4,155 research outputs found

    Bridge expansion joint in road transition curve: effects assessment on heavy vehicles

    Get PDF
    Properly-designed road surfaces provide a durable surface on which traffic can pass smoothly and safely. In fact, the main causes that determine the structural decay of the pavement and its parts are the traffic loads. These repeated actions can create undesirable unevennesses on the road surface, which induce vertical accelerations on vehicles, up to hindering contact between pavement and tire, with dangerous consequences on traffic safety. The dynamic actions transmitted by the vehicles depend on these irregularities: often, a bridge expansion joint (BEJ), introducing a necessary discontinuity between different materials, determines from the beginning a geometric irregularity in the running surface. Besides, some structural conditions could emphasize the problem (e.g., local cracking due to the settlement of the subgrade near the abutment or the discontinuity of stiffness due to the presence of different materials). When the BEJ is located in a transition curve, an inevitable vertical irregularity between road and joint can reach values of some centimeters, with serious consequences for the road safety. This paper deals with the analysis of a case study of a BEJ. Several test surveys were performed in order to fully characterize the effects on both vehicles and pavement. The three-dimensional representation of the pavement surface and the acceleration measurements on a heavy test vehicle were performed to analyze the joint behavior under traffic. Finally, a finite element model was implemented to evaluate the stress contribution on vehicle components induced by the vertical irregularities

    Characterizing the Dynamic Response of a Chassis Frame in a Heavy-Duty Dump Vehicle based on an Improved Stochastic System Identification

    Get PDF
    This paper presents an online method for the assessment of the dynamic performance of the chassis frame in a heavy-duty dump truck based on a novel stochastic subspace identification (SSI) method. It introduces the use of an average correlation signal as the input data to conventional SSI methods in order to reduce the noisy and nonstationary contents in the vibration signals from the frame, allowing accurate modal properties to be attained for realistically assessing the dynamic behaviour of the frame when the vehicle travels on both bumped and unpaved roads under different operating conditions. The modal results show that the modal properties obtained online are significantly different from the offline ones in that the identifiable modes are less because of the integration of different vehicle systems onto the frame. Moreover, the modal shapes between 7Hz and 40Hz clearly indicate the weak section of the structure where earlier fatigues and unsafe operations may occur due to the high relative changes in the modal shapes. In addition, the loaded operations show more modes which cause high deformation on the weak section. These results have verified the performance of the proposed SSI method and provide reliable references for optimizing the construction of the frame

    Generation of ground vibrations by vehicles crossing flexible speed bumps

    Get PDF
    Generation of ground vibrations by vehicles crossing flexible speed bump

    Dynamic amplification factor for bridges with span length from 10 to 35 meters

    Get PDF
    Heavy traffic on the bridge cause not only static effects, but also dynamic effects. These effects can be indicated by different dynamic parameters like – natural frequency, bridge logarithmical decrement, bridge acceleration and dynamic amplification factor (DAF). Dynamic amplification factor is the most widely used parameter, because it shows amplification of the static effects on the bridge structure. Results show that for bridges road surface condition is a very important factor. If road surface contains ice bumps or potholes then heavy traffic driving with low speed can decrease load carrying capacity of a bridge. First published online: 17 Mar 201

    Vehicle Speed Influence on Ground-borne Vibrations Caused by Road Transport when Passing Vertical Traffic Calming Measures

    Get PDF
    Traffic calming is the combination of mainly physical measures that reduce the negative effects of motor vehicle use, alter driver behaviour and improve conditions for non-motorized street users. Vibration measurements were performed by the authors of this paper near the roads with traffic calming devices. The measurements were taken throughout two seasons: in the winter and in the summer in order to evaluate the influence of soil freezing on traffic-induced vibrations. The only car measured was Fiat Doblo (weight 1,405 kg), and its driving speed when passing a speed bump or a speed table was controlled (20 km/h; 30 km/h; 40 km/h). The results show that the Peak Particle Acceleration (PPA) values were higher in the winter season compared with the summer. The vehicles passing over the speed tables induce lower PPA values than those passing over the speed bumps.</p

    Operating cycle representations for road vehicles

    Get PDF
    This thesis discusses different ways to represent road transport operations mathematically. The intention is to make more realistic predictions of longitudinal performance measures for road vehicles, such as the CO2 emissions. It is argued that a driver and vehicle independent description of relevant transport operations increase the chance that a predicted measure later coincides with the actual measure from the vehicle in its real-world application. This allows for fair comparisons between vehicle designs and, by extension, effective product development. Three different levels of representation are introduced, each with its own purpose and application. The first representation, called the bird\u27s eye view, is a broad, high-level description with few details. It can be used to give a rough picture of the collection of all transport operations that a vehicle executes during its lifetime. It is primarily useful as a classification system to compare different applications and assess their similarity. The second representation, called the stochastic operating cycle (sOC) format, is a statistical, mid-level description with a moderate amount of detail. It can be used to give a comprehensive statistical picture of transport operations, either individually or as a collection. It is primarily useful to measure and reproduce variation in operating conditions, as it describes the physical properties of the road as stochastic processes subject to a hierarchical structure.The third representation, called the deterministic operating cycle (dOC) format, is a physical, low-level description with a great amount of detail. It describes individual operations and contains information about the road, the weather, the traffic and the mission. It is primarily useful as input to dynamic simulations of longitudinal vehicle dynamics.Furthermore, it is discussed how to build a modular, dynamic simulation model that can use data from the dOC format to predict energy usage. At the top level, the complete model has individual modules for the operating cycle, the driver and the vehicle. These share information only through the same interfaces as in reality but have no components in common otherwise and can therefore be modelled separately. Implementations are briefly presented for each module, after which the complete model is showcased in a numerical example.The thesis ends with a discussion, some conclusions, and an outlook on possible ways to continue

    Study on speed profile across speed bumps

    Get PDF
    A speeding vehicle can be a menace to other road users particularly on roads where interaction between motorized and non-motorized traffic is high, such as residential streets, school zones and community areas. Although speed limit signs are placed in accordance with the requirements of the standards, much is left to the conscience of the drivers whether they should abide by them. Hence, controlling vehicular speeds is an important issue in traffic management. The best way to influence driver speed is through traffic management. One way of controlling speed is to use static speed control devices like bumps which produces discomfort while driver experiences while crossing over it. Road bumps play a crucial role in enforcing speed limits, thereby preventing over speeding of vehicles. It significantly contributes to the overall road safety objective through the prevention of accidents that lead to death of pedestrians and damage of vehicles. This thesis aims to present the results of a study on the performance of road bumps used in India in reducing vehicle speed. The purpose of this work is to study speed across bumps, like speed at bump, speed reduction, deceleration and acceleration by having a detailed survey of vehicular behavior near bumps of various heights. The speed profile of vehicles are determined and analyzed at various locations along the road prior to the bump, on the bump and after the bump. A critical speed change analysis has been conducted and the result presented for various vehicle category and type of bumps at various locations

    Investigation on Semi-active Suspension System for Multi-axle Armoured Vehicle using Co-simulation

    Get PDF
    The objective of the study is to evaluate the performance of various semi-active suspension control strategies for 8x8 multi-axle armoured vehicles in terms of comparative analysis of ride quality and mobility parameters during negotiation of typical military obstacles. Since the cost, complexity and time precludes realisation of actual system, co-simulation technique has been effectively implemented for this investigation. Co-simulation combines advanced virtual prototyping and control technology which offers a novel approach to investigate the dynamics of such complex system. The simulations for the integrated control system along with multi body model of the vehicle are carried out for the control strategies, viz. continuous sky hook control, cascade loop control and cascade loop with ride control and compared with passive suspension system. The vehicle with 8x8 configuration is run on the real world obstacle profiles, viz. step, trench, trapezoidal bump and corrugated road and the effect of control strategies on ride comfort, wheel displacement and ground reaction is presented. It is observed that cascade loop with ride control in semi-active mode offers better vehicle ride comfort while crossing the said obstacles. The improved performance parameters are achieved through stabilisation of heave, pitch and roll motions of the vehicle through outer loop and isolation of vehicle level uneven disturbances through the fuzzy logic controller employed in inner loop
    corecore