6 research outputs found

    Dynamic match kernel with deep convolutional features for image retrieval

    Get PDF
    For image retrieval methods based on bag of visual words, much attention has been paid to enhancing the discriminative powers of the local features. Although retrieved images are usually similar to a query in minutiae, they may be significantly different from a semantic perspective, which can be effectively distinguished by convolutional neural networks (CNN). Such images should not be considered as relevant pairs. To tackle this problem, we propose to construct a dynamic match kernel by adaptively calculating the matching thresholds between query and candidate images based on the pairwise distance among deep CNN features. In contrast to the typical static match kernel which is independent to the global appearance of retrieved images, the dynamic one leverages the semantical similarity as a constraint for determining the matches. Accordingly, we propose a semantic-constrained retrieval framework by incorporating the dynamic match kernel, which focuses on matched patches between relevant images and filters out the ones for irrelevant pairs. Furthermore, we demonstrate that the proposed kernel complements recent methods, such as hamming embedding, multiple assignment, local descriptors aggregation, and graph-based re-ranking, while it outperforms the static one under various settings on off-the-shelf evaluation metrics. We also propose to evaluate the matched patches both quantitatively and qualitatively. Extensive experiments on five benchmark data sets and large-scale distractors validate the merits of the proposed method against the state-of-the-art methods for image retrieval

    Method for classifying images in databases through deep convolutional networks

    Get PDF
    Since 2006, deep structured learning, or more commonly called deep learning or hierarchical learning, has become a new area of research in machine learning. In recent years, techniques developed from deep learning research have impacted on a wide range of information and particularly image processing studies, within traditional and new fields, including key aspects of machine learning and artificial intelligence. This paper proposes an alternative scheme for training data management in CNNs, consisting of selective-adaptive data sampling. By means of experiments with the CIFAR10 database for image classification

    Image Retrieval Using Image Captioning

    Get PDF
    The rapid growth in the availability of the Internet and smartphones have resulted in the increase in usage of social media in recent years. This increased usage has thereby resulted in the exponential growth of digital images which are available. Therefore, image retrieval systems play a major role in fetching images relevant to the query provided by the users. These systems should also be able to handle the massive growth of data and take advantage of the emerging technologies, like deep learning and image captioning. This report aims at understanding the purpose of image retrieval and various research held in image retrieval in the past. This report will also analyze various gaps in the past research and it will state the role of image captioning in these systems. Additionally, this report proposes a new methodology using image captioning to retrieve images and presents the results of this method, along with comparing the results with past research

    Subspace clustering via good neighbors

    Get PDF
    Finding the informative clusters of a high-dimensional dataset is at the core of numerous applications in computer vision, where spectral based subspace clustering algorithm is arguably the most widely-studied methods due to its empirical performance and provable guarantees under various assumptions. It is well-known that sparsity and connectivity of the affinity graph play important rules for effective subspace clustering. However, it is difficult to simultaneously optimize both factors due to their conflicting nature, and most existing methods are designed to deal with only one factor. In this paper, we propose an algorithm to optimize both sparsity and connectivity by finding good neighbors which induce key connections among samples within a subspace. First, an initial coefficient matrix is generated from the input dataset. For each sample, we find its good neighbors which not only have large coefficients but are strongly connected to each other. We reassign the coefficients of good neighbors and eliminate other entries to generate a new coefficient matrix, which can be used by spectral clustering methods. Experiments on five benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of accuracy with a negligible increase in speed

    Simultaneous subspace clustering and cluster number estimating based on triplet relationship

    Get PDF
    In this paper we propose a unified framework to discover the number of clusters and group the data points into different clusters using subspace clustering simultaneously. Real data distributed in a high-dimensional space can be disentangled into a union of low-dimensional subspaces, which can benefit various applications. To explore such intrinsic structure, stateof- the-art subspace clustering approaches often optimize a selfrepresentation problem among all samples, to construct a pairwise affinity graph for spectral clustering. However, a graph with pairwise similarities lacks robustness for segmentation, especially for samples which lie on the intersection of two subspaces. To address this problem, we design a hyper-correlation based data structure termed as the triplet relationship, which reveals high relevance and local compactness among three samples. The triplet relationship can be derived from the self-representation matrix, and be utilized to iteratively assign the data points to clusters. Based on the triplet relationship, we propose a unified optimizing scheme to automatically calculate clustering assignments. Specifically, we optimize a model selection reward and a fusion reward by simultaneously maximizing the similarity of triplets from different clusters while minimizing the correlation of triplets from same cluster. The proposed algorithm also automatically reveals the number of clusters and fuses groups to avoid over-segmentation. Extensive experimental results on both synthetic and real-world datasets validate the effectiveness and robustness of the proposed method

    Deep Image Retrieval: A Survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR.Comment: 20 pages, 11 figure
    corecore