6 research outputs found

    Gamma-Poisson dynamic matrix factorization embedded with metadata influence

    Full text link
    © 2018 Curran Associates Inc.All rights reserved. A conjugate Gamma-Poisson model for Dynamic Matrix Factorization incorporated with metadata influence (mGDMF for short) is proposed to effectively and efficiently model massive, sparse and dynamic data in recommendations. Modeling recommendation problems with a massive number of ratings and very sparse or even no ratings on some users/items in a dynamic setting is very demanding and poses critical challenges to well-studied matrix factorization models due to the large-scale, sparse and dynamic nature of the data. Our proposed mGDMF tackles these challenges by introducing three strategies: (1) constructing a stable Gamma-Markov chain model that smoothly drifts over time by combining both static and dynamic latent features of data; (2) incorporating the user/item metadata into the model to tackle sparse ratings; and (3) undertaking stochastic variational inference to efficiently handle massive data. mGDMF is conjugate, dynamic and scalable. Experiments show that mGDMF significantly (both effectively and efficiently) outperforms the state-of-the-art static and dynamic models on large, sparse and dynamic data

    Modelling and analysis of temporal preference drifts using a component-based factorised latent approach

    Get PDF
    In recommender systems, human preferences are identified by a number of individual components with complicated interactions and properties. Recently, the dynamicity of preferences has been the focus of several studies. The changes in user preferences can originate from substantial reasons, like personality shift, or transient and circumstantial ones, like seasonal changes in item popularities. Disregarding these temporal drifts in modelling user preferences can result in unhelpful recommendations. Moreover, different temporal patterns can be associated with various preference domains, and preference components and their combinations. These components comprise preferences over features, preferences over feature values, conditional dependencies between features, socially-influenced preferences, and bias. For example, in the movies domain, the user can change his rating behaviour (bias shift), her preference for genre over language (feature preference shift), or start favouring drama over comedy (feature value preference shift). In this paper, we first propose a novel latent factor model to capture the domain-dependent component-specific temporal patterns in preferences. The component-based approach followed in modelling the aspects of preferences and their temporal effects enables us to arbitrarily switch components on and off. We evaluate the proposed method on three popular recommendation datasets and show that it significantly outperforms the most accurate state-of-the-art static models. The experiments also demonstrate the greater robustness and stability of the proposed dynamic model in comparison with the most successful models to date. We also analyse the temporal behaviour of different preference components and their combinations and show that the dynamic behaviour of preference components is highly dependent on the preference dataset and domain. Therefore, the results also highlight the importance of modelling temporal effects but also underline the advantages of a component-based architecture that is better suited to capture domain-specific balances in the contributions of the aspects

    Dynamic bayesian probabilistic matrix factorization

    No full text
    Collaborative filtering algorithms generally rely on the assumption that user preference patterns remain stationary. However, real-world relational data are seldom stationary. User preference patterns may change over time, giving rise to the requirement of designing collaborative filtering systems capable of detecting and adapting to preference pattern shifts. Motivated by this observation, in this paper we propose a dynamic Bayesian probabilistic matrix factorization model, designed for modeling time-varying distributions. Formulation of our model is based on imposition of a dynamic hierarchical Dirichlet process (dHDP) prior over the space of probabilistic matrix factorization models to capture the time-evolving statistical properties of modeled sequential relational datasets. We develop a simple Markov Chain Monte Carlo sampler to perform inference. We present experimental results to demonstrate the superiority of our temporal model

    Dynamic Bayesian Probabilistic Matrix Factorization

    No full text
    Collaborative filtering algorithms generally rely on the assumption that user preference patterns remain stationary. However, real-world relational data are seldom stationary. User preference patterns may change over time, giving rise to the requirement of designing collaborative filtering systems capable of detecting and adapting to preference pattern shifts. Motivated by this observation, in this paper we propose a dynamic Bayesian probabilistic matrix factorization model, designed for modeling time-varying distributions. Formulation of our model is based on imposition of a dynamic hierarchical Dirichlet process (dHDP) prior over the space of probabilistic matrix factorization models to capture the time-evolving statistical properties of modeled sequential relational datasets. We develop a simple Markov Chain Monte Carlo sampler to perform inference. We present experimental results to demonstrate the superiority of our temporal model
    corecore