
Journal of Cybersecurity , 2024, tyae008
https://doi.org/10.1093/cybsec/tyae008

Research paper

CipherTrace: automatic detection of ciphers

from e x ecution traces to neutralize ransomware

Mostafa AbdelMoez Hassanin

* and Ivan Martinovic

Department of Computer Science, University of Oxford, 7 Parks Rd, OX1 3QG, United Kingdom

∗Corresponding author. Department of Computer Science, University of Oxford, 7 Parks Rd, OX1 3QG, United Kingdom.
E-mail: mostafa@hassanin.ch

Received 5 November 2023; revised 25 March 2024; accepted 22 April 2024

Abstract

In 2021, the largest US pipeline system for refined oil products suffered a 6-day shutdown due to a ransomware at-
tack [1]. In 2023, the sensitive systems of the US Marshals Service were attacked by a ransomware [2]. One of the
most effective ways to fight ransomware is to extract the secret keys. The challenge of detecting and identifying
cryptographic primitives has been around for over a decade. Many tools have been proposed, but the vast majority
of them use templates or signatures, and their support for different operating systems and processor architectures is
rather limited; neither have there been enough tools capable of extracting the secret keys. In this paper, we present
CipherTrace , a generic and automated system to detect and identify the class of cipher algorithms in binary pro-
grams, and additionally, locate and extract the secret keys and cryptographic states accessed by the cipher. We
focus on product ciphers, and evaluate CipherTrace using four standard cipher algorithms, four different hashing
algorithms, and five of the most recent and popular ransomware specimens. Our results show that CipherTrace is
capable of fully dissecting Fixed S-Box block ciphers (e.g. AES and Serpent) and can extract the secret keys and
other cryptographic artefacts, regardless of the operating system, implementation, or input- or key-size, and without
using signatures or templates. We show a significant improvement in performance and functionality compared to
the closely related works. CipherTrace helps in fighting ransomware, and aids analysts in their malware analysis
and reverse engineering efforts.

Keywords: binary analysis; dynamic analysis; reverse engineering; virtual machine introspection; cipher identification; crypto-
graphic key identification and extraction

I

N

e

g

o

c

c

d

i

l

s

c

T

s

i

p

a

m

u

i

(

r

t

©
(
c

ntroduction

ew malware samples are discovered daily, and malware is rapidly
volving and becoming more sophisticated and evasive. Crypto-
raphic algorithms are often proprietary in malware samples, and
nly executables are available. These executables are always obfus-
ated and updated regularly, therefore an analysis tool needs to ac-
ount for potential obfuscation and/or morphism.

The potential of such a tool is very high, as 23% of malware inci-
ents involve ransomware [3], and the average cost of a ransomware

ncident has been doubling yearly, reaching a staggering $1.54 mil-
ion in 2023 [4 , 5].

A recent survey on the detection techniques for ransomware has
hown that, fully dissecting Fixed S-Box block ciphers (e.g. AES) takes
are of at least 75% of ransomware specimens out in the wild [6].
hat is due to the fact that a ransomware becomes obsolete if the
ecret keys can be extracted at runtime.
The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribut
ited.
The objective of this paper is to assess the feasibility of automat-
cally detecting generic cryptographic primitives and identifying ci-
hers to neutralize ransomware. It focuses on product ciphers, which
re types of ciphers that employ a combination of substitution, per-
utation, and modular arithmetic operations [7]. There are two main
se cases for our system:

� Analyze the activity of a binary, i.e. software.
� Record a live-system and analyze network or process activity in

a replay snippet.

Since our system operates on a whole-system level, so an activ-
ty can be binary (e.g. extract ransomware secret keys), or network
e.g. extract SSL keys). Not to mention since we run the analysis on a
eplay, the analysis is repeatable in different configurations and set-
ings. In a real world scenario, such a system could help in situations
1 distributed under the terms of the Creative Commons Attribution License
ion, and reproduction in any medium, provided the original work is properly

https://doi.org/10.1093/cybsec/tyae008
http://orcid.org/0009-0006-9805-6222
mailto:mostafa@hassanin.ch
https://creativecommons.org/licenses/by/4.0/

2 M.A. Hassanin and I. Martinovic

where recovering the key could unlock the systems affected by ran-
somware [8].

We review state-of-the-art prior works, and design and imple-
ment CipherTrace . We focus on product ciphers, and evaluate Cipher-
Trace using four standard cipher algorithms known to be used in
ransomware, with different implementations on different operating
systems. Additionally, we use four well-known hashing algorithms,
and five of the most recent and popular ransomware in the wild to
test its effectiveness in real-world scenarios. The sample we tested are
the obfuscated specimens used to infect targets since 2018.

General idea of CipherTrace

We employ a generic analysis technique to automatically detect and
identify proprietary cipher algorithms, and extract their secret keys
and cryptographic states (crypto states for short). A crypto state is
essentially the cipher- or plaintext(s). In addition to fighting ran-
somware, our tool is meant to aid researchers in the automated re-
verse engineering of malicious binaries or system activities. In this
case, extracting any cryptographic artefact (crypto artefact for short)
will help dissect the cipher employed.

To address the limitations of the related work, we list our design
goals as follows:

(1) Achieve isolation and have an overarching view on the binary’s
execution as well as its environment.

(2) Account for the runtime properties of the cipher, such as rou-
tines and memory management.

(3) Account for the cipher’s operational components, such as inter-
nal state, substitution, or permutation.

(4) Enable automation to facilitate automated and scalable analysis
and reverse engineering.

(5) Locate and extract the cryptographic artefacts, such as secret
keys and internal cryptographic states.

Approach and design

Static analysis approaches have been challenged for decades by ob-
fuscation, and the accuracy of the results is heavily challenged by po-
tential morphism [9]. Dynamic analysis approaches lack higher-level
semantics, which are present in source code, e.g. functions, memory
buffers, and data types [10]. We follow a Virtual Machine Intro-
spection (VMI) approach, which is a whole-system dynamic analysis
approach applied by the underlying dynamic analysis platform (i.e.
PANDA). A VMI approach achieves isolation [11], as the specimen
is incapable of interacting with the analysis code. VMI enables em-
ploying higher-level semantics in the analysis (via our PANDA plu-
gin), and since it runs on a whole-system level, it accounts for pro-
cesses that may spawn off the specimen. CipherTrace has also proved
to be resilient to a few classes of code obfuscation and many anti-
debugging and anti-sandboxing checks and tricks (see the Evaluation
section). This is due to applying our core concept of identifying cryp-
tographic elements (crypto elements for short) in the Analysis engine.

To address the lack of higher-level semantics in dynamic anal-
ysis, we extract such semantics via our PANDA plugin and cross-
check them on two Intermediate Representations, i.e. TCG (Emu-
lator) and LLVM (Platform). After which we initiate our analysis by
looking for the operational components of cryptography, henceforth,
cryptographic elements, such as key-scheduling, round routines, and
substitution or permutation, then we end up deriving a cipher class
heuristically following a decision tree as per the previously mentioned
definition of a product cipher. This novel technique allows us to be
systematically closer to the features of the cipher as well as to its
runtime properties, which makes it harder to evade and allows for
generalization.

Another challenge of whole-system analysis is the increased rate
of false positives compared to in-process analysis, since all cascading
processes (and function calls) are also analyzed. To address that, we
mainly focus on the intrinsic properties of the cipher algorithm (e.g.
routines, number of executions, and entropy/randomness between
inputs and outputs), and we aggregate results in the user-space per
process and per function (the root basic block), and analyze multiple
Control Flow Graphs (CFGs) in-parallel to increase the confidence
in results.

Scope

As per our threat model, the adversary attempts to hinder the analysis
by changing the implementation details, e.g. key-size, function names,
and so on. Evaluating the security of the dynamic analysis platform

and a few classes of code and data flow obfuscation (e.g. flattening the
control flow, unrolled loops, and obfuscating input/output buffers)
are out of scope. We focus on product ciphers, targeting mostly block
ciphers (e.g. AES).

Obfuscation

We categorize obfuscation schemes into binary, code, and data obfus-
cation. Binary obfuscation aims to obfuscate the binary itself, mainly
to evade static analysis techniques, e.g. packing [9]. Code obfusca-
tion aims to obfuscate the control flow or code blocks in a program

to decrease the readability, e.g. flattening the control flow, or obfus-
cating the loops [12]. Data obfuscation aims to obfuscate the data
flow or memory management in a program [12]. Dynamic analy-
sis approaches—including that of CipherTrace —are resilient to code
packing by default, as only the executed code will be instrumented
or introspected. And by tracing crypto elements, even if the code is
obfuscated, the overall runtime features cannot be hidden. So, the
number of executions of the core cryptographic routine(s) have to be
reflected, arithmetic instructions have to be replaced by other equiv-
alent ones, and high randomness/entropy cannot be removed.

CipherTrace is resilient to a few classes of control flow obfusca-
tion. For example, a block cipher’s substitution step (i.e. S-Box) is
quite hard to hide while CipherTrace operates on a whole-system

level and addresses the cipher’s features and runtime properties
simultaneously—analyzing multiple CFGs. As far as code obfusca-
tion is concerned, due to employing introspection, CipherTrace ana-
lyzes the executed code regardless.

Contributions

As a result of our work, our contributions can be summarized as
follows:

� We systematically explore detecting and identifying crypto-
graphic primitives (crypto primitives for short) from introspec-
tion traces. This is to achieve isolation, increase anti-debugging
resilience, and run the analysis on a whole-system level having an
overarching view of an activity.

� We design generic crypto primitive detection based on the con-
cept of crypto elements, to account for the design features of a
given cipher.

� CipherTrace can also locate and extract secret keys, as well as
crypto states. It is the only automated tool with such a level of
granularity, cross-platform support and performance.

CipherTrace: automatic detection of ciphers from execution traces 3

Table 1. Overview of prior works: CipherTrace is the only one that employs VMI to identify a cipher class, extract the secret keys, achieves

isolation, and addresses obfuscation.

System Platform Technique Tasks

Lutz (2008) [13] Valgrind DBI-Heuristics T1
Re-Format (2009) [13] AutoFormat [25] DBI-Heuristics T1
kerckhoffs (2010) [15] Intel PIN DBI-Heuristics T2, T4
CipherXRay (2010) [16] Valgrind DBI-Heuristics T2, T4, T5
Aligot (2012) [17] Intel PIN DBI-Heuristics T2, T4
MovieStealer (2013) [24] PANDA VMI-Heuristics T3
Hosfelt (2015) [18] Intel PIN DBI-ML T2
CryptoHunt (2017) [19] Intel PIN DBI-Heuristics T2
K-Hunt (2018) [23] Intel PIN DBI-Heuristics T2, T4
CryptoKnight (2018) [20] Intel PIN DBI-ML T2
bacs (2018) [21] Intel PIN DBI-Heuristics T2
CipherTrace PANDA VMI-Heuristics T3, T4, T5

T1 : Analyzes network traffic. T2 : Analyzes binary programs.
T3 : Analyzes whole system activity. T4 : Locates cryptographic keys.
T5 : Identifies a cipher class.

R

I

o

b

o

[

1

w

D

T

i

r

p

a

l

t

a

T

F

A

p

m

n

r

c

s

m

s

i

n

f

c

c

t

C

C

l

R

w

v

t

i

i

T

t

m

c

F

h

d

p

t

d

l

G

h

s

A

d

e

a

i

p

r

a
� We implement and open-source CipherTrace , as well as the tested
benchmark.

� Our PANDA plugin (func_stats) enhanced PANDA’s dynamic
analysis capabilities, assisting researchers in malware analysis,
forensics, and reverse engineering.

elated work

n the last two decades, a lot of work has addressed the problem
f detecting and identifying crypto primitives in network traffic and
inary programs via dynamic analysis [13–21]. All these tools are
nly compatible with Intel processors because they rely on Intel PIN
 22], except for a few which are not compatible with Windows [13 ,
6]. The aforementioned work applies heuristics, except for a few
hich applied Machine Learning (ML) [18 , 20].

esign

he prior works discussed in this paper focus primarily on detecting
mplementations of certain crypto algorithms (e.g. AES and DES),
ather than detecting a cipher (e.g. a block cipher), except for Ci-
herXRay .

CipherXRay (2010) [16], kerckhoffs (2010) [15], Aligot (2012) [17],
nd K-Hunt (2018) [23] are able to locate the secret keys, but they
ack isolation and dismiss higher-level semantics [11]. It is notewor-
hy that only MovieStealer follows a VMI approach, but it does not
im to identify crypto primitives or their secret keys [24]. Refer to
able 1 for an overview.

unctionality

ligot and kerckhoffs were unable to identify a serpent256 block ci-
her when tested, even whilst having AES in their reference imple-
entations, and K-Hunt addresses only insecure keys. CipherXRay
eeds to recover all input and output parameters of the cipher algo-
ithm, and therefore it experiences various parameter reconstruction
hallenges [23], unlike CipherTrace , which adopts an offline analy-
is strategy running lightweight heuristics on the functions and the
emory buffers they access. Also, CipherXRay ’s dynamic taint analy-

is may affect the execution [23], unlike CipherTrace ’s VMI approach
n dynamic analysis. Another limitation for CipherXRay is that it does
ot check the intrinsic properties of the avalanche effect and may suf-
er from false positives. The avalanche effect is a desirable property in
ryptography, wherein flipping a single bit in the key or the plaintext
hanges the ciphertext drastically. More information can be found in
he Evaluation with closely related works section.

ryptographic primitive detection

rypto primitive detection relies mostly on basic block detection,
oop detection, instructions profiling, and memory access patterns.
efer to Table 2 for an overview of the different stages in the prior
orks. We add CipherTrace for comparison.

The task of crypto primitive detection and identification in-
olves going through some (or all) of the following stages: inspec-
ion, traits extraction, information measurement, instructions profil-
ng, and identification. Inspection can be either instrumentation or
ntrospection—the objective is to obtain an execution trace (refer to
able 1 for more information).

The purpose of traits extraction is to extract the most fundamen-
al features in a binary program, i.e. basic blocks and loops. Infor-
ation measurement determines whether the information is rich in

ontent (entropy) and/or exhibits a high distribution (randomness).
inally, instructions profiling enquires as to what the instructions ex-
ibit in terms of execution context–from ‘operands’ and ‘opcodes’.

CipherXRay , Re-Format , and bacs are data flow oriented, as they
o not depend on identifying basic blocks or loops. Re-Format em-
loys data lifetime analysis with dynamic taint analysis to identify
he runtime memory buffers in network traffic. CipherXRay employs
ata flow tracking to detect bit-level flips in input and output buffers,

ooking for the avalanche effect, while bacs is based on Data Flow
raph (DFG) look-ups, but without locating the secret keys. On one
and, most of the prior works mentioned employ data flow analy-
is (or input/output relations) in heuristics. Moreover, kerckhoffs and
ligot employ constant detection in their search, but not in a strong
ependency such as in bacs . On the other hand, CipherXRay , Movi-
Stealer , K-Hunt , and CipherTrace do not employ constant detection
t all, making them more generic, but MovieStealer does not aim to
dentify crypto primitives or their secret keys. Noteworthy that, Ci-
herXRay , Aligot , CryptoHunt , K-Hunt , and CipherTrace look for cor-
elations between the number of executions (or execution length)
nd the input-size, making it easier to spot cryptographic rounds and

4 M.A. Hassanin and I. Martinovic

Table 2. Technical overview of prior works: CipherTrace employs a VMI dynamic analysis approach (PANDA) to achieve its task.

Basic blocks Loops Information measurement Instructions profiling

Lutz (2008) [13] Conditional branching Backward edges in CFG Shannon entropy test Ratio of arith and bit-wise instrs
‘jump’ instrs

Re-Format (2009) [14] None None None Ratio of arith and bit-wise instrs
kerckhoffs (2010) [15] ‘jump’ or ‘return’ instrs Repeated execution of code addr Shannon entropy test Percentage of bit-wise arith instrs
CipherXRay (2010) [16] None None Contribution rate [16] None
Aligot (2012) [17] Intel PIN’s statistics Repeated instruction sequence Shannon entropy test High ratio of bit-wise arith instrs
MovieStealer (2013) [24] PANDA’s callbacks Repeated execution of code addr Chi-square randomness test High counts of arith instrs
Hosfelt (2015) [18] Branching Using instruction counter N/A High counts of arith instrs
CryptoHunt (2017) [19] Branching and ‘return’ instrs Bit-precise symbolic mapping Shannon entropy test Number of bit-wise instrs
K-Hunt (2018) [23] Intel PIN’s statistics Repeated execution of code addr Shannon entropy test Ratio of arith and bit-wise instrs

Chi-square randomness test
Monte Carlo simulation

CryptoKnight (2018) [20] Branching and ‘return’ instrs Repeated execution of code addr Shannon entropy test Ratio of bit-wise instrs
bacs (2018) [21] None Signature-based lookup via DFG None DFG lookup
CipherTrace PANDA’s callbacks Repeated execution of code addr Shannon entropy test High counts of bit-wise and arith

Chi-square randomness test

INPUT

Inspection Engine (PANDA)

Byte statistics
of program counters

Synthetic info
of function calls

Binary Program

Tap PointsExec Report Graph

Analysis Engine

OUTPUT

Figure 1 . Arc hitecture of CipherTrace.
block ciphers, but CryptoHunt does not aim to even locate the secret
keys.

Obfuscation

K erckhof fs , CipherXRay , Aligot , CryptoHunt , and K-Hunt depend on
the semantics of cryptography in their task of detecting and identify-
ing cryptographic operations [23].

K-Hunt claims that this fact is enough to make a tool obfuscation-
resilient, but we argue that such semantics can still be obfuscated.
Therefore, we adopt a generic VMI-based technique to extract such
semantics on a whole-system level (using our PANDA plugin), and
via multiple Intermediate Representations (TCG and LLVM). Cipher-
Trace does also aggregate results, and analyzes multiple CFGs in-
parallel to increase the confidence level. K-Hunt (2018) [23] and bacs
(2018) [21] consider Virtual Machine (VM) obfuscation, antivirtual-
ization, and various anti-debugging tricks. Apart from CipherXRay ,
Aligot (2012) [17], CryptoHunt (2017) [19], and K-Hunt , all the other
tools discussed in this paper do not consider code or data obfusca-
tion. Aligot authors claim that their tool is able to detect unrolled
loops [17]. CryptoHunt is able to deal with data obfuscation by com-
bining loop I/O relations with bit-precise symbolic execution [19].
K-Hunt is able to deal with nonstandard key buffers [23]. Finally, Ci-
pherXRay is able to deal with intrinsic memory buffers. In compari-
son, CipherTrace is able to deal with a few classes of code obfuscation,
anti-debugging, and anti-VM checks and tricks. All the ransomware
specimens we tested employ obfuscation (ranging from low to very
high), and we caught the elements of product ciphers in all of the
specimens. See Cryptovirological artefact analysis section for more
information.

Cryptovirology

K erckhof fs , CipherXRay , Aligot , CryptoHunt , and K-Hunt tested their
tool with malicious binaries. K erckhof fs tested only one binary, and
K-Hunt tested two binaries. CipherXRay and Aligot were mostly fo-
cused on botnets, the former tested three binaries, and the latter tested
four binaries. In comparison, CipherTrace tested five binaries of the
most recent and popular ransomware families, so its results are more
dependable, provided the context, and since the sample size (and vari-
ance) is higher.

Henceforth we define the closely related works as those tools that
aim to identify crypto primitives, and at least locate secret keys, and
they are: K erckhof fs , CipherXRay , Aligot , and K-Hunt .
Design and implementation

Cryptographic instructions involve a high number of bit-wise and
arithmetic instructions, and they correlate with memory access pat-
terns, usually in ratio to the input-size. Moreover, routines trans-
late into loops in application code, and loops are mostly exhib-
ited as ‘call’ or ‘jump’ instructions in machine code. On an instruc-
tion level, a given set of instructions constitutes a basic block of
code. A basic block of code is the set of instructions that has a
single entry and a single exit. In CipherTrace , we associate the ba-
sic block(s) of code with a higher-level semantic (e.g. a function),
whereas a function is defined via function headers in the executed
binary.

In CipherTrace , the two main components are the Inspection En-
gine and the Analysis Engine . The Inspection Engine collects the
synthetic information of function calls and their accessed mem-
ory buffers (via our PANDA plugin func_stats), where it outputs
a ‘ func_stats ’ file. In the Analysis Engine , multiple stages of analy-
sis take place, and they are; STACK ANALYSIS , FILTERING , and
CRYPTO ELEMENTS IDENTIFICATION . CipherTrace outputs an ex-
ecution report, graphs, and the interesting points in the execution (i.e.
tap points), whereby we dump the memory buffers (i.e. secret keys,
plaintexts, and ciphertexts). A tap point is essentially a machine’s
state at a certain program counter (i.e. instruction count). Refer to
Fig. 1 for a system overview.

CipherTrace: automatic detection of ciphers from execution traces 5

Table 3. Synthetic information extracted by func_stats.

Description From

The guest instruction count (unique identifier across the replay) PANDA

The address space identifier PANDA

The called function address; equivalent to the initial program counter PANDA

The caller address; equivalent to the return address of the current stack entry PANDA

The callers of the current function; features the blocks that have led to the function call PANDA

The function calls themselves; not what has led to them (i.e. not the callstack) PANDA

The number of all distinct basic blocks executed PANDA

The highest number a basic block got executed PANDA

The address of the most executed basic block PANDA

The sum of all executions of all blocks; comparable with ‘llvm_bb’ field PANDA

The total bytes read from memory PANDA

The memory “reads” array (refer to Table 4 for more info) PANDA

The total bytes written to memory PANDA

The memory “writes” array (refer to Table 4 for more info) PANDA

The number of times arithmetic operations were executed Assembly
The number of times memory operations were executed Assembly
The total number of instructions executed Assembly
The number of all visited basic blocks LLVM

The number of all visited functions LLVM

The number of all visited modules LLVM

The number of times memory allocation instructions were visited LLVM

The number of times binary (or logical) operators were visited LLVM

The number of times ‘call’ instructions were visited LLVM

The number of times intrinsic instructions (e.g. ‘memcpy’ and ‘memmove’) were visited LLVM

The number of times memory ‘load’ instructions were visited LLVM

The number of times memory ‘store’ instructions were visited LLVM

The total number of all visited instructions LLVM

I

E
P

P

b

C

u

u

a

e

M
M

d

s

fl

2

t

D
W

a

t

b

p

L

o

i

i

T

f

r

f

Table 4. Description of memory fields extracted by func_stats.

Field Description

Base The memory address where the memory buffer starts
Len The length of the memory buffer
Entropy Shannon’s entropy test for the memory buffer
Nulls The number of nulls in the memory buffer
pc The program counter of the memory buffer
PrintableChars The number of printable characters in the memory

buffer

callersRandometer

Analyzer

filtered function calls

Filtering

crypto elements found

Crypto Elements
Identification

Reporting

repeat for each call (record)

Figure 2. Overview of the analysis engine.

A

A

M
I

t
nspection engine

xecution cycle
ANDA accomplishes emulation via basic block translation.
ANDA’s Emulator—QEMU—generates a corresponding basic
lock of binary code via an Intermediate Language (IL), i.e. Tiny
ode Generator (TCG), i.e. directly executable on the host to em-
late the guest behavior. PANDA also supports LLVM IL, which is
sed to construct, optimize, and produce intermediate machine code,
llowing the analysis to take place in a simplified but semantically
quivalent domain, however at the expense of performance [26].

emory tainting
emory tainting is the process of tracking the propagation of flagged

ata in memory to determine the data flow. Dynamic binary analy-
is requires a taint-checking technique to instrument/inspect the data
ow. PANDA leverages whole-system tainting similar to DECAF [27 ,
8] and DRAKVUF [29], in which it labels a memory buffer and
racks it along the exclusion.

ata collection
e categorize the collected information as platform-based (PANDA),

ssembly-based (from instructions profiling), or LLVM-based (from
he lifted LLVM code). Unlike the related work, we also adopt LLVM-
ased binary (and logical) operators, which are essential for cross-
latform support (see the results of our OPENSSLAES256 sample).
LVM-based information is quite dynamic and verbose, since it relies
n the lifted code in the LLVM IL. In comparison, the platform-based
nformation also relies on the assembled TCG IL. An IL is essential
n dynamic analysis for emulating the guest instructions on the host.
he output of func_stats is what we call a LOG . It is basically a file

eaturing lines of function calls (also known as records), each line
epresents a function call’s statistics and memory accesses in a JSON
ormat (refer to Tables 3 and 4).
nalysis engine

n overview of the analysis engine (Fig. 2).

easuring the callers
n the Randometer module, we apply the Chi-square randomness test
o look for callers that have high-randomness (low Chi-square) write

6 M.A. Hassanin and I. Martinovic

a filtered function call

analyze call

S-Box

P-Box

Scheduling Init KRound KRoundShifting Mixing

Figure 3. Overview of the crypto elements finder.

buffers and low randomness read buffers, indicating a cryptographic
operation on an input. We start from callers of functions to account
for control flow obfuscation, nested function calls, and to start the
analysis from the highest level possible in the callstack. On top of
reporting positive results, an empirical study analyzing the mem-
ory buffers in a PANDA replay using the Chi-square randomness
test showed that, the test returns extremely low values (very close
to 1.0) for encrypted data, and very high values (in the thousands)
for encoded data [24]. We tested different values, and we found that
1000/10 000 for output/input buffers is the least likely to miss impor-
tant data, and it also includes edge cases. If the look-up pair is re-
versed (i.e. 10 000/1000), one will be looking for decryption functions.

Stack analysis and filtering
In the Analyzer module, in the FILTERING stage of analysis, we aim to
recover the most interesting part of the CFG. Therefore, after we filter
by callers fed from the Randometer under which we have our candi-
dates, we filter the main function calls that exhibit certain criteria.
Provided a CFG, the main function calls are the closest nodes (with
the highest number of executions and basic blocks) to the root node
in the callstack—which is where the story begins. We take the ones
whose write buffers exhibit high entropy (indicating compression, en-
coding, or cryptography). We use Shannon’s entropy for measuring
memory buffers. We use the filter > 1 , which indicates a slightly higher
than normal entropy in a buffer of 256-bytes [24]. Our tests support
such a choice as it avoids unnecessary noise. We found that 99% of
the data sample has entropy of 0–3.9, and 63% has entropy of > 1 ,
where an entropy of 0–0.9 represents 24% of the sample. These 24%

are either noise, or a nested function to the main one found in the > 1
range. In addition to considering entropy, we also dismiss unneces-
sary function calls by looking for at least the following criteria:

� 1 loop (a repeated execution of a basic block’s address).
� 1 arithmetic/bit-wise instruction.
� High count of basic blocks, and high number of executions of

basic block(s).

And henceforth, a CFG is referred to as stack (its nodes are the
function calls), and its levels is the stacksize . We use a stacksize of 3
(our default), which is thought to be the lowest it could be (as 2 pro-
duced a lot of false positives in our tests). Finally, we aggregate and
group the function calls by function. The stack analysis and filtering
algorithm is as follows:

Algorithm 1: Filter LOG records (R)

FILTER (R)
inputs : All LOG records R

output: The filteredStackRecs denoted by F
distinctStackRecs is N

∗
f oreac h distinctStackRec d i ∈ N

∗ do
f_write_entropy:= 1.0 ;
f oreac h record r i ∈ R do

if r i funct ionst ack
= d i funct ionst ack

then
tmpRec:= r i ;
mem_writes:= tmpRec writes ;
write_entropy_count:= 0;
f oreac h mem_write w ∈ mem_writes do

if w entropy > f_write_entropy then
write_entropy_count++;

if write_entropy_count > 1 & tmpRec insn _ arith > 1 &

tmpRec max ex ecs > 1 then
F

+ ← tmpRec

return F ;
Identification of crypto elements
In this stage, we look for the operational components of a crypto
algorithm in the stacks/CFGs we filtered, so that we can heuristically
identify the class of the cipher algorithm. The main component in the
crypto algorithm identification stage is finding the crypto elements.
An overview of this component is shown in Fig. 3 .

In the interest of space, we omit the details in the main algorithm

for detecting and identifying crypto elements. However, we describe
the crypto elements in-detail as follows:

Description 1 : State .

A crypto state is represented by the expression s initial ..s final ; starting
from the initial state and ending with the final state, whereby s initial

is the plaintext and s final is the ciphertext . It mainly refers to the state
of a memory buffer which manifests the internal state of a cipher
[7]. It is expected that a function would read and write from/to
the same buffer of the same size to perform a crypto operation,
e.g. a substitution. Therefore, in a given function call, the state is
the intersection of memory addresses in memory reads and writes
of the same buffer length, wherein the entropy is higher or equal
on write.

Description 2 : Key scheduling .

In a function call, one of the accessed memory buffers of a key
scheduling element is the crypto key to be scheduled or expanded.
So for the memory addresses that only exist in memory writes (i.e.
a potential expanded key), if the length of memory writes is greater
than the length of memory reads, wherein the entropy is higher on
write, and there is a ratio between the write buffers and the maxi-
mum number of times a basic bloc k g ot ex ecuted, then w e hav e a
candidate. Add to that, from our observations, the function call in
question usually has a high number of arithmetic instructions–on
a scale of 10 compared to other calls.

Description 3 : Substitution box .

When a function call exhibits reading single bytes from a memory
buffer to substitute a state in place b yte-b y-b yte. For a state of n
b ytes, each b yte is accessed only once for the number of rounds
that the cipher requires (x , e.g. 9 in AES128 excluding initial key
round), in whic h w e w ould find x number of function calls ex-
hibiting the same features.

Description 4 : Mixing .

When a function call features the following criteria: it accesses the
same state memory address as other elements, and shares the same
caller with any of them. It would differ in exhibiting a lower fre-
quency in access patterns, as it does not need to substitute multiple

CipherTrace: automatic detection of ciphers from execution traces 7

Table 5. Crypto and hashing algorithms sample.

Design principle Algorithm Operating system

Permutation–substitution netw or k AES-128 1 Win7_x86
Fiestal netw or k Twofish-128 2 Win7_x86
Permutation–substitution netw or k Serpent-256 3 Win7_x86
Permutation–substitution netw or k Openssl-AES256 Win7_x86 4

Debian_x64 5

KGA via permutation-index pointers RC4 6 Win7_x86
K e y ed Mer kle–Damgård construction SHA256 7 Win7_x86
Noncryptographic arithmetic sequence DJB2 8 Win7_x86
Merkle–Damgård construction MD5 9 Win7_x86
Merkle–Damgård construction SHA256 10 Win7_x86

1 https:// github.com/ ceceww/ aes.git 2 http:// www.cartotype.com/ downloads/ twofish
3 https:// github.com/ JasonQSY/ serpent.git 4 openssl 1.1.1d 10th Sep 2019
5 OpenSSL 0.9.8o 01 Jun 2010 6 https:// github.com/ ogay/ rc4
7 https:// github.com/ h5p9sl/ hmac _ sha256 8 http:// www.cse.yorku.ca/ ∼oz/ hash.html
9 https:// github.com/ JackieTseng/ md5 10 https:// github.com/ okdshin/ PicoSHA

a

t

f

t

p

w

w

w

a

t

m

i

a

w

S

M
W

b

r

d

f

a

e

i

t

w

t

m

E

I

t

k

u

s

T

r

(

b

(

o

t

t

t

s

r

i

F

c

C

W

t

c

t

s

a

e

times in place. And secondly, the bit-wise and arithmetic instruc-
tions are higher in Mixing as it performs substitution (less than an
S-Box) but with bit-wise or arithmetic instructions. In AES, it is
manifested as matrix multiplication of columns, after permuting
(Shifting), and substituting (S-Box).

Description 5 : Shifting .

Mixing and Shifting crypto elements access the same memory
addresses even with the same length, but Mixing has more
“insn_arith” and “llvm_insn_store” statistics compared to Shift-

ing , due to the associated processing that it carries out. Also, note
the tandem in Mixing and Shifting in the AES algorithm, forming
an AES flavoured Permutation-step [7].

Description 6 : Initial KRound .

This is a routine exhibiting a high number of bit-wise and
arithmetic instructions, as it performs such operations on the
state and the expanded secret key. This occurs for x number
of rounds, the same number of function calls. Also, if there is
Key Scheduling , we mostly expect this element to exist or vice
v er sa.

Description 7 : KRound .

This crypto element depends on the Initial KRound crypto ele-
ment. In fact, it is almost identical to KRound except for the
former’s dependency on the Key Scheduling element, as this ele-
ment operates directly on the state , wherein its length must not
be 0.

In essence, our key-stone element is the state , which has to exist,
s this is the buffer that the cipher performs its operations on, and
hat eventually becomes the ciphertext. Product ciphers perform a
ew core operations, i.e. a substitution step (S-Box), and a permuta-
ion step (P-Box). A substitution step is when we substitute an in-
ut’s buffer byte-by-byte from a fixed table (Fixed S-Box). And when
e substitute with logic (e.g. shift to the left or to the right), then
e have a permutation step. There are two types of permutations
e classified during our evaluation: one that involves heavy bit-wise

nd arithmetic operations (i.e. Mixing) and one that performs less of
he same (i.e. Shifting). Finally, we survey the identified crypto ele-
ents conjointly to determine the class of the cipher. For example,

f we found P-Box (Shifting), and S-Box (Substitution), then we have
 candidate product cipher applying a substitution–permutation net-
ork, e.g. AES , Serpent , or TwoFish . We evaluate our design in the
ystem design section.
emory reconstruction
e use this technique to dump the secret key, plaintext, or ciphertext

y the Analyzer module. We refer to them as ‘ key ’ and ‘ state ’ objects,
espectively. In this technique, we reconstruct the memory buffers at
ifferent points in the execution and for different memory locations
or a certain function caller and address space (e.g. a process). As soon
s the Analyzer module identifies key and state elements, we could
asily report the ‘ key ’ and ‘ state ’ objects relative to the crypto element,
.e. accessed by the function. In the Verifier module, we search in the
ap point’s memory buffers for some ‘searchterms’, in other words,
hat we expect to find. The Verifier module is a quick way to verify

he results of our tool. See Discussion and future work section for
ore information on potential enhancements.

valuation

n the course of our experimental evaluation, we aim to demonstrate
hat we can detect and identify block ciphers and extract the secret
eys using CipherTrace . We executed our evaluation on WSL v1,
sing a machine with ‘Core i7-8550U, 1.8GHz, 16.0GB RAM’
pecification.

In the Crypto algorithms identification section , we test Cipher-
race using four standard crypto algorithms known to be used in
ansomware as well as in widely used software such as KeePass
[30]) and OpenSSL library ([31]). The crypto algorithms are three
lock ciphers and one stream cipher (RC4). One of the block ciphers
AES) was tested using two different key sizes and on two different
perating systems and processor architectures. Additionally, we
est four widely used hashing algorithms: one keyed (HMAC) and
hree unkeyed algorithms. All of them are cryptographic except for
he unkeyed one (DJB2). In the Cryptovirological artefact analysis
ection, we test our tool against cryptovirological programs (i.e.
ansomware) obtained from Threat Intelligence reports. More
nformation on the sample is found in their respective sections.
inally, in the Evaluation with closely related works section, we
ross-evaluate our results with the closely related works.

rypto algorithms identification

e test hashing algorithms to evaluate the resilience of CipherTrace
o noise and false positives. We also test the RC4 (stream cipher) to
ross-check the findings with the rest of the sample, as we mostly
arget block ciphers. All the algorithms we use for evaluation are
tandard algorithms, or different implementations of them, and they
re not obfuscated. In Table 5 , we list the algorithms we use in our
valuation.

https://github.com/ceceww/aes.git
http://www.cartotype.com/downloads/twofish
https://github.com/JasonQSY/serpent.git
https://github.com/ogay/rc4
https://github.com/h5p9sl/hmac_sha256
http://www.cse.yorku.ca/
https://github.com/JackieTseng/md5
https://github.com/okdshin/PicoSHA

8 M.A. Hassanin and I. Martinovic

Table 6. Results of testing CipherTrace using different algorithms: CipherTrace could fully dissect Fixed S-Box block ciphers, additionally

detect other ciphers and even extract a few of their crypto artefacts.

Program Info Elements Buffers found

AES128 func_stats size: 115.3MB All Secret Key (auto)
Duration: 10 min Plaintext (auto)

High-Arith Callers: 1 Ciphertext (auto)
SERPENT256 func_stats size: 112.4 MB All Secret Key (auto)

Duration: 11–25 min/caller Plaintext (auto)
High-Arith Callers: 7 Ciphertext (auto)

TWOFISH128 func_stats size: 133.6 MB No S-BOX Secret Key (semiauto)
Duration: 7–46 min/caller Plaintext (semiauto)

High-Arith Callers: 9 Ciphertext (n/a)
OPENSSLAES256 func_stats size: 633.8 MB All Secret Key (auto)

Duration: 30–761 min/caller Plaintext (n/a)
High-Arith Callers: 17 Ciphertext (n/a)

RC4 func_stats size: 20.9 MB No S-Box Secret Key (none)
Duration: 7 min Plaintext (none)

High-Arith Callers: 1 Ciphertext (none)
HMACSHA256 func_stats size: 106 MB Shifting Secret Key (none)

Duration: 3 min Mixing Plaintext (none)
High-Arith Callers: 4 Scheduling

DJB2 func_stats size: 103 MB Mixing Secret Key (n/a)
Duration: 3 min Plaintext (none)

gh-Arith Callers: 2
MD5 func_stats size: 103 MB None Secret Key (n/a)

Duration: 3 min Plaintext (none)
High-Arith Callers: 2

SHA256 func_stats size: 108 MB None Secret Key (n/a)
Duration: 1 min Plaintext (none)

High-Arith Callers: 2

Serpent is well-known and identical to AES [32]. Hence, it should
be easy to detect for those tools which could already detect AES. The
tools that are unable to detect it are not tracing a cipher per se , limit-
ing them by-design to certain algorithms or implementations. We test
CipherTrace utilizing the PANDA replays we recorded, and using our
PANDA plugin with CipherTrace ’s default configuration mentioned
previously. We used a stack_limit of 200 (the default) to ensure that
we start the analysis from the highest process possible in the stack (or
process tree). From our tests, we realized that 32 was enough to dis-
sect aes128 , and 200 was more than enough for a complete overview

of the system. In Table 6 , we test CipherTrace against the crypto al-
gorithms.

AES on Win7 and deb squeeze
CipherTrace has successfully classified AES as a block cipher and ex-
tracted and verified all the memory buffers (including the secret key)
for aes128 , as well as the secret key for opensslaes256 . It only veri-
fied the secret key for opensslaes256 as it was the only buffer PANDA

could locate in the replay. The replay of opensslaes256 was obtained
by recording the use of OpenSSL in an extended browser session,
hence the high replay size (and duration). OpenSSL’s implementa-
tion of the AES algorithm is different from aes128 . We also achieved
same results by executing the AES algorithms on a different OS with
different processor architecture (x64).

Serpent
serpent256 is the control algorithm in our experiment. It was success-
fully classified as a block cipher, and all its buffers were automatically
extracted and verified.
TwoFish
In the twofish128 replay, the S-Box crypto element failed to be iden-
tified, because it is precomputed [33]. The current version of Cipher-
Trace only identifies Fixed S-Box elements, and that will be further
discussed in the Discussion and future work section. However, by us-
ing the synthetic information we extracted and the Randometer mod-
ule of CipherTrace , we could extract the memory buffers.

RC4
In the RC4 replay, the S-Box crypto element failed to be identified,
indicating the absence of—at least—a Fixed S-Box . However, a per-
mutation step could be identified, which is something RC4 does in
addition to key scheduling [34], which was also identified.

Hashing algorithms
All hashing algorithms tested were unkeyed except for hmacsha256 ,
where potential secret keys could be explored. As per to the Design
principles of our algorithms sample mentioned in Table 5 , none em-
ployed a permutation–substitution network, indicating a product ci-
pher [7]. Thus, S-Box , Shifting , or Mixing elements are not expected.
After running CipherTrace , the absence of such elements in md5 and
SHA256 was confirmed. Notably, a Mixing element was identified in
DJB2 , indicating a function accessing a state to perform bit-wise arith-
metic operations and has lower frequency in access patterns com-
pared to other functions that substitute or permute, aligning with
our tested implementation.

HMACSHA256
We identified Shifting , Mixing , and scheduling elements. We expected
to find a Key Scheduling element, even if we failed to extract a secret

CipherTrace: automatic detection of ciphers from execution traces 9

Table 7. Recent and popular ransomware sample tested.

Name Obfuscation Encryption model Data encryption File encryption

Maze 11 [37–39] Very high 3-tier XORing, RC4 Cha-Cha
REvil 12 [40 , 41] High 4-tier RC4 AES-128-CBC

Ryuk 13 [42 , 43] Low 3-tier RC4 AES-256-CBC

Conti 14 [44 , 45] Medium 3-tier Encoding AES-256-CBC

Netwalker 15 [46] High 3-tier XORing, RC4 AES

11 SHA256:dee863ffa251717b8e56a96e2f9f0b41b09897d3c7cb2e8159fcb0ac0783611b
12 SHA256:3795a2228558a1b136746ea70125bc53cf05e2a6ce078d39667af4e3adee3a02
13 SHA256:23f8aa94ffb3c08a62735fe7fee5799880a8f322ce1d55ec49a13a3f85312db2
14 SHA256:eae876886f19ba384f55778634a35a1d975414e83f22f6111e3e792f706301fe
15 SHA256:9c6d7dbe229d4257bc12df969637e773472892d80129416239d7a11edc7c7e82

Table 8. Analysis of the ransomware sample: CipherTrace could detect and classify cipher algorithms and extract secret keys and crypto

states from all specimens in the sample.

Ransomware E1 E2 E3 E4 E5 E6 E7 G S K

Maze ✓ ✓ ✓ ✓ ✓ ✓ ✓ 36 1 33
REvil ✓ ✓ ✓ ✓ ✓ ✓ ✓ 41 12 42
Ryuk ✓ ✓ ✓ ✓ ✓ ✓ ✓ 28 1 36
Conti ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18 8 19
Netwalker ✓ ✓ ✓ ✓ ✓ ✓ ✓ 15 9 23

E1 : State. E2 : Key Scheduling. E3 : S-Box.
E4 : Shifting. E5 : Mixing. E6 : Init KRound.
E7 : KRound. ✓ : Found at a different caller.
G : CFGs. S : State tap files. K : Key tap files.

k

r

F

H

a

a

[

S
B

p

c

i

d

n

K

a

i

p

P
O

t
t

t

f

a

I

(

c

p

p

r

C

T

o

m

O
A

T

c

c

c

w

W

s

d

t

N

o

X

a

W

r

p

C
W

d

forensic artefacts from the malicious binaries.
ey despite finding x10 more key artefacts compared to other algo-
ithms. The reason is our implementations’ dependency on finding a
ixed S-Box block cipher to extract the full key—which is intentional.
owever, as far as identifying Shifting and Mixing is concerned, we

nalyzed our sample and results, and found that this is anticipated,
s a keyed Merkle–Damgård construction may perform permutation
 35 ,36].

ummary
y using CipherTrace , we managed to identify all Fixed S-Box block ci-
hers we tested and extract their secret keys. When we tested stream
iphers (i.e. RC4), no S-Box element was identified, indicating that
t is not a block cipher, and with other elements present, we de-
uced that it is a stream cipher. When testing hashing algorithms,
o elements were identified for unkeyed hashing algorithms, and the
ey Scheduling element was identified when testing a keyed hashing
lgorithm, indicating the presence of a secret key. The use of hash-
ng algorithms might count as a proof-of-resilience to noise or false
ositives.

erformance
n average it takes around 8 min (per caller) to run the analysis and

o locate and extract the memory buffers (including the secret keys)—
he specifications of the machine used can be found above. The dura-
ion depends heavily on the replay size and the level of callstack, i.e.
rom which process the analysis starts, whether from the binary, from
 process higher up in the tree, or even higher (from an OS process).
n our evaluation we start the analysis from a given Address Space
i.e. a specific process), but the stack can go as far as our stack_limit
an reach. All in all, our numbers demonstrate an improvement in
erformance compared to the closely related works assessed in this
aper. More information can be found in the Evaluation with closely
elated works section.

ryptovirological artefact analysis

o further demonstrate the efficacy of our system for the automation
f malware analysis and reverse engineering, we apply it against the
ost recent and popular ransomware families listed in Table 7 .

bfuscation in the sample
ll of the specimens perform binary, code, and data obfuscation.
hey also—at least—encrypt strings, Windows API names, and en-
ode the ransomware note. We notate Maze with very high obfus-
ation as it tries to evade static and dynamic analyses by employing
ontrol flow obfuscation and a few techniques to evade detection
hen launching malicious code, starting processes, and calling the
indows APIs. It also utilizes anti-debugging, anti-VM, and anti-

andboxing checks and tricks. REvil encrypts the exploit code, in ad-
ition to its antianalysis features. Ryuk , Conti , and Netw alk er encrypt
he API names/calls as far as data encryption is concerned. However,
etw alk er also encrypts the config in addition to the multi layers of
bfuscation to evade an Anti Virus. It does also employ RC4 and
ORing in data encryption compared to only encoding for Ryuk
nd RC4 for Conti —where the latter has less antianalysis features.
e learned that Ryuk ’s code obfuscation (e.g. code flow obfuscation)

esulted in a scattered CFG, which we had to account for at the ex-
ense of performance—i.e. 40% more analysis time.

ipherTr ace r ansomw are results
e show the results of our experiment in Table 8 . We were able to

etect and classify the ciphers, and extract the secret keys and other

10 M.A. Hassanin and I. Martinovic

We identified crypto elements and artifacts in all tested ran-
somware binaries, producing numerous detailed CFG graphs for
each. Additionally, we generated state and key tap files to extract po-
tential keys and crypto states, containing various tap points based on
replay length, data size, and configuration parameters, as outlined in
Crypto algorithms identification section. Cryptographic elements in
all samples were linked to the same function caller, indicating the ci-
pher’s main function location, except for Ryuk , where key operations
were managed by a different caller.

Maze
We identified that the binary we used in our evaluation employs Cha-
Cha [37], even if there are other variants that employ AES [47 , 48].
We believe that we caught block cipher crypto elements such as S-
Box and a permutation step because Maze encrypts the Cha-Cha key
via R S A [37]—a block cipher [49]. Also, the definition of crypto ele-
ments we established is quite generic, and fits Cha-Cha’s permutation
[50]. We mostly differentiate between Shifting and Mixing from the
bit-wise and arithmetic instructions ratio and dependency on other
elements, facilitating the identification of Cha-Cha.

Other specimens
We were able to identify the crypto elements when block ciphers were
employed in encrypting files or data. Netw alk er showed a high num-
ber of Key Scheduling and KRound Init across the execution report,
exhibiting very high key-related activity (i.e. expansion or reuse), and
that was slightly different from the rest of the ransomware sample.

Verifying the sample’s artefacts
This section discusses our tool’s usage for analysts and victims
of ransomware. Through in-depth reverse engineering of the Conti
specimen—selected for its easily found hard-coded master public key
in the binary—we proved our tool’s efficacy and verified its results.
Analysis of the specimen showed each encrypted file includes about
512 bytes of metadata: file size, a 32-byte file key, and a 16-byte salt,
all encrypted with this public key.

Since CipherTrace does not yet fully support asymmetric block
ciphers (e.g. R S A), and the specimens employ asymmetric cryptog-
raphy to encrypt each file’s key, we cannot automatically extract file
keys. Therefore, after employing manual analysis, we extracted and
verified a few crypto states (i.e. plain- and ciphertexts), as well as the
R S A-4096 key, and the encryption key of a tainted file.

By using the Verifier module with the content of some honeypot
files, we confirmed extracting plaintext content of several files. Addi-
tionally, the Verifier module highlighted interesting function callers
and program counters, pinpointing intersections between key and
state tap points for further analysis. This is important because the
AES-256 key, which encrypts a file, is subsequently encrypted by the
R S A-4096 key and stored in the same file, transforming the AES key
into a crypto state (e.g. a ciphertext). The program counters reported
by the Verifier module confirmed the R S A-4096 hard-coded public
key of Conti , which was helpful to trace. This is promising for fully
supporting asymmetric block ciphers as well. This public key was the
most read 512 bytes by the conti.bin.eae8. process, which is expected
as it reads the key for each file encryption operation to encrypt the
file’s metadata.

We further employed the file_taint plugin from PANDA, along-
side the tainted_instr plugin, to trace writing metadata and the en-
cryption operation for a honeypot file, aligning with our tool’s find-
ings. Moreover, through combining known information and our
func_stats plugin’s output, we identified several potential file encryp-
tion keys (32-byte memory buffers). However, attributing keys to
specific files without file tainting or brute forcing remains challeng-
ing. In future versions, we will aim to group reporting potential
secret keys with corresponding plaintext and ciphertext for easier
verification.

System design

By adopting a modular design in the implementation of CipherTrace ,
we managed to achieve separation of concerns and allow for inde-
pendent execution, development, enhancement, and maintenance.

This led to very well-designed configuration management. In each
module, conceptually, we followed a divide and conquer approach in
pursuing the module’s objective. For instance, in the Analyzer mod-
ule, we split the analysis into multiple stages to facilitate implement-
ing, executing, and evaluating the concept, and make room for spot-
on improvements. STACK ANALYSIS enabled us to reach our main
function calls easier, and FILTERING allowed for performing a Con-
trol Flow analysis on their associated (or nested) function calls to
start the CRYPTO ELEMENTS IDENTIFICATION stage with what
we need.

The idea of looking for a state crypto element was very successful,
as we could identify it in all of our samples, because hiding an inter-
nal state of a crypto algorithm is highly unlikely to be successful. In
other words, we could always identify a memory buffer that increases
in entropy and is affected by high bit-wise and/or arithmetic opera-
tions as the execution goes. However, as discussed in the Discussion
and future work section, we may need to implement more advanced
parameter reconstruction techniques to account for potential obfus-
cation of memory buffers accessed by the function call we analyze.

One may argue the naming of crypto elements is tied to how AES
works. However, we could rename Shifting to Low P-Box , and Mix-
ing to High P-Box , but at the expense of readability and not clearly
showcasing our tool on an algorithm, i.e. used by more than 75%

of ransomware samples out in the wild. Noteworthy that, in our im-
plementation of these two elements, we made Mixing a prerequisite
for Shifting to facilitate finding AES algorithms to easily fight the
ransomware specimens propagating on the internet, but that neither
affects the results of classifying a cipher (as both are considered per-
mutations), nor extracting secret keys or crypto states at all. It can
also be easily changed. The rationale is that, if a High P-box element
was identified then, i.e. permutation, and if there is an additional
weaker one, then i.e. AES’s permutation.

Evaluation with closely related works

We compiled and tested the published tools from the closely related
works against our crypto algorithms sample mentioned in Table 5
above. CipherXRay ’s authors did not publish their implementation,
and therefore we could not test it against our algorithms sample,
however we theoretically examined it against our tool. In Table 9 ,
we compare CipherTrace against the tools that could identify crypto
primitives and could also locate their secret keys, i.e. kerckhoffs , Ci-
pherXRay , Aligot , and K-Hunt . CipherTrace ties with kerckhoffs , which
has the best performance for the task, while having a bigger scope and
more functionality.

Due to following a DBI-based approach in the closely related
works, at least Maze , REvil , and Conti might not have even launched
due to their antianalysis capabilities. CipherTrace is a fully automated
system, which differentiates it from the prior works. For instance, we
executed the system on all test samples via a single shell script in one
go, and CipherTrace was fully executed against each replay as per to
the default configuration.

CipherTrace: automatic detection of ciphers from execution traces 11

Table 9. Comparison with the closely related works: CipherTrace is the only one that employs a VMI dynamic analysis approach, is

semantics-independent, and can detect and identify ciphers without using signatures or templates.

System Approach C1 C2 C3 C4 C5 Implementation tested Test result Avg. performance

Kerckhoffs DBI-Heuristics ✗ ✗ ✗ ✗ ✗ ✓ AES ✓ 8 min
Serpent ✗

CipherXRay DBI-Heuristics ✓ ✓ ✗ ✗ ✓ Not available N/A 15 min [16]
Aligot DBI-Heuristics ✗ ✗ ✗ ✗ ✗ ✓ Nothing identified Analysis unending (term. at 7 h)
K-Hunt DBI-Heuristics ✓ ✗ ✗ ✗ ✓ Not applicable N/A N/A

CipherTrace VMI-Heuristics ✓ ✓ ✓ ✓ ✓ ✓ AES ✓ 8 min
Serpent ✓

TwoFish ✓

C1 : detects a proprietary cipher. C2 : identifies a cipher class.
C3 : extracts all crypto artefacts. C4 : visualizes the CFG.
C5 : no signatures or templates.

D

C

O

i

b

o

t

a

s

t

h

w

o

t

c

i

t

p

m

N

D

p

i

i

f

A

w

a

u

e

o

p

F

W

t

c

o

a

a

d

a

s

c

h

i

i

w

o

b

w

A

t

r

f

I

W

(

l

t

s

f

P

S

f

f

M

a

i

T

A

o

i

y

c

v

M

I

c

s

f

t

a

a

iscussion and future work

ore concept and approach

ur core concept is to identify the so-called crypto elements by utiliz-
ng the intrinsic properties of cryptography and the design differences
etween different ciphers. In the analysis, we rely on the internal state
f crypto primitives to identify the crypto elements, because hiding
he internal state is highly unlikely to succeed. We followed a VMI
pproach in dynamic analysis, and this helped to address antianaly-
is features of different binaries, and enabled stack analysis and fil-
ering of function calls from a whole-system perspective employing
igher-level semantics using the plugin we authored. Additionally,
e take into account the higher-level semantics of a binary, i.e. mem-
ry buffers and functions in a controlled way that does not affect
he analysis. The VMI approach, our PANDA plugin, the core con-
ept, and our algorithms, made CipherTrace generic and capable of
dentifying proprietary cryptographic implementations, and extract
heir potential secret keys and crypto states. Our concept can be im-
lemented differently, and we consider our algorithms the absolute
inimum to catch crypto elements.

otable limitations

espite being capable of identifying the S-Box crypto element in Ser-
ent, which is slightly different from AES in design and very different

n the implementation we tested, the current version of CipherTrace
s only compatible with Fixed S-Box elements. And this explains the
ailure to identify the S-Box crypto element in the twofish128 replay.
dditionally, the current version mainly supports block ciphers, but
ith slight modifications it could also fully support stream ciphers
s the evaluation demonstrated, since stream ciphers are also prod-
ct ciphers [7]. Moreover, CipherTrace inherits PANDA’s limitations,
.g. levels of callstack information. In our evaluation, we used a limit
f 200 and we faced no issues. The limit is also customizable in Ci-
herTrace .

alse positives

e look for specific cipher design features [7], and i.e. why it is hard
o see a high number of false positives in the results—which is our
onceptual contribution. For instance, in DJB2 replay, we identified
nly a Mixing element, but not a cipher. With that said, even if the
ddress space (i.e. process) is specified, the false positives produced
re essentially the cascading function calls from/to the target. To ad-
ress this, we use the appropriate stacksize and stack_limit criteria
s discussed in the stack analysis and filtering in the Analysis engine
ection. One may argue an adversary may misdirect the analysis by
reating a decoy block of code in the specimen (i.e. executed), which
as a ultra-high loop count, or high number of bit-wise/arithmetic

nstructions. It is true that this will highly likely produce false pos-
tives for the crypto elements that filter for such criteria. However,
e argue that this will not affect the overall results, as we are not
nly looking for a few elements in some specific functions or basic
locks. We produce a report for all function callers in the specimen
ith the called functions labelled with the crypto elements identified.
nd to increase confidence in the results, we run the analysis on mul-

iple CFGs in parallel, collect the information from two intermediate
epresentations, and aggregate the statistics on a basic block and a
unction level.

nformation measurement

e could either apply different tests to measure information content
entropy) and distribution (randomness), and/or consider them col-
ectively. We observed how sensitive the Chi-square test is, similar to
he observations that Wang et al . made [24], which makes the Chi-
quare test an addition to be implemented as a randomness test in
unc_stats , in addition to Shannon’s entropy test.

arameter reconstruction

ince we depend on the memory buffers accessed by the filtered
unction calls in our analysis, as well as in extracting crypto arte-
acts, then we need to account for obfuscated memory buffers.

oreover, we need to be able to identify tables in memory (i.e.
rrays and similar data structures), which would help in address-
ng the Pre-computed S-Box ciphers, e.g. in the TwoFish algorithm.
his would also help in extracting the secret key in the RC4 replay.
lso, since our core analysis algorithm does not depend on mem-
ry buffer sizes but rather only ratios, splitting the buffers or forc-
ng the allocation of decoy buffer sizes is unlikely to affect the anal-
sis results, but it would affect the functionality of extracting se-
ret keys and crypto states, and that would be addressed in future
ersions.

ore automation

n the task of validating the extracted potential secret keys, we
ould automatically test the extracted secret keys on the extracted
tate buffers. In spite of this being easier for some algorithms than
or others, it still requires a lot of work and could be a poten-
ial upgrade for our tool in future versions. The rationale for such
 feature is that the tool may extract dozens of memory buffers
nd the analyst does not know which of them are interesting—

12 M.A. Hassanin and I. Martinovic

unless they are reported as a group, certain information is tracked,
or tainting is applied. In fact, to address that, we could even en-
hance our PANDA plugin (func_stats) to flag the potential secret
key buffers, which end up in certain syscalls—i.e. to highlight that
the keys being exfiltrated or communicated over a network in-
terface, or stored on the file system or the system’s registry. This
will flag the potential keys used in the course of a ransomware
activity.

Conclusion

We presented CipherTrace , an offline dynamic analysis system to iden-
tify the class of cipher algorithms and extract their secret keys and
crypto states (plain- and ciphertexts). Our experimental evaluation
demonstrated that, our novel technique of defining, identifying, and
surveying crypto elements to classify a cipher—via VMI dynamic
analysis approach—could fully dissect Fixed S-Box block ciphers. Ad-
ditionally, it exhibited resilience to noise, a few obfuscation schemes,
and different implementations of crypto algorithms. With the under-
lying dynamic analysis platform, CipherTrace inherently supports dif-
ferent operating systems and processor architectures. We compared
our tool with the most effective and state-of-the-art tools to-date,
using four standard cryptographic algorithms, which are often used
in ransomware. Moreover, it detected and identified block ciphers
in five malicious binaries (i.e. ransomware), and extracted various
crypto artefacts including secret keys and crypto states (plain- and
ciphertexts)—despite the very high binary, code, and data obfusca-
tion employed by the specimens. It outperformed the closely related
works such as kerchhoffs and Aligot in functionality and performance,
and it is capable of identifying proprietary ciphers same as with
CipherXRay and K-Hunt , but outperformed the former, and could
identify a cipher class and extract all secret keys unlike the latter. Our
system is fully automated, and proved very useful in malware analysis
Table A10. Analysis details of the ransomware sample.

Name Replay unigram func_stats

Maze 561 s – 1.6 GB 11 h – 17GB 8 h – 5.2 GB (12%

REvil 277 s – 400 MB 17 h – 17GB 5.5 h – 3.8 GB (17%

Ryuk 240 s (reduced) – 1 GB 15 h – 25GB 18 h – 36 GB (3 asids,
Conti 1101 s – 800 MB 15 h – 17GB 100 h – 242 GB (T
Netwalker 230 s – 1.3 GB 3 h – 19GB 68 h – 145 GB (72%
and reverse engineering. As shown in our evaluation, the core idea is
applicable to different classes of ciphers, asymmetric cryptography,
or crypto systems at large. Consequently, this paper highlights the
substantial promise of automatically detecting and identifying cipher
from execution traces and its vital role in neutralizing ransomware
threats.

Author contributions

Mostafa AbdelMoez Hassanin (Conceptualization [Lead], Data curation
[Lead], Formal analysis [Lead], Funding acquisition [Lead], Investigation
[Lead], Methodology [Lead], Project administration [Lead], Resources [Lead],
Software [Lead], Validation [Lead], Visualization [Lead], Writing – original
draft [Lead], Writing – review & editing [Lead]), and Ivan Martinovic (Super-
vision [Supporting], Writing – review & editing [Supporting])

Conflict of interest : No competing interest is declared.

Funding

None declared.

Data availability

Our PANDA plugin (func_stats) has been merged with PANDA (master) [51],
i.e. the official release. The source code of CipherTrace and the tested bench-
mark (including full execution logs) are publicly available in our repository
[52].

Appendix

R ansomw are sample

PANDA execution details for the ransomware sample can be found in
Table A10 .
Randometer Analyzer

– Err) 106 callers (3 min/c) 1 min/caller (max 1 h)
– Term) 163 callers (4 min) 0-3 min/caller (max 1.5 h)
limit 32) 75 callers (< 1 min/c) 1-2 min/caller (max few h)
erm) 43 callers (3 min) 3-15 min/caller (force timeout in 20)
– Term) 150 callers (10 s) 2-15 min/caller (max 2 h)

CipherTrace: automatic detection of ciphers from execution traces 13

A
T

A
R

p

F

nalysis CFG: AES256

he Control Flow Graph (CFG) for AES256 algorithm is illustrated in Fig. A 4 .
igure A4. AES128 CFG. The rectangle marks the finding. The circle is the main fun
nalysis Log: AES256

unning CipherTrace’s Randometer with unigrams output is in the following
age.
ction which calls the round routine.

14 M.A. Hassanin and I. Martinovic
References

1. Turton W, Mehrotra K. Hackers breached colonial pipeline using com-
promised password. Bloomberg, 2021.

2. Lyngaas S. US Marshals service still recovering from february ransomware
attack affecting system used by fugitive hunters. CNN, 2023.

3. Langlois P. Data Breach Investigations Report. Verizon Business, 2020.
4. PurpleSec. 2021 ransomware statistics, data and trends. Washington,

2021.
5. Sophos. The State of Ransomware 2023. Abingdon: Sophos, 2023.
6. Berrueta E, Morato D, Magaña E,. et al. A survey on detection techniques
for cryptographic ransomware. IEEE Access 2019; 7 :144925–44. https:
// doi.org/ 10.1109/ A CCESS.2019.2945839 .

7. Ferguson N, Schneier B, Kohno T. Cryptography Engineering: Design
Principles and Practical Applications . Hoboken: Wiley Publishing, 2010.

8. Nakashima E, Lerman R. FBI held back ransomware decryption key from

businesses to run operation targeting hackers. Washington: The Washing-
ton Post, 2021.

9. Or-Meir O, Nissim N, Elovici Y,. et al. Dynamic malware analysis in the
modern era—a state of the art survey. ACM Comput Surv 2019; 52 :1–48.

https://doi.org/10.1109/ACCESS.2019.2945839

CipherTrace: automatic detection of ciphers from execution traces 15

10. Song DX, Brumley D, Y in H, . et al. BitBlaze: a new approach to com-

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Engineering Workshop, PPREW-5 . New York: Association for Comput-

2

2

2

3
3
3

3

3

3

3

3
3
3

4

4

4
4

4

4

4

4

4

4

5

5

5

©
(

puter security via binary analysis. In: R Sekar, AK Pujari (eds), Pro-
ceedings of the Information Systems Security, 4th International Con-
ference, ICISS 2008, Hyderabad, India, December 16-20, 2008. Vol.
5352 of Lecture Notes in Computer Science . Berlin: Springer, 2008,
1–25

1. D’Elia DC, Coppa E, Nicchi S,. et al. SoK: using dynamic binary in-
strumentation for security (and how you may get caught red handed). In:
Proceedings of the 2019 ACM Asia Conference on Computer and Com-
munications Security, Asia CCS’19 . New York: Association for Comput-
ing Machinery, 2019, 15–27.

2. Hosseinzadeh S, Rauti S, Laurén S,. et al. A survey on aims and envi-
ronments of diversification and obfuscation in software security. In: Pro-
ceedings of the 17th International Conference on Computer Systems and
T echnologies 2016, CompSysT ech’16 , New York: Association for Com-
puting Machinery, 2016, 113–20.

3. Lutz N. Lutz towards revealing attackers – intent by automatically de-
crypting network traffic. Master’s Thesis, ETH Zürich, 2008.

4. Wang Z, Jiang X, Cui W,. et al. ReFormat: automatic reverse engineer-
ing of encrypted messages. In: Proceedings of the 14th European Confer-
ence on Research in Computer Security, ESORICS’09 . Berlin, Heidelberg:
Springer-Verlag, 2009, 200–15.

5. Gröbert F, Willems C, Holz T. Automated identification of crypto-
graphic primitives in binary programs. In: R Sommer, D Balzarotti, G
Maier (eds), Recent Advances in Intrusion Detection . Berlin, Heidelberg:
Springer, 2011, 41–60.

6. Li X, Wang X, Chang W. CipherXRay: exposing cryptographic opera-
tions and transient secrets from monitored binary execution. IEEE Trans
Depend Secure Comput 2014; 11 :1.

7. Calvet J, Fernandez J, Marion JY. Aligot: cryptographic function identi-
fication in obfuscated binary programs. In: Proceedings of the ACM Con-
ference on Computer and Communications Security . New York: ACM,
2012, 169–82.

8. Hosfelt DD. Automated detection and classification of cryptographic al-
gorithms in binary programs through machine learning. Master’s Thesis,
Johns Hopkins University, 2015.

9. Xu D, Ming J, Wu D. Cryptographic function detection in obfuscated bi-
naries via bit-precise symbolic loop mapping. In: Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP) . Los Alamitos: IEEE Com-
puter Society, 2017, 921–37.

0. Hill G, Bellekens X. CryptoKnight: generating and modelling compiled
cryptographic primitives. Information 2018; 9 . https:// doi.org/ 10.3390/ in
fo9090231 .

1. Lestringant P. Identification of cryptographic algorithms in binary pro-
grams. (Identification d’algorithmes cryptographiques dans du code
natif). Ph.D. Thesis, University of Rennes 1, 2017.

2. Luk CK, Cohn R, Muth R,. et al. Pin: building customized program anal-
ysis tools with dynamic instrumentation. SIGPLAN Not 2005; 40 :190.
https:// doi.org/ 10.1145/ 1064978.1065034 .

3. Li J, Lin Z, Caballero J,. et al. K-Hunt: pinpointing insecure cryp-
tographic keys from execution traces. In: Proceedings of the 2018
A CM SIGSA C Conference on Computer and Communications Secu-
rity, CCS ‘18 , New York: Association for Computing Machinery, 2018,
412–25.

4. Wang R, Shoshitaishvili Y, Kruegel C,. et al. Steal this movie: automat-
ically bypassing DRM protection in streaming media services. In: Pre-
sented as part of the 22nd USENIX Security Symposium (USENIX Secu-
rity 13) . Washington: USENIX, 2013,. 687–702.

5. Lin Z, Jiang X, Xu D,. et al. Automatic protocol format reverse engineer-
ing through context-aware monitored execution. In: Proceedings of the
15th Symposium on Netw or k And Distributed System Security (NDSS) .
Reston: The Internet Society, 2008.

6. Dolan-Gavitt B, Hodosh J, Hulin P,. et al. Repeatable reverse engineering
with PANDA. In: Proceedings of the 5th Program Protection and Rev er se
The Author(s) 2024. Published by Oxford University Press. This is an Open Access article
 https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribut
ing Machinery, 2015.
7. Henderson A, Prakash A, Yan LK,. et al. Make it work, make it right,

make it fast: building a platform-neutral whole-system dynamic binary
analysis platform. In: Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014 . New York: Association
for Computing Machinery, 2014, 248–58.

8. Davanian A, Qi Z, Qu Y,. et al. DECAF ++ : elastic whole-system dy-
namic taint analysis. In: Proceedings of the 22nd International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID 2019) . Bei-
jing: USENIX Association, 2019, 31–45.

9. Lengyel TK, Maresca S, Payne BD,. et al. Scalability, fidelity and stealth
in the DRAKVUF dynamic malware analysis system. In: Proceedings of
the 30th Annual Computer Security Applications Conference, A CSA C’14 .
New York: Association for Computing Machinery, 2014, 386–95.

0. KeePass Password Safe. Dominik Reichl, 2003.
1. The OpenSSL Project. OpenSSL Project, 1998.
2. Biham E, Anderson R, Knudsen L. Serpent: a new block cipher pro-

posal. In: S Vaudenay (ed.) Fast Software Encryption . Berlin, Heidelberg:
Springer, 1998, 222–38.

3. Schneier B, Kelsey J, Whiting D,. et al. The Twofish Encryption Algo-
rithm . Hoboken: John Wiley & Sons, 2000.

4. Paul G, Maitra S. RC4 Stream Cipher and Its Variants . Boca Raton: CRC
Press, 2011.

5. Hirose S, Park J, Yun A. A simple variant of the Merkle–Damgård scheme
with a permutation. J Cryptol 2007; 25 :113–29.

6. Coron JS, Dodis Y, Malinaud C,. et al. Merkle-Damgård revisited: how
to construct a hash function. Adv Cryptol 2005; 3621 :430–48.

7. Mundo A. Ransomware Maze. San Jose: McAfee, 2020.
8. DSCI. Maze Ransomware. Technical Report. Noida, 2020.
9. SentinelLABS. Case study: catching a human-operated maze ransomware

attack in action. Mountain V iew, 2020.
0. Intel471. REvil ransomware-as-a-service: an analysis of a ransomware af-

filiate operation. Wilmington, 2020.
1. Fakterman T. REvil/Sodinokibi: the crown prince of ransomware. La

Jolla: Cybereason, 2019.
2. ANSSI. RYUK RANSOMWARE. Paris: CERT-FR, 2021.
3. Cohen I, Herzog B. A targeted campaign break-down – Ryuk Ran-

somware – check point research. San Carlos: Check Point Software Tech-
nologies LTD, 2018.

4. VMWare Security Blog. TAU Threat Discovery: Conti Ransomware. Palo
Alto, 2020. https:// blogs.vmware.com/security/ 2020/07/ tau- threat- disco
very- conti- ransomware.html (4 March 2021, date last accessed).

5. BleepingComputer.com. Conti ransomware shows signs of being Ryuk’s
successor. New York, 2020.

6. NAKIVO. All you should know about netwalker ransomware. Sparks,
2020.

7. Keijzer N. The new generation of ransomware - an in depth study of
ransomware-as-a-service. Student Thesis, University of Twente, 2020.

8. NHS. 2020. https:// digital.nhs.uk/cyber-alerts/ 2020/cc-3681 (4 Novem-
ber 2021, date last accessed).

9. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signa-
tures and public-key cryptosystems. Commun ACM 1978; 21 :120. https:
// doi.org/ 10.1145/ 359340.359342 .

0. Yadav P, Gupta I, Murthy SK. Study and analysis of eSTREAM cipher
Salsa and ChaCha. In: Proceedings of the 2016 IEEE International Con-
ference on Engineering and Technology (ICETECH) . IEEE: Piscataway,
2016, 90–94.

1. mabdelmoez. Integrate func_stats plugin: collect synthetic information of
called functions by mabdelmoez. Pull Request #801 – panda-re/panda.
GitHub, 2020.

2. mabdelmoez. mabdelmoez/ciphertrace: CipherTrace: automatic detection
of ciphers from execution traces to neutralize ransomware. Los Gatos:
CipherTrace, 2021.
 distributed under the terms of the Creative Commons Attribution License
ion, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.3390/info9090231
https://doi.org/10.1145/1064978.1065034
https://blogs.vmware.com/security/2020/07/tau-threat-discovery-conti-ransomware.html
https://digital.nhs.uk/cyber-alerts/2020/cc-3681
https://doi.org/10.1145/359340.359342
https://creativecommons.org/licenses/by/4.0/

	Introduction
	General idea of CipherTrace
	Related work
	Design and implementation
	Evaluation
	Discussion and future work
	Conclusion
	Author contributions
	Funding
	Data availability
	Appendix
	References

