3,517 research outputs found

    A temporal prognostic model based on dynamic Bayesian networks: mining medical insurance data

    Get PDF
    A prognostic model is a formal combination of multiple predictors from which risk probability of a specific diagnosis can be modelled for patients. Prognostic models have become essential instruments in medicine. The models are used for prediction purposes of guiding doctors to make a smart diagnosis, patient-specific decisions or help in planning the utilization of resources for patient groups who have similar prognostic paths. Dynamic Bayesian networks theoretically provide a very expressive and flexible model to solve temporal problems in medicine. However, this involves various challenges due both to the nature of the clinical domain, and the nature of the DBN modelling and inference process itself. The challenges from the clinical domain include insufficient knowledge of temporal interactions of processes in the medical literature, the sparse nature and variability of medical data collection, and the difficulty in preparing and abstracting clinical data in a suitable format without losing valuable information in the process. Challenges about the DBN methodology and implementation include the lack of tools that allow easy modelling of temporal processes. Overcoming this challenge will help to solve various clinical temporal reasoning problems. In this thesis, we addressed these challenges while building a temporal network with explanations of the effects of predisposing factors, such as age and gender, and the progression information of all diagnoses using claims data from an insurance company in Kenya. We showed that our network could differentiate the possible probability exposure to a diagnosis given the age and gender and possible paths given a patient's history. We also presented evidence that the more patient history is provided, the better the prediction of future diagnosis

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    Integration of Temporal Abstraction and Dynamic Bayesian Networks in Clinical Systems. A preliminary approach

    Get PDF
    Abstraction of temporal data (TA) aims to abstract time-points into higher-level interval concepts and to detect significant trends in both low-level data and abstract concepts. TA methods are used for summarizing and interpreting clinical data. Dynamic Bayesian Networks (DBNs) are temporal probabilistic graphical models which can be used to represent knowledge about uncertain temporal relationships between events and state changes during time. In clinical systems, they were introduced to encode and use the domain knowledge acquired from human experts to perform decision support. A hypothesis that this study plans to investigate is whether temporal abstraction methods can be effectively integrated with DBNs in the context of medical decision-support systems. A preliminary approach is presented where a DBN model is constructed for prognosis of the risk for coronary artery disease (CAD) based on its risk factors and using as test bed a dataset that was collected after monitoring patients who had positive history of cardiovascular disease. The technical objectives of this study are to examine how DBNs will represent the abstracted data in order to construct the prognostic model and whether the retrieved rules from the model can be used for generating more complex abstractions

    Real-Time Physiological Simulation and Modeling toward Dependable Patient Monitoring Systems

    Get PDF
    We present a novel approach to describe dependability measures for intelligent patient monitoring devices. The strategy is based on using a combination of methods from system theory and real-time physiological simulations. For the first time not only the technical device but also the patient is taken into consideration. Including the patient requires prediction of physiology which is achieved by a real-time physiological simulation in a continuous time domain, whereby one of the main ingredients is a temporal reasoning element. The quality of the reasoning is expressed by a dependability analysis strategy. Thereby, anomalies are expressed as differences between simulation and real world data. Deviations are detected for current and they are forecasted for future points in time and can express critical situations. By this method, patient specific differences in terms of physiological reactions are described, allowing early detection of critical states

    Clinical proteomics for precision medicine: the bladder cancer case

    Get PDF
    Precision medicine can improve patient management by guiding therapeutic decision based on molecular characteristics. The concept has been extensively addressed through the application of –omics based approaches. Proteomics attract high interest, as proteins reflect a “real-time” dynamic molecular phenotype. Focusing on proteomics applications for personalized medicine, a literature search was conducted to cover: a) disease prevention, b) monitoring/ prediction of treatment response, c) stratification to guide intervention and d) identification of drug targets. The review indicates the potential of proteomics for personalized medicine by also highlighting multiple challenges to be addressed prior to actual implementation. In oncology, particularly bladder cancer, application of precision medicine appears especially promising. The high heterogeneity and recurrence rates together with the limited treatment options, suggests that earlier and more efficient intervention, continuous monitoring and the development of alternative therapies could be accomplished by applying proteomics-guided personalized approaches. This notion is backed by studies presenting biomarkers that are of value in patient stratification and prognosis, and by recent studies demonstrating the identification of promising therapeutic targets. Herein, we aim to present an approach whereby combining the knowledge on biomarkers and therapeutic targets in bladder cancer could serve as basis towards proteomics- guided personalized patient management
    • …
    corecore