905 research outputs found

    Dynamic Modeling of the Angiogenic Switch and Its Inhibition by Bevacizumab

    Get PDF
    We formulate a dynamic model of vascular tumor growth, in which the interdependence of vascular dynamics with tumor volume is considered. The model describes the angiogenic switch; thus the inhibition of the vascularization process by antiangiogenic drugs may be taken into account explicitly. We validate the model against volume measurement data originating from experiments on mice and analyze the model behavior assuming different inputs corresponding to different therapies. Furthermore, we show that a simple extension of the model is capable of considering cytotoxic and antiangiogenic drugs as inputs simultaneously in qualitatively different ways

    Numerical simulation of vascular tumour growth under antiangiogenic treatment: addressing the paradigm of single-agent bevacizumab therapy with the use of experimental data

    Get PDF
    Background: Antiangiogenic agents have been recently added to the oncological armamentarium with bevacizumab probably being the most popular representative in current clinical practice. The elucidation of the mode of action of these agents is a prerequisite for personalized prediction of antiangiogenic treatment response and selection of patients who may benefit from this kind of therapy. To this end, having used as a basis a preexisting continuous vascular tumour growth model which addresses the targeted nature of antiangiogenic treatment, we present a paper characterized by the following three features. First, the integration of a two-compartmental bevacizumab specific pharmacokinetic module into the core of the aforementioned preexisting model. Second, its mathematical modification in order to reproduce the asymptotic behaviour of tumour volume in the theoretical case of a total destruction of tumour neovasculature. Third, the exploitation of a range of published animal datasets pertaining to antitumour efficacy of bevacizumab on various tumour types (breast, lung, head and neck, colon).Results: Results for both the unperturbed growth and the treatment module reveal qualitative similarities with experimental observations establishing the biologically acceptable behaviour of the model. The dynamics of the untreated tumour has been studied via a parameter analysis, revealing the role of each relevant input parameter to tumour evolution. The combined effect of endogenous proangiogenic and antiangiogenic factors on the angiogenic potential of a tumour is also studied, in order to capture the dynamics of molecular competition between the two key-players of tumoural angiogenesis. The adopted methodology also allows accounting for the newly recognized direct antitumour effect of the specific agent.Conclusions: Interesting observations have been made, suggesting a potential size-dependent tumour response to different treatment modalities and determining the relative timing of cytotoxic versus antiangiogenic agents administration. Insight into the comparative effectiveness of different antiangiogenic treatment strategies is revealed. The results of a series of in vivo experiments in mice bearing diverse types of tumours (breast, lung, head and neck, colon) and treated with bevacizumab are successfully reproduced, supporting thus the validity of the underlying model.Reviewers: This article was reviewed by L. Hanin, T. Radivoyevitch and L. Edler

    Overview of pre-clinical and clinical studies targeting angiogenesis in pancreatic ductal adenocarcinoma

    Get PDF
    The importance of angiogenesis in pancreatic ductal adenocarcinoma (PDAC) and its therapeutic potential have been explored in both pre-clinical and clinical studies. Human PDACs overexpress a number of angiogenic factors and their cognate high-affinity receptors, and anti-angiogenic agents reduce tumor volume, metastasis, and microvessel density (MVD), and improve survival in subcutaneous and orthotopic pre-clinical models. Nonetheless, clinical trials using anti-angiogenic therapy have been overwhelmingly unsuccessful. This review will focus on these pre-clinical and clinical studies, the potential reasons for failure in the clinical setting, and ways these shortcomings could be addressed in future investigations of angiogenic mechanisms in PDAC

    Breaking through the glioblastoma micro-environment via extracellular vesicles

    Get PDF
    Glioblastoma (GBM) is the most common and most aggressive brain tumour. Prognosis remains poor, despite the combined treatment of radio- and chemotherapy following surgical removal. GBM cells coexist with normal non-neoplastic cells, including endothelial cells, astrocytes and immune cells, constituting a complex and dynamic tumour micro-environment (TME). Extracellular vesicles (EVs) provide a critical means of bidirectional inter-cellular communication in the TME. Through delivery of a diverse range of genomic, lipidomic and proteomic cargo to neighbouring and distant cells, EVs can alter the phenotype and function of the recipient cell. As such, EVs have demonstrated their role in promoting angiogenesis, immune suppression, invasion, migration, drug resistance and GBM recurrence. Moreover, EVs can reflect the phenotype of the cells within the TME. Thus, in conjunction with their accessibility in biofluids, they can potentially serve as a biomarker reservoir for patient prognosis, diagnosis and predictive therapeutic response as well as treatment follow-up. Furthermore, together with the ability of EVs to cross the blood–brain barrier undeterred and through the exploitation of their cargo, EVs may provide an effective mean of drug delivery to the target site. Unveiling the mechanisms by which EVs within the GBM TME are secreted and target recipient cells may offer an indispensable understanding of GBM that holds the potential to provide a better prognosis and overall quality of life for GBM patients

    Therapeutic Targets and Tumor Microenvironment in Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is a genetically, anatomically, and transcriptionally heterogeneous disease. The prognosis for a CRC patient depends on the stage of the tumor at diagnosis and widely differs accordingly. The tumor microenvironment (TME) in CRC is an important factor affecting targeted cancer therapy. The TME has a dynamic composition including various cell types, such as cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells, as well as extracellular factors that surround cancer cells and have functional and structural roles under physiological and pathological conditions. Moreover, the TME can limit the efficacy of therapeutic agents through high interstitial pressure, fibrosis, and the degradation of the therapeutic agents by enzymatic activity. For this reason, the TME is a fertile ground for the discovery of new drugs. The aim of this narrative review is to present current knowledge and future perspectives regarding the TME composition based on strategies for patients with CRC

    Nano to micro delivery systems: targeting angiogenesis in brain tumors

    Get PDF
    Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain

    Angiogenesis in Spontaneous Tumors and Implications for Comparative Tumor Biology.

    Get PDF
    Blood supply is essential for development and growth of tumors and angiogenesis is the fundamental process of new blood vessel formation from preexisting ones. Angiogenesis is a prognostic indicator for a variety of tumors, and it coincides with increased shedding of neoplastic cells into the circulation and metastasis. Several molecules such as cell surface receptors, growth factors, and enzymes are involved in this process. While antiangiogenic therapy for cancer has been proposed over 20 years ago, it has garnered much controversy in recent years within the scientific community. The complex relationships between the angiogenic signaling cascade and antiangiogenic substances have indicated the angiogenic pathway as a valid target for anticancer drug development and VEGF has become the primary antiangiogenic drug target. This review discusses the basic and clinical perspectives of angiogenesis highlighting the importance of comparative biology in understanding tumor angiogenesis and the integration of these model systems for future drug development
    corecore