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Abstract 

In 2021, the largest US pipeline system for refined oil products suffered a 6-day shutdown due to a ransomware at- 
tack [ 1 ]. In 2023, the sensitive systems of the US Marshals Service were attacked by a ransomware [ 2 ]. One of the 
most effective ways to fight ransomware is to extract the secret keys. The challenge of detecting and identifying 
cryptographic primitives has been around for over a decade. Many tools have been proposed, but the vast majority 
of them use templates or signatures, and their support for different operating systems and processor architectures is 
rather limited; neither have there been enough tools capable of extracting the secret keys. In this paper, we present 
CipherTrace , a generic and automated system to detect and identify the class of cipher algorithms in binary pro- 
grams, and additionally, locate and extract the secret keys and cryptographic states accessed by the cipher. We 
focus on product ciphers, and evaluate CipherTrace using four standard cipher algorithms, four different hashing 
algorithms, and five of the most recent and popular ransomware specimens. Our results show that CipherTrace is 
capable of fully dissecting Fixed S-Box block ciphers (e.g. AES and Serpent) and can extract the secret keys and 
other cryptographic artefacts, regardless of the operating system, implementation, or input- or key-size, and without 
using signatures or templates. We show a significant improvement in performance and functionality compared to 
the closely related works. CipherTrace helps in fighting ransomware, and aids analysts in their malware analysis 
and reverse engineering efforts. 

Keywords: binary analysis; dynamic analysis; reverse engineering; virtual machine introspection; cipher identification; crypto- 
graphic key identification and extraction 
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ew malware samples are discovered daily, and malware is rapidly
volving and becoming more sophisticated and evasive. Crypto-
raphic algorithms are often proprietary in malware samples, and
nly executables are available. These executables are always obfus-
ated and updated regularly, therefore an analysis tool needs to ac-
ount for potential obfuscation and/or morphism. 

The potential of such a tool is very high, as 23% of malware inci-
ents involve ransomware [ 3 ], and the average cost of a ransomware

ncident has been doubling yearly, reaching a staggering $1.54 mil-
ion in 2023 [ 4 , 5 ]. 

A recent survey on the detection techniques for ransomware has
hown that, fully dissecting Fixed S-Box block ciphers (e.g. AES) takes
are of at least 75% of ransomware specimens out in the wild [ 6 ].
hat is due to the fact that a ransomware becomes obsolete if the
ecret keys can be extracted at runtime. 
The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribut
ited. 
The objective of this paper is to assess the feasibility of automat-
cally detecting generic cryptographic primitives and identifying ci-
hers to neutralize ransomware. It focuses on product ciphers, which
re types of ciphers that employ a combination of substitution, per-
utation, and modular arithmetic operations [ 7 ]. There are two main
se cases for our system: 

� Analyze the activity of a binary, i.e. software. 
� Record a live-system and analyze network or process activity in

a replay snippet. 

Since our system operates on a whole-system level, so an activ-
ty can be binary (e.g. extract ransomware secret keys), or network
e.g. extract SSL keys). Not to mention since we run the analysis on a
eplay, the analysis is repeatable in different configurations and set-
ings. In a real world scenario, such a system could help in situations
1  distributed under the terms of the Creative Commons Attribution License 
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where recovering the key could unlock the systems affected by ran- 
somware [ 8 ]. 

We review state-of-the-art prior works, and design and imple- 
ment CipherTrace . We focus on product ciphers, and evaluate Cipher- 
Trace using four standard cipher algorithms known to be used in 
ransomware, with different implementations on different operating 
systems. Additionally, we use four well-known hashing algorithms,
and five of the most recent and popular ransomware in the wild to 
test its effectiveness in real-world scenarios. The sample we tested are 
the obfuscated specimens used to infect targets since 2018. 

General idea of CipherTrace 

We employ a generic analysis technique to automatically detect and 
identify proprietary cipher algorithms, and extract their secret keys 
and cryptographic states (crypto states for short). A crypto state is 
essentially the cipher- or plaintext(s). In addition to fighting ran- 
somware, our tool is meant to aid researchers in the automated re- 
verse engineering of malicious binaries or system activities. In this 
case, extracting any cryptographic artefact (crypto artefact for short) 
will help dissect the cipher employed. 

To address the limitations of the related work, we list our design 
goals as follows: 

(1) Achieve isolation and have an overarching view on the binary’s 
execution as well as its environment. 

(2) Account for the runtime properties of the cipher, such as rou- 
tines and memory management. 

(3) Account for the cipher’s operational components, such as inter- 
nal state, substitution, or permutation. 

(4) Enable automation to facilitate automated and scalable analysis 
and reverse engineering. 

(5) Locate and extract the cryptographic artefacts, such as secret 
keys and internal cryptographic states. 

Approach and design 

Static analysis approaches have been challenged for decades by ob- 
fuscation, and the accuracy of the results is heavily challenged by po- 
tential morphism [ 9 ]. Dynamic analysis approaches lack higher-level 
semantics, which are present in source code, e.g. functions, memory 
buffers, and data types [ 10 ]. We follow a Virtual Machine Intro- 
spection (VMI) approach, which is a whole-system dynamic analysis 
approach applied by the underlying dynamic analysis platform (i.e.
PANDA). A VMI approach achieves isolation [ 11 ], as the specimen 
is incapable of interacting with the analysis code. VMI enables em- 
ploying higher-level semantics in the analysis (via our PANDA plu- 
gin), and since it runs on a whole-system level, it accounts for pro- 
cesses that may spawn off the specimen. CipherTrace has also proved 
to be resilient to a few classes of code obfuscation and many anti- 
debugging and anti-sandboxing checks and tricks (see the Evaluation 
section). This is due to applying our core concept of identifying cryp- 
tographic elements (crypto elements for short) in the Analysis engine.

To address the lack of higher-level semantics in dynamic anal- 
ysis, we extract such semantics via our PANDA plugin and cross- 
check them on two Intermediate Representations, i.e. TCG (Emu- 
lator) and LLVM (Platform). After which we initiate our analysis by 
looking for the operational components of cryptography, henceforth,
cryptographic elements, such as key-scheduling, round routines, and 
substitution or permutation, then we end up deriving a cipher class 
heuristically following a decision tree as per the previously mentioned 
definition of a product cipher. This novel technique allows us to be 
systematically closer to the features of the cipher as well as to its 
runtime properties, which makes it harder to evade and allows for 
generalization. 

Another challenge of whole-system analysis is the increased rate 
of false positives compared to in-process analysis, since all cascading 
processes (and function calls) are also analyzed. To address that, we 
mainly focus on the intrinsic properties of the cipher algorithm (e.g.
routines, number of executions, and entropy/randomness between 
inputs and outputs), and we aggregate results in the user-space per 
process and per function (the root basic block), and analyze multiple 
Control Flow Graphs (CFGs) in-parallel to increase the confidence 
in results. 

Scope 

As per our threat model, the adversary attempts to hinder the analysis 
by changing the implementation details, e.g. key-size, function names,
and so on. Evaluating the security of the dynamic analysis platform 

and a few classes of code and data flow obfuscation (e.g. flattening the 
control flow, unrolled loops, and obfuscating input/output buffers) 
are out of scope. We focus on product ciphers, targeting mostly block 
ciphers (e.g. AES). 

Obfuscation 

We categorize obfuscation schemes into binary, code, and data obfus- 
cation. Binary obfuscation aims to obfuscate the binary itself, mainly 
to evade static analysis techniques, e.g. packing [ 9 ]. Code obfusca- 
tion aims to obfuscate the control flow or code blocks in a program 

to decrease the readability, e.g. flattening the control flow, or obfus- 
cating the loops [ 12 ]. Data obfuscation aims to obfuscate the data 
flow or memory management in a program [ 12 ]. Dynamic analy- 
sis approaches—including that of CipherTrace —are resilient to code 
packing by default, as only the executed code will be instrumented 
or introspected. And by tracing crypto elements, even if the code is 
obfuscated, the overall runtime features cannot be hidden. So, the 
number of executions of the core cryptographic routine(s) have to be 
reflected, arithmetic instructions have to be replaced by other equiv- 
alent ones, and high randomness/entropy cannot be removed. 

CipherTrace is resilient to a few classes of control flow obfusca- 
tion. For example, a block cipher’s substitution step (i.e. S-Box) is 
quite hard to hide while CipherTrace operates on a whole-system 

level and addresses the cipher’s features and runtime properties 
simultaneously—analyzing multiple CFGs. As far as code obfusca- 
tion is concerned, due to employing introspection, CipherTrace ana- 
lyzes the executed code regardless. 

Contributions 

As a result of our work, our contributions can be summarized as 
follows: 

� We systematically explore detecting and identifying crypto- 
graphic primitives (crypto primitives for short) from introspec- 
tion traces. This is to achieve isolation, increase anti-debugging 
resilience, and run the analysis on a whole-system level having an 
overarching view of an activity. 

� We design generic crypto primitive detection based on the con- 
cept of crypto elements, to account for the design features of a 
given cipher. 

� CipherTrace can also locate and extract secret keys, as well as 
crypto states. It is the only automated tool with such a level of 
granularity, cross-platform support and performance. 
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Table 1. Overview of prior works: CipherTrace is the only one that employs VMI to identify a cipher class, extract the secret keys, achieves 

isolation, and addresses obfuscation. 

System Platform Technique Tasks 

Lutz (2008) [ 13 ] Valgrind DBI-Heuristics T1 
Re-Format (2009) [ 13 ] AutoFormat [ 25 ] DBI-Heuristics T1 
kerckhoffs (2010) [ 15 ] Intel PIN DBI-Heuristics T2, T4 
CipherXRay (2010) [ 16 ] Valgrind DBI-Heuristics T2, T4, T5 
Aligot (2012) [ 17 ] Intel PIN DBI-Heuristics T2, T4 
MovieStealer (2013) [ 24 ] PANDA VMI-Heuristics T3 
Hosfelt (2015) [ 18 ] Intel PIN DBI-ML T2 
CryptoHunt (2017) [ 19 ] Intel PIN DBI-Heuristics T2 
K-Hunt (2018) [ 23 ] Intel PIN DBI-Heuristics T2, T4 
CryptoKnight (2018) [ 20 ] Intel PIN DBI-ML T2 
bacs (2018) [ 21 ] Intel PIN DBI-Heuristics T2 
CipherTrace PANDA VMI-Heuristics T3, T4, T5 

T1 : Analyzes network traffic. T2 : Analyzes binary programs. 
T3 : Analyzes whole system activity. T4 : Locates cryptographic keys. 
T5 : Identifies a cipher class. 
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� We implement and open-source CipherTrace , as well as the tested
benchmark. 

� Our PANDA plugin ( func_stats ) enhanced PANDA’s dynamic
analysis capabilities, assisting researchers in malware analysis,
forensics, and reverse engineering. 

elated work 

n the last two decades, a lot of work has addressed the problem
f detecting and identifying crypto primitives in network traffic and
inary programs via dynamic analysis [ 13–21 ]. All these tools are
nly compatible with Intel processors because they rely on Intel PIN
 22 ], except for a few which are not compatible with Windows [ 13 ,
6 ]. The aforementioned work applies heuristics, except for a few
hich applied Machine Learning (ML) [ 18 , 20 ]. 

esign 

he prior works discussed in this paper focus primarily on detecting
mplementations of certain crypto algorithms (e.g. AES and DES),
ather than detecting a cipher (e.g. a block cipher), except for Ci-
herXRay . 

CipherXRay (2010) [ 16 ], kerckhoffs (2010) [ 15 ], Aligot (2012) [ 17 ],
nd K-Hunt (2018) [ 23 ] are able to locate the secret keys, but they
ack isolation and dismiss higher-level semantics [ 11 ]. It is notewor-
hy that only MovieStealer follows a VMI approach, but it does not
im to identify crypto primitives or their secret keys [ 24 ]. Refer to
able 1 for an overview. 

unctionality 

ligot and kerckhoffs were unable to identify a serpent256 block ci-
her when tested, even whilst having AES in their reference imple-
entations, and K-Hunt addresses only insecure keys. CipherXRay
eeds to recover all input and output parameters of the cipher algo-
ithm, and therefore it experiences various parameter reconstruction
hallenges [ 23 ], unlike CipherTrace , which adopts an offline analy-
is strategy running lightweight heuristics on the functions and the
emory buffers they access. Also, CipherXRay ’s dynamic taint analy-

is may affect the execution [ 23 ], unlike CipherTrace ’s VMI approach
n dynamic analysis. Another limitation for CipherXRay is that it does
ot check the intrinsic properties of the avalanche effect and may suf-
er from false positives. The avalanche effect is a desirable property in
ryptography, wherein flipping a single bit in the key or the plaintext
hanges the ciphertext drastically. More information can be found in
he Evaluation with closely related works section. 

ryptographic primitive detection 

rypto primitive detection relies mostly on basic block detection,
oop detection, instructions profiling, and memory access patterns.
efer to Table 2 for an overview of the different stages in the prior
orks. We add CipherTrace for comparison. 

The task of crypto primitive detection and identification in-
olves going through some (or all) of the following stages: inspec-
ion, traits extraction, information measurement, instructions profil-
ng, and identification. Inspection can be either instrumentation or
ntrospection—the objective is to obtain an execution trace (refer to
able 1 for more information). 

The purpose of traits extraction is to extract the most fundamen-
al features in a binary program, i.e. basic blocks and loops. Infor-
ation measurement determines whether the information is rich in

ontent (entropy) and/or exhibits a high distribution (randomness).
inally, instructions profiling enquires as to what the instructions ex-
ibit in terms of execution context–from ‘operands’ and ‘opcodes’. 

CipherXRay , Re-Format , and bacs are data flow oriented, as they
o not depend on identifying basic blocks or loops. Re-Format em-
loys data lifetime analysis with dynamic taint analysis to identify
he runtime memory buffers in network traffic. CipherXRay employs
ata flow tracking to detect bit-level flips in input and output buffers,

ooking for the avalanche effect, while bacs is based on Data Flow
raph (DFG) look-ups, but without locating the secret keys. On one
and, most of the prior works mentioned employ data flow analy-
is (or input/output relations) in heuristics. Moreover, kerckhoffs and
ligot employ constant detection in their search, but not in a strong
ependency such as in bacs . On the other hand, CipherXRay , Movi-
Stealer , K-Hunt , and CipherTrace do not employ constant detection
t all, making them more generic, but MovieStealer does not aim to
dentify crypto primitives or their secret keys. Noteworthy that, Ci-
herXRay , Aligot , CryptoHunt , K-Hunt , and CipherTrace look for cor-
elations between the number of executions (or execution length)
nd the input-size, making it easier to spot cryptographic rounds and
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Table 2. Technical overview of prior works: CipherTrace employs a VMI dynamic analysis approach (PANDA) to achieve its task. 

Basic blocks Loops Information measurement Instructions profiling 

Lutz (2008) [ 13 ] Conditional branching Backward edges in CFG Shannon entropy test Ratio of arith and bit-wise instrs 
‘jump’ instrs 

Re-Format (2009) [ 14 ] None None None Ratio of arith and bit-wise instrs 
kerckhoffs (2010) [ 15 ] ‘jump’ or ‘return’ instrs Repeated execution of code addr Shannon entropy test Percentage of bit-wise arith instrs 
CipherXRay (2010) [ 16 ] None None Contribution rate [ 16 ] None 
Aligot (2012) [ 17 ] Intel PIN’s statistics Repeated instruction sequence Shannon entropy test High ratio of bit-wise arith instrs 
MovieStealer (2013) [ 24 ] PANDA’s callbacks Repeated execution of code addr Chi-square randomness test High counts of arith instrs 
Hosfelt (2015) [ 18 ] Branching Using instruction counter N/A High counts of arith instrs 
CryptoHunt (2017) [ 19 ] Branching and ‘return’ instrs Bit-precise symbolic mapping Shannon entropy test Number of bit-wise instrs 
K-Hunt (2018) [ 23 ] Intel PIN’s statistics Repeated execution of code addr Shannon entropy test Ratio of arith and bit-wise instrs 

Chi-square randomness test 
Monte Carlo simulation 

CryptoKnight (2018) [ 20 ] Branching and ‘return’ instrs Repeated execution of code addr Shannon entropy test Ratio of bit-wise instrs 
bacs (2018) [ 21 ] None Signature-based lookup via DFG None DFG lookup 
CipherTrace PANDA’s callbacks Repeated execution of code addr Shannon entropy test High counts of bit-wise and arith 

Chi-square randomness test 
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Inspection Engine (PANDA)
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of program counters
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of function calls

Binary Program

Tap PointsExec Report Graph

Analysis Engine
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Figure 1 . Arc hitecture of CipherTrace. 
block ciphers, but CryptoHunt does not aim to even locate the secret 
keys. 

Obfuscation 

K erckhof fs , CipherXRay , Aligot , CryptoHunt , and K-Hunt depend on 
the semantics of cryptography in their task of detecting and identify- 
ing cryptographic operations [ 23 ]. 

K-Hunt claims that this fact is enough to make a tool obfuscation- 
resilient, but we argue that such semantics can still be obfuscated.
Therefore, we adopt a generic VMI-based technique to extract such 
semantics on a whole-system level (using our PANDA plugin), and 
via multiple Intermediate Representations (TCG and LLVM). Cipher- 
Trace does also aggregate results, and analyzes multiple CFGs in- 
parallel to increase the confidence level. K-Hunt (2018) [ 23 ] and bacs 
(2018) [ 21 ] consider Virtual Machine (VM) obfuscation, antivirtual- 
ization, and various anti-debugging tricks. Apart from CipherXRay ,
Aligot (2012) [ 17 ], CryptoHunt (2017) [ 19 ], and K-Hunt , all the other 
tools discussed in this paper do not consider code or data obfusca- 
tion. Aligot authors claim that their tool is able to detect unrolled 
loops [ 17 ]. CryptoHunt is able to deal with data obfuscation by com- 
bining loop I/O relations with bit-precise symbolic execution [ 19 ].
K-Hunt is able to deal with nonstandard key buffers [ 23 ]. Finally, Ci- 
pherXRay is able to deal with intrinsic memory buffers. In compari- 
son, CipherTrace is able to deal with a few classes of code obfuscation,
anti-debugging, and anti-VM checks and tricks. All the ransomware 
specimens we tested employ obfuscation (ranging from low to very 
high), and we caught the elements of product ciphers in all of the 
specimens. See Cryptovirological artefact analysis section for more 
information. 

Cryptovirology 

K erckhof fs , CipherXRay , Aligot , CryptoHunt , and K-Hunt tested their 
tool with malicious binaries. K erckhof fs tested only one binary, and 
K-Hunt tested two binaries. CipherXRay and Aligot were mostly fo- 
cused on botnets, the former tested three binaries, and the latter tested 
four binaries. In comparison, CipherTrace tested five binaries of the 
most recent and popular ransomware families, so its results are more 
dependable, provided the context, and since the sample size (and vari- 
ance) is higher. 

Henceforth we define the closely related works as those tools that 
aim to identify crypto primitives, and at least locate secret keys, and 
they are: K erckhof fs , CipherXRay , Aligot , and K-Hunt . 
Design and implementation 

Cryptographic instructions involve a high number of bit-wise and 
arithmetic instructions, and they correlate with memory access pat- 
terns, usually in ratio to the input-size. Moreover, routines trans- 
late into loops in application code, and loops are mostly exhib- 
ited as ‘call’ or ‘jump’ instructions in machine code. On an instruc- 
tion level, a given set of instructions constitutes a basic block of 
code. A basic block of code is the set of instructions that has a 
single entry and a single exit. In CipherTrace , we associate the ba- 
sic block(s) of code with a higher-level semantic (e.g. a function),
whereas a function is defined via function headers in the executed 
binary. 

In CipherTrace , the two main components are the Inspection En- 
gine and the Analysis Engine . The Inspection Engine collects the 
synthetic information of function calls and their accessed mem- 
ory buffers (via our PANDA plugin func_stats ), where it outputs 
a ‘ func_stats ’ file. In the Analysis Engine , multiple stages of analy- 
sis take place, and they are; STACK ANALYSIS , FILTERING , and 
CRYPTO ELEMENTS IDENTIFICATION . CipherTrace outputs an ex- 
ecution report, graphs, and the interesting points in the execution (i.e.
tap points), whereby we dump the memory buffers (i.e. secret keys,
plaintexts, and ciphertexts). A tap point is essentially a machine’s 
state at a certain program counter (i.e. instruction count). Refer to 
Fig. 1 for a system overview. 
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Table 3. Synthetic information extracted by func_stats. 

Description From 

The guest instruction count (unique identifier across the replay) PANDA 

The address space identifier PANDA 

The called function address; equivalent to the initial program counter PANDA 

The caller address; equivalent to the return address of the current stack entry PANDA 

The callers of the current function; features the blocks that have led to the function call PANDA 

The function calls themselves; not what has led to them (i.e. not the callstack) PANDA 

The number of all distinct basic blocks executed PANDA 

The highest number a basic block got executed PANDA 

The address of the most executed basic block PANDA 

The sum of all executions of all blocks; comparable with ‘llvm_bb’ field PANDA 

The total bytes read from memory PANDA 

The memory “reads” array (refer to Table 4 for more info) PANDA 

The total bytes written to memory PANDA 

The memory “writes” array (refer to Table 4 for more info) PANDA 

The number of times arithmetic operations were executed Assembly 
The number of times memory operations were executed Assembly 
The total number of instructions executed Assembly 
The number of all visited basic blocks LLVM 

The number of all visited functions LLVM 

The number of all visited modules LLVM 

The number of times memory allocation instructions were visited LLVM 

The number of times binary (or logical) operators were visited LLVM 

The number of times ‘call’ instructions were visited LLVM 

The number of times intrinsic instructions (e.g. ‘memcpy’ and ‘memmove’) were visited LLVM 

The number of times memory ‘load’ instructions were visited LLVM 

The number of times memory ‘store’ instructions were visited LLVM 

The total number of all visited instructions LLVM 
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Table 4. Description of memory fields extracted by func_stats. 

Field Description 

Base The memory address where the memory buffer starts 
Len The length of the memory buffer 
Entropy Shannon’s entropy test for the memory buffer 
Nulls The number of nulls in the memory buffer 
pc The program counter of the memory buffer 
PrintableChars The number of printable characters in the memory 

buffer 

callersRandometer

Analyzer

filtered function calls

Filtering

crypto elements found

Crypto Elements
Identification

Reporting

repeat for each call (record)

Figure 2. Overview of the analysis engine. 

A

A

M
I  

t  
nspection engine 

xecution cycle 
ANDA accomplishes emulation via basic block translation.
ANDA’s Emulator—QEMU—generates a corresponding basic
lock of binary code via an Intermediate Language (IL), i.e. Tiny
ode Generator (TCG), i.e. directly executable on the host to em-
late the guest behavior. PANDA also supports LLVM IL, which is
sed to construct, optimize, and produce intermediate machine code,
llowing the analysis to take place in a simplified but semantically
quivalent domain, however at the expense of performance [ 26 ]. 

emory tainting 
emory tainting is the process of tracking the propagation of flagged

ata in memory to determine the data flow. Dynamic binary analy-
is requires a taint-checking technique to instrument/inspect the data
ow. PANDA leverages whole-system tainting similar to DECAF [ 27 ,
8 ] and DRAKVUF [ 29 ], in which it labels a memory buffer and
racks it along the exclusion. 

ata collection 
e categorize the collected information as platform-based (PANDA),

ssembly-based (from instructions profiling), or LLVM-based (from
he lifted LLVM code). Unlike the related work, we also adopt LLVM-
ased binary (and logical) operators, which are essential for cross-
latform support (see the results of our OPENSSLAES256 sample).
LVM-based information is quite dynamic and verbose, since it relies
n the lifted code in the LLVM IL. In comparison, the platform-based
nformation also relies on the assembled TCG IL. An IL is essential
n dynamic analysis for emulating the guest instructions on the host.
he output of func_stats is what we call a LOG . It is basically a file

eaturing lines of function calls (also known as records), each line
epresents a function call’s statistics and memory accesses in a JSON
ormat (refer to Tables 3 and 4 ). 
nalysis engine 

n overview of the analysis engine (Fig. 2 ). 

easuring the callers 
n the Randometer module, we apply the Chi-square randomness test
o look for callers that have high-randomness (low Chi-square) write
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Figure 3. Overview of the crypto elements finder. 

 

buffers and low randomness read buffers, indicating a cryptographic 
operation on an input. We start from callers of functions to account 
for control flow obfuscation, nested function calls, and to start the 
analysis from the highest level possible in the callstack. On top of 
reporting positive results, an empirical study analyzing the mem- 
ory buffers in a PANDA replay using the Chi-square randomness 
test showed that, the test returns extremely low values (very close 
to 1.0) for encrypted data, and very high values (in the thousands) 
for encoded data [ 24 ]. We tested different values, and we found that 
1000/10 000 for output/input buffers is the least likely to miss impor- 
tant data, and it also includes edge cases. If the look-up pair is re- 
versed (i.e. 10 000/1000 ), one will be looking for decryption functions.

Stack analysis and filtering 
In the Analyzer module, in the FILTERING stage of analysis, we aim to 
recover the most interesting part of the CFG. Therefore, after we filter 
by callers fed from the Randometer under which we have our candi- 
dates, we filter the main function calls that exhibit certain criteria.
Provided a CFG, the main function calls are the closest nodes (with 
the highest number of executions and basic blocks) to the root node 
in the callstack—which is where the story begins. We take the ones 
whose write buffers exhibit high entropy (indicating compression, en- 
coding, or cryptography). We use Shannon’s entropy for measuring 
memory buffers. We use the filter > 1 , which indicates a slightly higher 
than normal entropy in a buffer of 256-bytes [ 24 ]. Our tests support 
such a choice as it avoids unnecessary noise. We found that 99% of 
the data sample has entropy of 0–3.9, and 63% has entropy of > 1 ,
where an entropy of 0–0.9 represents 24% of the sample. These 24% 

are either noise, or a nested function to the main one found in the > 1 
range. In addition to considering entropy, we also dismiss unneces- 
sary function calls by looking for at least the following criteria: 

� 1 loop (a repeated execution of a basic block’s address). 
� 1 arithmetic/bit-wise instruction. 
� High count of basic blocks, and high number of executions of 

basic block(s). 

And henceforth, a CFG is referred to as stack (its nodes are the 
function calls), and its levels is the stacksize . We use a stacksize of 3 
(our default), which is thought to be the lowest it could be (as 2 pro- 
duced a lot of false positives in our tests). Finally, we aggregate and 
group the function calls by function. The stack analysis and filtering 
algorithm is as follows: 

Algorithm 1: Filter LOG records ( R ) 

FILTER (R ) 
inputs : All LOG records R 

output: The filteredStackRecs denoted by F 
distinctStackRecs is N 

∗
f oreac h distinctStackRec d i ∈ N 

∗ do 
f_write_entropy:= 1.0 ; 
f oreac h record r i ∈ R do 

if r i funct ionst ack 
= d i funct ionst ack 

then 
tmpRec:= r i ; 
mem_writes:= tmpRec writes ; 
write_entropy_count:= 0; 
f oreac h mem_write w ∈ mem_writes do 

if w entropy > f_write_entropy then 
write_entropy_count++; 

if write_entropy_count > 1 & tmpRec insn _ arith > 1 & 

tmpRec max ex ecs > 1 then 
F 

+ ← tmpRec 

return F ; 
Identification of crypto elements 
In this stage, we look for the operational components of a crypto 
algorithm in the stacks/CFGs we filtered, so that we can heuristically 
identify the class of the cipher algorithm. The main component in the 
crypto algorithm identification stage is finding the crypto elements.
An overview of this component is shown in Fig. 3 . 

In the interest of space, we omit the details in the main algorithm 

for detecting and identifying crypto elements. However, we describe 
the crypto elements in-detail as follows: 

Description 1 : State . 

A crypto state is represented by the expression s initial ..s final ; starting 
from the initial state and ending with the final state, whereby s initial 

is the plaintext and s final is the ciphertext . It mainly refers to the state 
of a memory buffer which manifests the internal state of a cipher 
[ 7 ]. It is expected that a function would read and write from/to 
the same buffer of the same size to perform a crypto operation, 
e.g. a substitution. Therefore, in a given function call, the state is 
the intersection of memory addresses in memory reads and writes 
of the same buffer length, wherein the entropy is higher or equal 
on write. 

Description 2 : Key scheduling . 

In a function call, one of the accessed memory buffers of a key 
scheduling element is the crypto key to be scheduled or expanded. 
So for the memory addresses that only exist in memory writes (i.e. 
a potential expanded key), if the length of memory writes is greater 
than the length of memory reads, wherein the entropy is higher on 
write, and there is a ratio between the write buffers and the maxi- 
mum number of times a basic bloc k g ot ex ecuted, then w e hav e a 
candidate. Add to that, from our observations, the function call in 
question usually has a high number of arithmetic instructions–on 
a scale of 10 compared to other calls. 

Description 3 : Substitution box . 

When a function call exhibits reading single bytes from a memory 
buffer to substitute a state in place b yte-b y-b yte. For a state of n 
b ytes, each b yte is accessed only once for the number of rounds 
that the cipher requires ( x , e.g. 9 in AES128 excluding initial key 
round), in whic h w e w ould find x number of function calls ex- 
hibiting the same features. 

Description 4 : Mixing . 

When a function call features the following criteria: it accesses the 
same state memory address as other elements, and shares the same 
caller with any of them. It would differ in exhibiting a lower fre- 
quency in access patterns, as it does not need to substitute multiple 
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Table 5. Crypto and hashing algorithms sample. 

Design principle Algorithm Operating system 

Permutation–substitution netw or k AES-128 1 Win7_x86 
Fiestal netw or k Twofish-128 2 Win7_x86 
Permutation–substitution netw or k Serpent-256 3 Win7_x86 
Permutation–substitution netw or k Openssl-AES256 Win7_x86 4 

Debian_x64 5 

KGA via permutation-index pointers RC4 6 Win7_x86 
K e y ed Mer kle–Damgård construction SHA256 7 Win7_x86 
Noncryptographic arithmetic sequence DJB2 8 Win7_x86 
Merkle–Damgård construction MD5 9 Win7_x86 
Merkle–Damgård construction SHA256 10 Win7_x86 

1 https:// github.com/ ceceww/ aes.git 2 http:// www.cartotype.com/ downloads/ twofish 
3 https:// github.com/ JasonQSY/ serpent.git 4 openssl 1.1.1d 10th Sep 2019 
5 OpenSSL 0.9.8o 01 Jun 2010 6 https:// github.com/ ogay/ rc4 
7 https:// github.com/ h5p9sl/ hmac _ sha256 8 http:// www.cse.yorku.ca/ ∼oz/ hash.html 
9 https:// github.com/ JackieTseng/ md5 10 https:// github.com/ okdshin/ PicoSHA 
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times in place. And secondly, the bit-wise and arithmetic instruc- 
tions are higher in Mixing as it performs substitution (less than an 
S-Box) but with bit-wise or arithmetic instructions. In AES, it is 
manifested as matrix multiplication of columns, after permuting 
( Shifting ), and substituting ( S-Box ). 

Description 5 : Shifting . 

Mixing and Shifting crypto elements access the same memory 
addresses even with the same length, but Mixing has more 
“insn_arith” and “llvm_insn_store” statistics compared to Shift- 

ing , due to the associated processing that it carries out. Also, note 
the tandem in Mixing and Shifting in the AES algorithm, forming 
an AES flavoured Permutation-step [ 7 ]. 

Description 6 : Initial KRound . 

This is a routine exhibiting a high number of bit-wise and 
arithmetic instructions, as it performs such operations on the 
state and the expanded secret key. This occurs for x number 
of rounds, the same number of function calls. Also, if there is 
Key Scheduling , we mostly expect this element to exist or vice 
v er sa. 

Description 7 : KRound . 

This crypto element depends on the Initial KRound crypto ele- 
ment. In fact, it is almost identical to KRound except for the 
former’s dependency on the Key Scheduling element, as this ele- 
ment operates directly on the state , wherein its length must not 
be 0. 

In essence, our key-stone element is the state , which has to exist,
s this is the buffer that the cipher performs its operations on, and
hat eventually becomes the ciphertext. Product ciphers perform a
ew core operations, i.e. a substitution step ( S-Box ), and a permuta-
ion step (P-Box). A substitution step is when we substitute an in-
ut’s buffer byte-by-byte from a fixed table ( Fixed S-Box ). And when
e substitute with logic (e.g. shift to the left or to the right), then
e have a permutation step. There are two types of permutations
e classified during our evaluation: one that involves heavy bit-wise

nd arithmetic operations (i.e. Mixing ) and one that performs less of
he same (i.e. Shifting ). Finally, we survey the identified crypto ele-
ents conjointly to determine the class of the cipher. For example,

f we found P-Box ( Shifting ), and S-Box (Substitution), then we have
 candidate product cipher applying a substitution–permutation net-
ork, e.g. AES , Serpent , or TwoFish . We evaluate our design in the
ystem design section. 
emory reconstruction 
e use this technique to dump the secret key, plaintext, or ciphertext

y the Analyzer module. We refer to them as ‘ key ’ and ‘ state ’ objects,
espectively. In this technique, we reconstruct the memory buffers at
ifferent points in the execution and for different memory locations
or a certain function caller and address space (e.g. a process). As soon
s the Analyzer module identifies key and state elements, we could
asily report the ‘ key ’ and ‘ state ’ objects relative to the crypto element,
.e. accessed by the function. In the Verifier module, we search in the
ap point’s memory buffers for some ‘searchterms’, in other words,
hat we expect to find. The Verifier module is a quick way to verify

he results of our tool. See Discussion and future work section for
ore information on potential enhancements. 

valuation 

n the course of our experimental evaluation, we aim to demonstrate
hat we can detect and identify block ciphers and extract the secret
eys using CipherTrace . We executed our evaluation on WSL v1,
sing a machine with ‘Core i7-8550U, 1.8GHz, 16.0GB RAM’
pecification. 

In the Crypto algorithms identification section , we test Cipher-
race using four standard crypto algorithms known to be used in
ansomware as well as in widely used software such as KeePass
[ 30 ]) and OpenSSL library ([ 31 ]). The crypto algorithms are three
lock ciphers and one stream cipher (RC4). One of the block ciphers
AES) was tested using two different key sizes and on two different
perating systems and processor architectures. Additionally, we
est four widely used hashing algorithms: one keyed (HMAC) and
hree unkeyed algorithms. All of them are cryptographic except for
he unkeyed one (DJB2). In the Cryptovirological artefact analysis
ection, we test our tool against cryptovirological programs (i.e.
ansomware) obtained from Threat Intelligence reports. More
nformation on the sample is found in their respective sections.
inally, in the Evaluation with closely related works section, we
ross-evaluate our results with the closely related works. 

rypto algorithms identification 

e test hashing algorithms to evaluate the resilience of CipherTrace
o noise and false positives. We also test the RC4 (stream cipher) to
ross-check the findings with the rest of the sample, as we mostly
arget block ciphers. All the algorithms we use for evaluation are
tandard algorithms, or different implementations of them, and they
re not obfuscated. In Table 5 , we list the algorithms we use in our
valuation. 

https://github.com/ceceww/aes.git
http://www.cartotype.com/downloads/twofish
https://github.com/JasonQSY/serpent.git
https://github.com/ogay/rc4
https://github.com/h5p9sl/hmac_sha256
http://www.cse.yorku.ca/
https://github.com/JackieTseng/md5
https://github.com/okdshin/PicoSHA
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Table 6. Results of testing CipherTrace using different algorithms: CipherTrace could fully dissect Fixed S-Box block ciphers, additionally 

detect other ciphers and even extract a few of their crypto artefacts. 

Program Info Elements Buffers found 

AES128 func_stats size: 115.3MB All Secret Key (auto) 
Duration: 10 min Plaintext (auto) 

High-Arith Callers: 1 Ciphertext (auto) 
SERPENT256 func_stats size: 112.4 MB All Secret Key (auto) 

Duration: 11–25 min/caller Plaintext (auto) 
High-Arith Callers: 7 Ciphertext (auto) 

TWOFISH128 func_stats size: 133.6 MB No S-BOX Secret Key (semiauto) 
Duration: 7–46 min/caller Plaintext (semiauto) 

High-Arith Callers: 9 Ciphertext (n/a) 
OPENSSLAES256 func_stats size: 633.8 MB All Secret Key (auto) 

Duration: 30–761 min/caller Plaintext (n/a) 
High-Arith Callers: 17 Ciphertext (n/a) 

RC4 func_stats size: 20.9 MB No S-Box Secret Key (none) 
Duration: 7 min Plaintext (none) 

High-Arith Callers: 1 Ciphertext (none) 
HMACSHA256 func_stats size: 106 MB Shifting Secret Key (none) 

Duration: 3 min Mixing Plaintext (none) 
High-Arith Callers: 4 Scheduling 

DJB2 func_stats size: 103 MB Mixing Secret Key (n/a) 
Duration: 3 min Plaintext (none) 

gh-Arith Callers: 2 
MD5 func_stats size: 103 MB None Secret Key (n/a) 

Duration: 3 min Plaintext (none) 
High-Arith Callers: 2 

SHA256 func_stats size: 108 MB None Secret Key (n/a) 
Duration: 1 min Plaintext (none) 

High-Arith Callers: 2 

 

 

 

 

Serpent is well-known and identical to AES [ 32 ]. Hence, it should 
be easy to detect for those tools which could already detect AES. The 
tools that are unable to detect it are not tracing a cipher per se , limit- 
ing them by-design to certain algorithms or implementations. We test 
CipherTrace utilizing the PANDA replays we recorded, and using our 
PANDA plugin with CipherTrace ’s default configuration mentioned 
previously. We used a stack_limit of 200 (the default) to ensure that 
we start the analysis from the highest process possible in the stack (or 
process tree). From our tests, we realized that 32 was enough to dis- 
sect aes128 , and 200 was more than enough for a complete overview 

of the system. In Table 6 , we test CipherTrace against the crypto al- 
gorithms. 

AES on Win7 and deb squeeze 
CipherTrace has successfully classified AES as a block cipher and ex- 
tracted and verified all the memory buffers (including the secret key) 
for aes128 , as well as the secret key for opensslaes256 . It only veri- 
fied the secret key for opensslaes256 as it was the only buffer PANDA 

could locate in the replay. The replay of opensslaes256 was obtained 
by recording the use of OpenSSL in an extended browser session,
hence the high replay size (and duration). OpenSSL’s implementa- 
tion of the AES algorithm is different from aes128 . We also achieved 
same results by executing the AES algorithms on a different OS with 
different processor architecture (x64). 

Serpent 
serpent256 is the control algorithm in our experiment. It was success- 
fully classified as a block cipher, and all its buffers were automatically 
extracted and verified. 
TwoFish 
In the twofish128 replay, the S-Box crypto element failed to be iden- 
tified, because it is precomputed [ 33 ]. The current version of Cipher- 
Trace only identifies Fixed S-Box elements, and that will be further 
discussed in the Discussion and future work section. However, by us- 
ing the synthetic information we extracted and the Randometer mod- 
ule of CipherTrace , we could extract the memory buffers. 

RC4 
In the RC4 replay, the S-Box crypto element failed to be identified,
indicating the absence of—at least—a Fixed S-Box . However, a per- 
mutation step could be identified, which is something RC4 does in 
addition to key scheduling [ 34 ], which was also identified. 

Hashing algorithms 
All hashing algorithms tested were unkeyed except for hmacsha256 ,
where potential secret keys could be explored. As per to the Design 
principles of our algorithms sample mentioned in Table 5 , none em- 
ployed a permutation–substitution network, indicating a product ci- 
pher [ 7 ]. Thus, S-Box , Shifting , or Mixing elements are not expected.
After running CipherTrace , the absence of such elements in md5 and 
SHA256 was confirmed. Notably, a Mixing element was identified in 
DJB2 , indicating a function accessing a state to perform bit-wise arith- 
metic operations and has lower frequency in access patterns com- 
pared to other functions that substitute or permute, aligning with 
our tested implementation. 

HMACSHA256 
We identified Shifting , Mixing , and scheduling elements. We expected 
to find a Key Scheduling element, even if we failed to extract a secret 
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Table 7. Recent and popular ransomware sample tested. 

Name Obfuscation Encryption model Data encryption File encryption 

Maze 11 [ 37–39 ] Very high 3-tier XORing, RC4 Cha-Cha 
REvil 12 [ 40 , 41 ] High 4-tier RC4 AES-128-CBC 

Ryuk 13 [ 42 , 43 ] Low 3-tier RC4 AES-256-CBC 

Conti 14 [ 44 , 45 ] Medium 3-tier Encoding AES-256-CBC 

Netwalker 15 [ 46 ] High 3-tier XORing, RC4 AES 

11 SHA256:dee863ffa251717b8e56a96e2f9f0b41b09897d3c7cb2e8159fcb0ac0783611b 
12 SHA256:3795a2228558a1b136746ea70125bc53cf05e2a6ce078d39667af4e3adee3a02 
13 SHA256:23f8aa94ffb3c08a62735fe7fee5799880a8f322ce1d55ec49a13a3f85312db2 
14 SHA256:eae876886f19ba384f55778634a35a1d975414e83f22f6111e3e792f706301fe 
15 SHA256:9c6d7dbe229d4257bc12df969637e773472892d80129416239d7a11edc7c7e82 

Table 8. Analysis of the ransomware sample: CipherTrace could detect and classify cipher algorithms and extract secret keys and crypto 

states from all specimens in the sample. 

Ransomware E1 E2 E3 E4 E5 E6 E7 G S K 

Maze ✓ ✓ ✓ ✓ ✓ ✓ ✓ 36 1 33 
REvil ✓ ✓ ✓ ✓ ✓ ✓ ✓ 41 12 42 
Ryuk ✓ ✓ ✓ ✓ ✓ ✓ ✓ 28 1 36 
Conti ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18 8 19 
Netwalker ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 9 23 

E1 : State. E2 : Key Scheduling. E3 : S-Box. 
E4 : Shifting. E5 : Mixing. E6 : Init KRound. 
E7 : KRound. ✓ : Found at a different caller. 
G : CFGs. S : State tap files. K : Key tap files. 
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forensic artefacts from the malicious binaries. 
ey despite finding x10 more key artefacts compared to other algo-
ithms. The reason is our implementations’ dependency on finding a
ixed S-Box block cipher to extract the full key—which is intentional.
owever, as far as identifying Shifting and Mixing is concerned, we

nalyzed our sample and results, and found that this is anticipated,
s a keyed Merkle–Damgård construction may perform permutation
 35 ,36 ]. 

ummary 
y using CipherTrace , we managed to identify all Fixed S-Box block ci-
hers we tested and extract their secret keys. When we tested stream
iphers (i.e. RC4 ), no S-Box element was identified, indicating that
t is not a block cipher, and with other elements present, we de-
uced that it is a stream cipher. When testing hashing algorithms,
o elements were identified for unkeyed hashing algorithms, and the
ey Scheduling element was identified when testing a keyed hashing
lgorithm, indicating the presence of a secret key. The use of hash-
ng algorithms might count as a proof-of-resilience to noise or false
ositives. 

erformance 
n average it takes around 8 min (per caller) to run the analysis and

o locate and extract the memory buffers (including the secret keys)—
he specifications of the machine used can be found above. The dura-
ion depends heavily on the replay size and the level of callstack, i.e.
rom which process the analysis starts, whether from the binary, from
 process higher up in the tree, or even higher (from an OS process).
n our evaluation we start the analysis from a given Address Space
i.e. a specific process), but the stack can go as far as our stack_limit
an reach. All in all, our numbers demonstrate an improvement in
erformance compared to the closely related works assessed in this
aper. More information can be found in the Evaluation with closely
elated works section. 

ryptovirological artefact analysis 

o further demonstrate the efficacy of our system for the automation
f malware analysis and reverse engineering, we apply it against the
ost recent and popular ransomware families listed in Table 7 . 

bfuscation in the sample 
ll of the specimens perform binary, code, and data obfuscation.
hey also—at least—encrypt strings, Windows API names, and en-
ode the ransomware note. We notate Maze with very high obfus-
ation as it tries to evade static and dynamic analyses by employing
ontrol flow obfuscation and a few techniques to evade detection
hen launching malicious code, starting processes, and calling the
indows APIs. It also utilizes anti-debugging, anti-VM, and anti-

andboxing checks and tricks. REvil encrypts the exploit code, in ad-
ition to its antianalysis features. Ryuk , Conti , and Netw alk er encrypt
he API names/calls as far as data encryption is concerned. However,
etw alk er also encrypts the config in addition to the multi layers of
bfuscation to evade an Anti Virus. It does also employ RC4 and
ORing in data encryption compared to only encoding for Ryuk
nd RC4 for Conti —where the latter has less antianalysis features.
e learned that Ryuk ’s code obfuscation (e.g. code flow obfuscation)

esulted in a scattered CFG, which we had to account for at the ex-
ense of performance—i.e. 40% more analysis time. 

ipherTr ace r ansomw are results 
e show the results of our experiment in Table 8 . We were able to

etect and classify the ciphers, and extract the secret keys and other
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We identified crypto elements and artifacts in all tested ran- 
somware binaries, producing numerous detailed CFG graphs for 
each. Additionally, we generated state and key tap files to extract po- 
tential keys and crypto states, containing various tap points based on 
replay length, data size, and configuration parameters, as outlined in 
Crypto algorithms identification section. Cryptographic elements in 
all samples were linked to the same function caller, indicating the ci- 
pher’s main function location, except for Ryuk , where key operations 
were managed by a different caller. 

Maze 
We identified that the binary we used in our evaluation employs Cha- 
Cha [ 37 ], even if there are other variants that employ AES [ 47 , 48 ].
We believe that we caught block cipher crypto elements such as S- 
Box and a permutation step because Maze encrypts the Cha-Cha key 
via R S A [ 37 ]—a block cipher [ 49 ]. Also, the definition of crypto ele- 
ments we established is quite generic, and fits Cha-Cha’s permutation 
[ 50 ]. We mostly differentiate between Shifting and Mixing from the 
bit-wise and arithmetic instructions ratio and dependency on other 
elements, facilitating the identification of Cha-Cha. 

Other specimens 
We were able to identify the crypto elements when block ciphers were 
employed in encrypting files or data. Netw alk er showed a high num- 
ber of Key Scheduling and KRound Init across the execution report,
exhibiting very high key-related activity (i.e. expansion or reuse), and 
that was slightly different from the rest of the ransomware sample. 

Verifying the sample’s artefacts 
This section discusses our tool’s usage for analysts and victims 
of ransomware. Through in-depth reverse engineering of the Conti 
specimen—selected for its easily found hard-coded master public key 
in the binary—we proved our tool’s efficacy and verified its results.
Analysis of the specimen showed each encrypted file includes about 
512 bytes of metadata: file size, a 32-byte file key, and a 16-byte salt,
all encrypted with this public key. 

Since CipherTrace does not yet fully support asymmetric block 
ciphers (e.g. R S A), and the specimens employ asymmetric cryptog- 
raphy to encrypt each file’s key, we cannot automatically extract file 
keys. Therefore, after employing manual analysis, we extracted and 
verified a few crypto states (i.e. plain- and ciphertexts), as well as the 
R S A-4096 key, and the encryption key of a tainted file. 

By using the Verifier module with the content of some honeypot 
files, we confirmed extracting plaintext content of several files. Addi- 
tionally, the Verifier module highlighted interesting function callers 
and program counters, pinpointing intersections between key and 
state tap points for further analysis. This is important because the 
AES-256 key, which encrypts a file, is subsequently encrypted by the 
R S A-4096 key and stored in the same file, transforming the AES key 
into a crypto state (e.g. a ciphertext). The program counters reported 
by the Verifier module confirmed the R S A-4096 hard-coded public 
key of Conti , which was helpful to trace. This is promising for fully 
supporting asymmetric block ciphers as well. This public key was the 
most read 512 bytes by the conti.bin.eae8. process, which is expected 
as it reads the key for each file encryption operation to encrypt the 
file’s metadata. 

We further employed the file_taint plugin from PANDA, along- 
side the tainted_instr plugin, to trace writing metadata and the en- 
cryption operation for a honeypot file, aligning with our tool’s find- 
ings. Moreover, through combining known information and our 
func_stats plugin’s output, we identified several potential file encryp- 
tion keys (32-byte memory buffers). However, attributing keys to 
specific files without file tainting or brute forcing remains challeng- 
ing. In future versions, we will aim to group reporting potential 
secret keys with corresponding plaintext and ciphertext for easier 
verification. 

System design 

By adopting a modular design in the implementation of CipherTrace ,
we managed to achieve separation of concerns and allow for inde- 
pendent execution, development, enhancement, and maintenance. 

This led to very well-designed configuration management. In each 
module, conceptually, we followed a divide and conquer approach in 
pursuing the module’s objective. For instance, in the Analyzer mod- 
ule, we split the analysis into multiple stages to facilitate implement- 
ing, executing, and evaluating the concept, and make room for spot- 
on improvements. STACK ANALYSIS enabled us to reach our main 
function calls easier, and FILTERING allowed for performing a Con- 
trol Flow analysis on their associated (or nested) function calls to 
start the CRYPTO ELEMENTS IDENTIFICATION stage with what 
we need. 

The idea of looking for a state crypto element was very successful,
as we could identify it in all of our samples, because hiding an inter- 
nal state of a crypto algorithm is highly unlikely to be successful. In 
other words, we could always identify a memory buffer that increases 
in entropy and is affected by high bit-wise and/or arithmetic opera- 
tions as the execution goes. However, as discussed in the Discussion 
and future work section, we may need to implement more advanced 
parameter reconstruction techniques to account for potential obfus- 
cation of memory buffers accessed by the function call we analyze. 

One may argue the naming of crypto elements is tied to how AES 
works. However, we could rename Shifting to Low P-Box , and Mix- 
ing to High P-Box , but at the expense of readability and not clearly 
showcasing our tool on an algorithm, i.e. used by more than 75% 

of ransomware samples out in the wild. Noteworthy that, in our im- 
plementation of these two elements, we made Mixing a prerequisite 
for Shifting to facilitate finding AES algorithms to easily fight the 
ransomware specimens propagating on the internet, but that neither 
affects the results of classifying a cipher (as both are considered per- 
mutations), nor extracting secret keys or crypto states at all. It can 
also be easily changed. The rationale is that, if a High P-box element 
was identified then, i.e. permutation, and if there is an additional 
weaker one, then i.e. AES’s permutation. 

Evaluation with closely related works 

We compiled and tested the published tools from the closely related 
works against our crypto algorithms sample mentioned in Table 5 
above. CipherXRay ’s authors did not publish their implementation,
and therefore we could not test it against our algorithms sample,
however we theoretically examined it against our tool. In Table 9 ,
we compare CipherTrace against the tools that could identify crypto 
primitives and could also locate their secret keys, i.e. kerckhoffs , Ci- 
pherXRay , Aligot , and K-Hunt . CipherTrace ties with kerckhoffs , which 
has the best performance for the task, while having a bigger scope and 
more functionality. 

Due to following a DBI-based approach in the closely related 
works, at least Maze , REvil , and Conti might not have even launched 
due to their antianalysis capabilities. CipherTrace is a fully automated 
system, which differentiates it from the prior works. For instance, we 
executed the system on all test samples via a single shell script in one 
go, and CipherTrace was fully executed against each replay as per to 
the default configuration. 
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Table 9. Comparison with the closely related works: CipherTrace is the only one that employs a VMI dynamic analysis approach, is 

semantics-independent, and can detect and identify ciphers without using signatures or templates. 

System Approach C1 C2 C3 C4 C5 Implementation tested Test result Avg. performance 

Kerckhoffs DBI-Heuristics ✗ ✗ ✗ ✗ ✗ ✓ AES ✓ 8 min 
Serpent ✗ 

CipherXRay DBI-Heuristics ✓ ✓ ✗ ✗ ✓ Not available N/A 15 min [ 16 ] 
Aligot DBI-Heuristics ✗ ✗ ✗ ✗ ✗ ✓ Nothing identified Analysis unending (term. at 7 h) 
K-Hunt DBI-Heuristics ✓ ✗ ✗ ✗ ✓ Not applicable N/A N/A 

CipherTrace VMI-Heuristics ✓ ✓ ✓ ✓ ✓ ✓ AES ✓ 8 min 
Serpent ✓ 

TwoFish ✓ 

C1 : detects a proprietary cipher. C2 : identifies a cipher class. 
C3 : extracts all crypto artefacts. C4 : visualizes the CFG. 
C5 : no signatures or templates. 
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iscussion and future work 

ore concept and approach 

ur core concept is to identify the so-called crypto elements by utiliz-
ng the intrinsic properties of cryptography and the design differences
etween different ciphers. In the analysis, we rely on the internal state
f crypto primitives to identify the crypto elements, because hiding
he internal state is highly unlikely to succeed. We followed a VMI
pproach in dynamic analysis, and this helped to address antianaly-
is features of different binaries, and enabled stack analysis and fil-
ering of function calls from a whole-system perspective employing
igher-level semantics using the plugin we authored. Additionally,
e take into account the higher-level semantics of a binary, i.e. mem-
ry buffers and functions in a controlled way that does not affect
he analysis. The VMI approach, our PANDA plugin, the core con-
ept, and our algorithms, made CipherTrace generic and capable of
dentifying proprietary cryptographic implementations, and extract
heir potential secret keys and crypto states. Our concept can be im-
lemented differently, and we consider our algorithms the absolute
inimum to catch crypto elements. 

otable limitations 

espite being capable of identifying the S-Box crypto element in Ser-
ent, which is slightly different from AES in design and very different

n the implementation we tested, the current version of CipherTrace
s only compatible with Fixed S-Box elements. And this explains the
ailure to identify the S-Box crypto element in the twofish128 replay.
dditionally, the current version mainly supports block ciphers, but
ith slight modifications it could also fully support stream ciphers
s the evaluation demonstrated, since stream ciphers are also prod-
ct ciphers [ 7 ]. Moreover, CipherTrace inherits PANDA’s limitations,
.g. levels of callstack information. In our evaluation, we used a limit
f 200 and we faced no issues. The limit is also customizable in Ci-
herTrace . 

alse positives 

e look for specific cipher design features [ 7 ], and i.e. why it is hard
o see a high number of false positives in the results—which is our
onceptual contribution. For instance, in DJB2 replay, we identified
nly a Mixing element, but not a cipher. With that said, even if the
ddress space (i.e. process) is specified, the false positives produced
re essentially the cascading function calls from/to the target. To ad-
ress this, we use the appropriate stacksize and stack_limit criteria
s discussed in the stack analysis and filtering in the Analysis engine
ection. One may argue an adversary may misdirect the analysis by
reating a decoy block of code in the specimen (i.e. executed), which
as a ultra-high loop count, or high number of bit-wise/arithmetic

nstructions. It is true that this will highly likely produce false pos-
tives for the crypto elements that filter for such criteria. However,
e argue that this will not affect the overall results, as we are not
nly looking for a few elements in some specific functions or basic
locks. We produce a report for all function callers in the specimen
ith the called functions labelled with the crypto elements identified.
nd to increase confidence in the results, we run the analysis on mul-

iple CFGs in parallel, collect the information from two intermediate
epresentations, and aggregate the statistics on a basic block and a
unction level. 

nformation measurement 

e could either apply different tests to measure information content
entropy) and distribution (randomness), and/or consider them col-
ectively. We observed how sensitive the Chi-square test is, similar to
he observations that Wang et al . made [ 24 ], which makes the Chi-
quare test an addition to be implemented as a randomness test in
unc_stats , in addition to Shannon’s entropy test. 

arameter reconstruction 

ince we depend on the memory buffers accessed by the filtered
unction calls in our analysis, as well as in extracting crypto arte-
acts, then we need to account for obfuscated memory buffers.

oreover, we need to be able to identify tables in memory (i.e.
rrays and similar data structures), which would help in address-
ng the Pre-computed S-Box ciphers, e.g. in the TwoFish algorithm.
his would also help in extracting the secret key in the RC4 replay.
lso, since our core analysis algorithm does not depend on mem-
ry buffer sizes but rather only ratios, splitting the buffers or forc-
ng the allocation of decoy buffer sizes is unlikely to affect the anal-
sis results, but it would affect the functionality of extracting se-
ret keys and crypto states, and that would be addressed in future
ersions. 

ore automation 

n the task of validating the extracted potential secret keys, we
ould automatically test the extracted secret keys on the extracted
tate buffers. In spite of this being easier for some algorithms than
or others, it still requires a lot of work and could be a poten-
ial upgrade for our tool in future versions. The rationale for such
 feature is that the tool may extract dozens of memory buffers
nd the analyst does not know which of them are interesting—
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unless they are reported as a group, certain information is tracked,
or tainting is applied. In fact, to address that, we could even en- 
hance our PANDA plugin ( func_stats ) to flag the potential secret 
key buffers, which end up in certain syscalls—i.e. to highlight that 
the keys being exfiltrated or communicated over a network in- 
terface, or stored on the file system or the system’s registry. This 
will flag the potential keys used in the course of a ransomware 
activity. 

Conclusion 

We presented CipherTrace , an offline dynamic analysis system to iden- 
tify the class of cipher algorithms and extract their secret keys and 
crypto states (plain- and ciphertexts). Our experimental evaluation 
demonstrated that, our novel technique of defining, identifying, and 
surveying crypto elements to classify a cipher—via VMI dynamic 
analysis approach—could fully dissect Fixed S-Box block ciphers. Ad- 
ditionally, it exhibited resilience to noise, a few obfuscation schemes,
and different implementations of crypto algorithms. With the under- 
lying dynamic analysis platform, CipherTrace inherently supports dif- 
ferent operating systems and processor architectures. We compared 
our tool with the most effective and state-of-the-art tools to-date,
using four standard cryptographic algorithms, which are often used 
in ransomware. Moreover, it detected and identified block ciphers 
in five malicious binaries (i.e. ransomware), and extracted various 
crypto artefacts including secret keys and crypto states (plain- and 
ciphertexts)—despite the very high binary, code, and data obfusca- 
tion employed by the specimens. It outperformed the closely related 
works such as kerchhoffs and Aligot in functionality and performance,
and it is capable of identifying proprietary ciphers same as with 
CipherXRay and K-Hunt , but outperformed the former, and could 
identify a cipher class and extract all secret keys unlike the latter. Our 
system is fully automated, and proved very useful in malware analysis 
Table A10. Analysis details of the ransomware sample. 

Name Replay unigram func_stats 

Maze 561 s – 1.6 GB 11 h – 17GB 8 h – 5.2 GB (12% 

REvil 277 s – 400 MB 17 h – 17GB 5.5 h – 3.8 GB (17% 

Ryuk 240 s (reduced) – 1 GB 15 h – 25GB 18 h – 36 GB (3 asids, 
Conti 1101 s – 800 MB 15 h – 17GB 100 h – 242 GB (T
Netwalker 230 s – 1.3 GB 3 h – 19GB 68 h – 145 GB (72% 
and reverse engineering. As shown in our evaluation, the core idea is 
applicable to different classes of ciphers, asymmetric cryptography,
or crypto systems at large. Consequently, this paper highlights the 
substantial promise of automatically detecting and identifying cipher 
from execution traces and its vital role in neutralizing ransomware 
threats. 
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Appendix 

R ansomw are sample 

PANDA execution details for the ransomware sample can be found in 
Table A10 . 
Randometer Analyzer 

– Err) 106 callers (3 min/c) 1 min/caller (max 1 h) 
– Term) 163 callers (4 min) 0-3 min/caller (max 1.5 h) 
limit 32) 75 callers ( < 1 min/c) 1-2 min/caller (max few h) 
erm) 43 callers (3 min) 3-15 min/caller (force timeout in 20) 
– Term) 150 callers (10 s) 2-15 min/caller (max 2 h) 
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he Control Flow Graph (CFG) for AES256 algorithm is illustrated in Fig. A 4 .
igure A4. AES128 CFG. The rectangle marks the finding. The circle is the main fun
nalysis Log: AES256 

unning CipherTrace’s Randometer with unigrams output is in the following
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ction which calls the round routine. 
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