and transverse critical currents in the drifting state. We discuss the structure of the dynamical phase diagram containing different elastic phases very small and very large drive and plastic phases at intermediate velocity.Comment: 21 pages Latex with 4 figure

    Mean-field analysis of the q-voter model on networks

    Get PDF
    We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.Comment: 20 pages, 10 figure

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur
    • …
    corecore