16 research outputs found

    Enhancing cloud security through the integration of deep learning and data mining techniques: A comprehensive review

    Get PDF
    Cloud computing is crucial in all areas of data storage and online service delivery. It adds various benefits to the conventional storage and sharing system, such as simple access, on-demand storage, scalability, and cost savings. The employment of its rapidly expanding technologies may give several benefits in protecting the Internet of Things (IoT) and physical cyber systems (CPS) from various cyber threats, with IoT and CPS providing facilities for people in their everyday lives. Because malware (malware) is on the rise and there is no well-known strategy for malware detection, leveraging the cloud environment to identify malware might be a viable way forward. To avoid detection, a new kind of malware employs complex jamming and packing methods. Because of this, it is very hard to identify sophisticated malware using typical detection methods. The article presents a detailed assessment of cloud-based malware detection technologies, as well as insight into understanding the cloud's use in protecting the Internet of Things and critical infrastructure from intrusions. This study examines the benefits and drawbacks of cloud environments in malware detection, as well as presents a methodology for detecting cloud-based malware using deep learning and data extraction and highlights new research on the issues of propagating existing malware. Finally, similarities and variations across detection approaches will be exposed, as well as detection technique flaws. The findings of this work may be utilized to highlight the current issue being tackled in malware research in the future

    ANTIVIRUS PERFORMANCE EVALUATION AGAINST POWERSHELL OBFUSCATED MALWARE

    Get PDF
    In recent years, malware attacks have become increasingly sophisticated, and the methods used by attackers to evade Windows defenses have grown more complex. As a result, detecting and defending against these attacks has become an ever more pressing challenge for security professionals. Despite significant efforts to improve Windows security, attackers continue to find new ways to bypass these defenses and infiltrate systems. The techniques covered in this paper are all currently active and effective at evading Windows defenses. Our findings underscore the need for continued vigilance and the importance of staying up to date with the latest threats and countermeasures

    Malware Detection and Analysis

    Get PDF
    Malicious software poses a serious threat to the cybersecurity of network infrastructures and is a global pandemic in the form of computer viruses, Trojan horses, and Internet worms. Studies imply that the effects of malware are deteriorating. The main defense against malware is malware detectors. The methods that such a detector employ define its level of quality. Therefore, it is crucial that we research malware detection methods and comprehend their advantages and disadvantages. Attackers are creating malware that is polymorphic and metamorphic and has the capacity to modify their source code as they spread. Furthermore, existing defenses, which often utilize signature-based approaches and are unable to identify the previously undiscovered harmful executables, are significantly undermined by the diversity and volume of their variations. Malware families\u27 variations exhibit common behavioral characteristics that reveal their origin and function. Machine learning techniques may be used to detect and categorize novel viruses into their recognized families utilizing the behavioral patterns discovered via static or dynamic analysis. In this paper, we\u27ll talk about malware, its various forms, malware concealment strategies, and malware attack mechanisms. Additionally, many detection methods and classification models are presented in this study. The method of malware analysis is demonstrated by conducting an analysis of a malware program in a contained environment

    Navigating the Cyber Threat Landscape: A Comprehensive Analysis of Attacks and Security in the Digital Age

    Get PDF
    In this contemporary digital age, cybersecurity stands as a crucial linchpin amid the expanding role of technology in our lives, encountering numerous challenges. This review addresses the imperative need for robust cybersecurity measures as malicious actors continually innovate methods to exploit vulnerabilities in computer systems, networks, and data. The exploration delves into the multifaceted realm of cybersecurity attacks, unveiling the evolving threat landscape and their profound implications. From cybercriminals utilizing phishing attacks to the covert tactics of malware and the disruptive potential of Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks, including Phishing, Zero-Day Exploits, Man-in-the-Middle, and SQL Injection Attacks, the cybersecurity battleground is ever-expanding. The study systematically categorizes cyber threats, scrutinizes their distinctive characteristics, and elucidates the modus operandi of each attack type. Through a meticulous dissection of cybercriminal methods and motivations and a comprehensive evaluation of countermeasure efficacy, this review offers indispensable insights for securing our digital future in an era marked by escalating interconnectivity and technological dependence

    MiMaLo: advanced normalization method for mobile malware detection

    Get PDF
    A range of research procedures have been executed to overcome malware attacks. This research used a malware behavior observe approach on device calls on mobile devices operating gadget kernel. An application used to be mounted on mobile gadget to gather facts and processed them to get dataset. This research used data mining classification approach method and validates it using ten fold cross validation. MiMaLo is a method to normalize a dataset the usage of the min-max aggregate and logarithm function. The application of the MiMaLo method aims to increase the accuracy value. Derived from the experiments, the classifiers overall performance level used to be extensively increasing. The application of the MiMaLo method using the neural network algorithm produces an accuracy of 93.54% with AUC of 0.982

    Beyond the Hype: A Real-World Evaluation of the Impact and Cost of Machine Learning-Based Malware Detection

    Full text link
    There is a lack of scientific testing of commercially available malware detectors, especially those that boast accurate classification of never-before-seen (i.e., zero-day) files using machine learning (ML). The result is that the efficacy and gaps among the available approaches are opaque, inhibiting end users from making informed network security decisions and researchers from targeting gaps in current detectors. In this paper, we present a scientific evaluation of four market-leading malware detection tools to assist an organization with two primary questions: (Q1) To what extent do ML-based tools accurately classify never-before-seen files without sacrificing detection ability on known files? (Q2) Is it worth purchasing a network-level malware detector to complement host-based detection? We tested each tool against 3,536 total files (2,554 or 72% malicious, 982 or 28% benign) including over 400 zero-day malware, and tested with a variety of file types and protocols for delivery. We present statistical results on detection time and accuracy, consider complementary analysis (using multiple tools together), and provide two novel applications of a recent cost-benefit evaluation procedure by Iannaconne & Bridges that incorporates all the above metrics into a single quantifiable cost. While the ML-based tools are more effective at detecting zero-day files and executables, the signature-based tool may still be an overall better option. Both network-based tools provide substantial (simulated) savings when paired with either host tool, yet both show poor detection rates on protocols other than HTTP or SMTP. Our results show that all four tools have near-perfect precision but alarmingly low recall, especially on file types other than executables and office files -- 37% of malware tested, including all polyglot files, were undetected.Comment: Includes Actionable Takeaways for SOC

    CipherTrace: automatic detection of ciphers from execution traces to neutralize ransomware

    Get PDF
    In 2021, the largest US pipeline system for refined oil products suffered a 6-day shutdown due to a ransomware attack [1]. In 2023, the sensitive systems of the US Marshals Service were attacked by a ransomware [2]. One of the most effective ways to fight ransomware is to extract the secret keys. The challenge of detecting and identifying cryptographic primitives has been around for over a decade. Many tools have been proposed, but the vast majority of them use templates or signatures, and their support for different operating systems and processor architectures is rather limited; neither have there been enough tools capable of extracting the secret keys. In this paper, we present CipherTrace, a generic and automated system to detect and identify the class of cipher algorithms in binary programs, and additionally, locate and extract the secret keys and cryptographic states accessed by the cipher. We focus on product ciphers, and evaluate CipherTrace using four standard cipher algorithms, four different hashing algorithms, and five of the most recent and popular ransomware specimens. Our results show that CipherTrace is capable of fully dissecting Fixed S-Box block ciphers (e.g. AES and Serpent) and can extract the secret keys and other cryptographic artefacts, regardless of the operating system, implementation, or input- or key-size, and without using signatures or templates. We show a significant improvement in performance and functionality compared to the closely related works. CipherTrace helps in fighting ransomware, and aids analysts in their malware analysis and reverse engineering efforts
    corecore