
Bayesian matrix factorisation:

inference, priors, and data integration

Thomas Alexander Brouwer

Computer Laboratory
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Homerton College December 2017

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This dissertation is my own work and contains nothing which is the outcome of work
done in collaboration with others, except as specified in the text and Acknowledgements.
This dissertation contains fewer than 60,000 words including appendices, bibliography,
footnotes, tables and equations and has fewer than 150 figures.

Thomas Alexander Brouwer
December 2017

Acknowledgements

In many ways this thesis has been the hardest thing I have done in my life. Fortunately,
I have always been surrounded by amazing people that have helped me through it.

First of all I would like to thank my supervisor, Pietro Lió, for giving me the opportunity
to do the PhD, providing me with research ideas over the years, and his unequivocal
support for everything I did.

Over the years there have been several times when I lost motivation. Somehow, I
always ended up meeting inspirational researchers who were able to show me the merits
of my efforts. Dr Naruemon Pratanwanich introduced me to Bayesian probabilistic
models, and provided me with many interesting discussions. Professor Jes Frellsen
has taught me how to do machine learning research. His energy and positivity are an
inspiration to me. Professor Samuel Kaski provided me much-needed enthusiasm for
the research that I was conducting, and convinced me it was worthwile. I also want to
thank his students for the incredibly useful discussions and insights during my visits
to his lab, in particular Muhammad Ammad-ud-din, Eemeli Leppäaho, and Iiris Sundin.

I am grateful for the many friends I made in Cambridge, the Homerton MCR, and
elsewhere in the world. They got me through the PhD, and Cambridge would not have
been the same without them. Being on the Homerton MCR Committee was one of the
best decisions I made while in Cambridge. I want to thank Aaron, Alex, Alice, Amber,
Camilla, Ezra, Emily, Fryer, Hannah, Harry, Jack, Joe, Joost, Lucy, Luke, Melanie,
Sam, Steph, Vera, and many more.

Above all I would like to thank my parents, Hans and Daphne, and my sister, Laura.
Whenever I was stressed, or needed to complain, they would be there for me. They
have always supported me in whatever I do, and I could not wish for a better family.

Abstract

In recent years the amount of biological data has increased exponentially. Most of
these data can be represented as matrices relating two different entity types, such as
drug-target interactions (relating drugs to protein targets), gene expression profiles
(relating drugs or cell lines to genes), and drug sensitivity values (relating drugs to
cell lines). Not only the size of these datasets is increasing, but also the number of
different entity types that they relate. Furthermore, not all values in these datasets
are typically observed, and some are very sparse.

Matrix factorisation is a popular group of methods that can be used to analyse these
matrices. The idea is that each matrix can be decomposed into two or more smaller
matrices, such that their product approximates the original one. This factorisation of
the data reveals patterns in the matrix, and gives us a lower-dimensional representation.
Not only can we use this technique to identify clusters and other biological signals, we
can also predict the unobserved entries, allowing us to prune biological experiments.

In this thesis we introduce and explore several Bayesian matrix factorisation models,
focusing on how to best use them for predicting these missing values in biological
datasets. Our main hypothesis is that matrix factorisation methods, and in particular
Bayesian variants, are an extremely powerful paradigm for predicting values in biological
datasets, as well as other applications, and especially for sparse and noisy data. We
demonstrate the competitiveness of these approaches compared to other state-of-the-art
methods, and explore the conditions under which they perform the best.

We consider several aspects of the Bayesian approach to matrix factorisation. Firstly,
the effect of inference approaches that are used to find the factorisation on predictive
performance. Secondly, we identify different likelihood and Bayesian prior choices that
we can use for these models, and explore when they are most appropriate. Finally, we
introduce a Bayesian matrix factorisation model that can be used to integrate multiple
biological datasets, and hence improve predictions. This model hybridly combines
different matrix factorisation models and Bayesian priors. Through these models and
experiments we support our hypothesis and provide novel insights into the best ways
to use Bayesian matrix factorisation methods for predictive purposes.

Table of contents

List of figures xiii

List of tables xv

Summary of notation xvii

1 Introduction 1
1.1 Research questions . 3
1.2 Thesis overview . 4
1.3 Related publications . 6

2 Background 7
2.1 Probabilistic latent variable models . 7
2.2 Approximate Bayesian posterior inference 10

2.2.1 Gibbs sampling . 11
2.2.2 Variational Bayesian inference 11

2.3 Matrix factorisation . 13
2.3.1 Nonnegative matrix factorisation 15
2.3.2 Bayesian matrix factorisation 16
2.3.3 Bayesian nonnegative matrix factorisation 18
2.3.4 Matrix tri-factorisation . 19
2.3.5 Symmetric matrix factorisation 20
2.3.6 Multiple matrix factorisation . 20
2.3.7 Canonical correlation analysis 23
2.3.8 Tensor decomposition . 24

2.4 Collaborative filtering . 26
2.4.1 Drug sensitivity . 27
2.4.2 Gene expression and methylation 29
2.4.3 Movie ratings . 29

x Table of contents

3 Effects of inference methods in Bayesian nonnegative matrix factori-
sation 31
3.1 Models . 33

3.1.1 Nonnegative matrix factorisation 33
3.1.2 Nonnegative matrix tri-factorisation 34
3.1.3 Automatic relevance determination 34

3.2 Inference approaches . 35
3.2.1 Non-probabilistic inference . 36
3.2.2 Gibbs sampling . 36
3.2.3 Iterated conditional modes . 39
3.2.4 Variational Bayesian inference 39

3.3 Implementation details . 43
3.3.1 Software implementation . 43
3.3.2 Computational complexity . 43
3.3.3 Initialisation . 44

3.4 Data preprocessing . 44
3.5 Experiments . 45

3.5.1 Convergence and runtime speed 46
3.5.2 Cross-validation performance 48
3.5.3 Noise test . 51
3.5.4 Sparse predictions . 51
3.5.5 Model selection . 52
3.5.6 Hyperparameter values . 54

3.6 Conclusion . 57

4 Prior and likelihood choices for Bayesian matrix factorisation 59
4.1 Models and inference . 61

4.1.1 Real-valued matrix factorisation 63
4.1.2 Nonnegative matrix factorisation 67
4.1.3 Semi-nonnegative matrix factorisation 69
4.1.4 Poisson-likelihood matrix factorisation 70

4.2 Implementation details . 71
4.2.1 Software implementation . 71
4.2.2 Computational complexity . 71
4.2.3 Hyperparameters . 72

4.3 Priors and norms . 73
4.4 Data preprocessing . 74

Table of contents xi

4.5 Experiments . 75
4.5.1 Convergence and runtime speed 76
4.5.2 Cross-validation performance 76
4.5.3 Noise test . 78
4.5.4 Sparse predictions . 80
4.5.5 Model selection . 82
4.5.6 Factor usage . 82

4.6 Conclusion . 85

5 Bayesian hybrid matrix factorisation for data integration 87
5.1 Hybrid matrix factorisation . 89

5.1.1 Model definition . 92
5.1.2 Relation to tensor decomposition 94

5.2 Gibbs sampling algorithm . 96
5.3 Implementation details . 101

5.3.1 Software implementation . 101
5.3.2 Computational complexity . 101
5.3.3 Missing values and predictions 102
5.3.4 Initialisation strategies . 102

5.4 Data preprocessing . 103
5.4.1 Drug sensitivity . 103
5.4.2 Methylation and gene expression data 105

5.5 Experiments . 105
5.5.1 In-matrix predictions . 106
5.5.2 Sparse predictions . 109
5.5.3 Out-of-matrix predictions . 110

5.6 Model choices . 111
5.6.1 Initialisation . 111
5.6.2 Model selection . 112
5.6.3 Importance value . 114
5.6.4 Factorisation types . 115

5.7 Conclusion . 119

6 Conclusion 121
6.1 Future work . 123

References 125

List of figures

1.1 Research problems . 4

2.1 Example of a graphical model . 8

2.2 Matrix factorisation . 13

2.3 In- and out-of-matrix predictions . 14

2.4 Matrix tri-factorisation . 19

2.5 Multiple matrix factorisation and tri-factorisation 21

2.6 Out-of-matrix predictions using multiple matrix factorisation 22

2.7 Bayesian canonical correlation analysis 23

2.8 Matrix factorisation with automatic relevance determination 24

2.9 Tensor decomposition methods . 25

2.10 Nested cross-validation . 27

3.1 Overview of matrix factorisation and matrix tri-factorisation methods. . 34

3.2 Graphical models of Bayesian nonnegative matrix factorisation and
tri-factorisation . 35

3.3 Plots of the distribution of values in the drug sensitivity datasets . . . 45

3.4 Convergence of the different inference approaches against iterations on
the synthetic and drug sensitivity datasets 47

3.5 Convergence of the different inference approaches against time on the
synthetic and drug sensitivity datasets 49

3.6 Cross-validation results of the different inference approaches on the drug
sensitivity datasets . 50

3.7 Noise test performances of the different inference approaches on the
drug sensitivity datasets . 52

3.8 Sparsity test performances of the different inference approaches on the
drug sensitivity datasets . 53

xiv List of figures

3.9 Model selection experiment results for the different inference approaches
for Bayesian nonnegative matrix factorisation 55

3.10 Model selection experiment results for the different inference approaches
for Bayesian nonnegative matrix tri-factorisation 55

3.11 Hyperparameter experiment results for the different inference approaches
for Bayesian nonnegative matrix factorisation and tri-factorisation . . . 56

4.1 Prior distributions . 72
4.2 Distributions of the values of the eight datasets 75
4.3 Convergence of the Bayesian matrix factorisation models 77
4.4 Cross-validation performances for the Bayesian matrix factorisation models 78
4.5 Noise experiment results for the Bayesian matrix factorisation models . 80
4.6 Sparsity experiment results for the Bayesian matrix factorisation models 81
4.7 Model selection experiment results for the Bayesian matrix factorisation

models . 83
4.8 Factor value similarities for the Bayesian matrix factorisation models . 84

5.1 Overview of hybrid matrix factorisation 88
5.2 The three different types of datasets and factorisations used in hybrid

matrix factorisation . 90
5.3 Overview of the CANDECOMP/PARAFAC, Tucker decomposition, and

multiple matrix tri-factorisation methods 94
5.4 Venn diagrams of the overlap of drugs and cell lines in the three drug

sensitivity data sources . 103
5.5 Plots of the distribution of values in the four drug sensitivity datasets . 104
5.6 Plots of the distribution of the methylation datasets 106
5.7 In-matrix cross-validation performances on the GDSC drug sensitivity

dataset grouped by the number of observed datapoints 108
5.8 In-matrix cross-validation performances on the drug sensitivity datasets

for different sparsity levels . 109
5.9 Convergence of different initialisation approaches for hybrid matrix

factorisation . 113
5.10 In-matrix cross-validation performances for hybrid matrix factorisation

on the drug sensitivity datasets with varying dimensionalities 114

List of tables

3.1 Overview of the four drug sensitivity datasets 45
3.2 Average runtime for the four Bayesian matrix factorisation and tri-

factorisation inference methods . 48
3.3 Average nested cross-validation dimensionality of the inference ap-

proaches in cross-validation . 51
3.4 Qualitative comparison of inference methods. 57

4.1 Overview of the Bayesian matrix factorisation models. 62
4.2 Overview of the four drug sensitivity, two MovieLens, and two methyla-

tion datasets . 74
4.3 Average runtime of the different Bayesian matrix factorisation models . 77
4.4 Average nested cross-validation dimensionality of Bayesian matrix fac-

torisation models . 79

5.1 Overview of the four drug sensitivity dataset after preprocessing 105
5.2 In-matrix cross-validation performances on the drug sensitivity datasets 107
5.3 Out-of-matrix cross-validation performances on the gene expression and

methylation datasets . 110
5.4 Out-of-matrix cross-validation performances for hybrid matrix factorisa-

tion on the methylation datasets with varying importance values 116
5.5 Spearman correlation of the drug sensitivity and methylation datasets . 117
5.6 In- and out-of-matrix cross-validation performances with varying fac-

torisation types . 118

Summary of notation

The following list describes the different notational characters used in this thesis.

Probability distributions

E Exponential distribution.

G Gamma distribution.

IG Inverse Gaussian distribution.

L Laplace distribution.

Mult Multinomial distribution.

N Normal or Gaussian distribution.

NIW Normal-inverse Wishart distribution.

P Poisson distribution.

T N Truncated normal distribution.

Chapter 3

R The main matrix we decompose using matrix factorisation. I rows, J columns.
Rij denotes the entry in the ith row and jth column of R.

Ω Mask set indicating the observed entries in R. (i, j) is in Ω if Rij is observed.
Ωi indicates observed entries for row i. j ∈ Ωi if Rij is observed.
Ωj indicates observed entries for column j. i ∈ Ωj if Rij is observed.

U Row factor matrix for matrix factorisation. I rows, K columns.

V Column factor matrix for matrix factorisation. J rows, K columns.

xviii List of tables

τ Noise random variable.

ατ , βτ The hyperparameter for the Gamma prior over the noise random variable τ .

λU , λV , λF , λS, λG Hyperparameters for the entries in the factor matrices U ,V ,F ,S,G.

λk Automatic relevance determination random variable for the kth factor.
λ denotes the vector containing λ1, .., λK .
For matrix tri-factorisation we use λFk for F and λGl for G.

α0, β0 Hyperparameters for the Gamma prior over λk.

Chapter 4

λ Hyperparameter for the entries in the factor matrices U ,V for models GGG,
GGGU, GEE, GTT, GL2

1, and GEG.

η Hyperparameter for the entries in the factor matrices U ,V for model GLL.

γ Hyperparameter for the entries in the factor matrix U for models GVG, GVnG.

a, b Hyperparameter for the entries in the factor matrices U ,V for model PGG.

µ0, β0, ν0,W0 Hyperparameter for the µU ,ΣU ,µV ,ΣV random variables with normal-
inverse Wishart prior for model GGGW.

µ, λ Hyperparameter for the ηUik, ηVjk random variables with inverse Gaussian prior
for model GLLI.

µµ, τµ, a, b Hyperparameter for the µU
ik, τ

U
ik , µ

V
jk, τ

V
jk random variables for model GTTN.

a′, b′ Hyperparameter for the hUi , hVj random variables with Gamma prior for model
PGGG.

Chapter 5

Et Entity types, having It instances and Kt factors.

Ft Factor matrix for entity type Et.

Rn Main dataset for hybrid matrix factorisation, relating entity types Etn and Eun .
Itn rows and Iun columns.

Dl Feature dataset for hybrid matrix factorisation, relating entity type Etl to a
number of features. Itl rows and Jl columns.

List of tables xix

Cm Similarity dataset for hybrid matrix factorisation, relating entity type Etm to
itself. Itm rows columns.

Sn,Gl,S
m Dataset-specific factor matrices for matrix (tri-)factorisation of Rn,Dl,Cm,

respectively.

τn, τ l, τm Noise parameters for datasets Rn,Dl,Cm, respectively.

αn, αl, αm Importance value hyperparameters for datasets Rn,Dl,Cm, respectively.

Ωn,Ωl,Ωm Mask sets indicating the observed entries in Rn,Dl,Cm, respectively.

λnS, λ
m
S Hyperparameters for the entries in the factor matrices Sn,Sm, respectively.

λtk, λ
tl
k Automatic relevance determination random variable for the kth factor of factor

matrices F t,Gl, respectively.

U t
1, U

t
2 Sets indicating the datasets Rn that have entity type Et as their rows or columns,

respectively.

V t Sets indicating the datasets Dl that have entity type Et as their rows.
V t
+ gives those that use nonnegative factors for Gl, and V t

− real-valued.

W t Sets indicating the datasets Cm that have entity type Et as their rows and
columns.

Chapter 1

Introduction

In recent years the datasets that can be studied and analysed have exploded both
in size and in complexity. Especially in bioinformatics, the rise of high-throughput
methods gives us a complex landscape of datasets relating genes, drugs, proteins, cells,
and many more. Human experts can no longer analyse and fully understand the ever
growing amount of data themselves. The solution: computational methods that can
assist these experts in their search.

A typical example is the development of drugs. Bringing a new drug to the market
takes around 15 years (Dimasi [2001]) and costs nearly a billion dollars (Adams and
Brantner [2006]). The efficacy of drug development, if measured as the number of new
drugs approved per dollar spent, has significantly declined in recent years (Booth and
Zemmel [2004]). In order to address this problem, we should exploit the vast amounts
of biological data that have become available in recent years, in the form of -omics
data—genomics, transcriptomics, proteomics, epigenomics, and so on. These data can
reveal the biological working of the drugs and diseases that we are considering, and
hence allow us to enhance the drug development process. Especially in the earlier
stages of drug research, where there often is a large amount of possible drugs or diseases,
our search can be pruned using this information. The use of computational methods
that can efficiently consider different types of data is essential, as the amount of data
has grown too large for humans to process.

Importantly, many of these datasets are actually incomplete. Say we are given a matrix
relating the effectiveness of a range of drugs on different diseases, as measured by a

2 Introduction

biologist in a wet laboratory. For a thousand drugs and a thousand diseases we already
have a million potential combinations—which makes it almost infeasible to measure
(or observe) them all. As the number of drugs and diseases increases, and therefore the
number of potential combinations, this becomes even less feasible. As a result these
datasets are often very sparse (few observed entries). Another problem is that the
measurements for these values tend to be very noisy, and repeating an experiment can
give a different value as a result. Fortunately, we can use machine learning methods to
address these challenges. If we measure say ten thousand of the entries, we can use
these to predict the other values and use that to prune what experiments to run next.
Furthermore, if these predictions are accurate we can try to analyse how the method
does this, yielding novel biological insights or biomarkers.

A popular group of methods for predicting these missing values in incomplete datasets
is matrix factorisation. The idea is that we can approximate the incomplete matrix of
values by the product of two smaller matrices (a so-called low-rank approximation).
We try to find the values of these two smaller matrices in such a way that their product
closely resembles the observed entries, which also allows us to obtain predictions for
unobserved ones. One popular way of doing this is by minimising a cost function, such
as the mean squared error (Lee and Seung [2000]). Alternatively, Bayesian methods
treat it as a probabilistic problem where we place a prior distribution over a set of
random variables (here, the two smaller matrices) and aim to find the distribution
over them after observing the (incomplete) dataset (Salakhutdinov and Mnih [2008]).
Matrix factorisation is a growing and very promising field of machine learning, and
lends itself extremely well for integrating many datasets (Gligorijević and Pržulj [2015]).

In this thesis we focus on the latter approach: Bayesian matrix factorisation. We believe
that these methods are much more capable of providing accurate predictions of missing
values, especially as the datasets that we study become more sparse, compared to the
non-probabilistic approach to matrix factorisation, as well as other state-of-the-art
machine learning methods such as random forests and support vector machines.

We support this hypothesis with empirical evidence on several real-world applications,
as well as providing thorough and systematic explorations of the different choices we
can make for our Bayesian matrix factorisation models, studying how they impact
our predictive performances. We focus on relatively small datasets that allow us to
try lots of different model choices, yet are commonly used in practice. Although a lot
of current research is looking at theoretical properties and guarantees of statistical

1.1 Research questions 3

and machine learning methods, we are more interested in the practical usage and
performance of the methods on real-world datasets. We also briefly consider the effects
of the model choices on our ability to analyse the resulting factor matrices, but our
focus is predictive performance. We believe that this knowledge can advance the field
of Bayesian matrix factorisation by providing novel insights, guiding future researchers
in their design and understanding of the models.

1.1 Research questions

Our main hypothesis is that matrix factorisation methods, and in particular Bayesian
variants, are an extremely powerful paradigm for predicting missing values in biological
datasets, as well as other applications, especially for sparse and noisy data. The goals
of this thesis are demonstrating the competitiveness of these approaches compared to
other state-of-the-art methods, and exploring the conditions under which they perform
the best.

When developing a new Bayesian matrix factorisation model, a researcher has to make
several choices. First of all, if we have multiple datasets, what is the best way of jointly
factorising them, and what factor matrices should be shared? The next challenge is
to choose the most appropriate likelihood and Bayesian priors for the model, which
can influence predictive performance (especially for sparse datasets) and our ability to
analyse the resulting factor matrices. Finally, a method of inference has to be chosen.
This pipeline is shown in Figure 1.1. There are numerous choices for each challenge,
each with different advantages and disadvantages, but very few studies have been
performed that explore the trade-offs and help researchers make the best choices.

In this thesis we address the above challenges by answering the following research
questions, one in each chapter, which also help us confirm our hypothesis that Bayesian
matrix factorisation is a very effective method for predicting missing values.

(i) What influence does the inference approach have on predictive performance? In
particular, how does it impact convergence speed and the model’s robustness to
noise and sparsity?

(ii) What are the trade-offs between different likelihood and Bayesian prior choices
for the matrix factorisation models?

(iii) How can we best integrate multiple datasets to improve our predictions?

4 Introduction

Choose datasets and
factorisation types

Choose likelihood
and Bayesian priors

Choose
inference method

Chapter 5 Chapter 4 Chapter 3

?

? ?

Chapter 2 - Background

Prior Posterior

Figure 1.1 Research problems that are addressed in this thesis, split into three
fundamental modelling challenges. First of all, given multiple datasets that we wish
to predict missing values for, what is the best way of jointly decomposing them? We
study this by introducing a general hybrid matrix factorisation model. Secondly, what
are the best choices for the likelihood function and Bayesian prior choices for the latent
factor matrices? Finally, given the model definition, what are the trade-offs of different
inference approaches to solve our problem? We address these questions in order of
increasing complexity, first studying inference approaches, then the prior and likelihood
choices, and finally introducing a data integration model.

Note that this is the reverse of the design choice order outlined before, and in order of
increasing complexity. If we started with studying the best way to jointly decompose
multiple datasets, we would not yet know the effects of the inference method on
predictive performance. This makes it harder to isolate the effect of one design choice
for the next. We therefore address them in reverse order, using knowledge gained in
one chapter to make modelling choices in the next.

1.2 Thesis overview

This thesis is structured as follows.

1.2 Thesis overview 5

Chapter 2 introduces the theoretical foundations underlying this thesis. In particular,
we briefly introduce probabilistic latent variable models and Bayesian inference. Using
this knowledge, we review the literature on matrix factorisation methods and their
extensions—we focus on nonnegative and Bayesian matrix factorisation; matrix tri-
factorisation; multiple matrix factorisation; and tensor decompositions. Finally, we
discuss our evaluation methods including nested cross-validation, and introduce the
different applications that we consider in this thesis.

Chapter 3 studies the trade-offs of different inference approaches for Bayesian matrix
factorisation and tri-factorisation. Starting with a Bayesian nonnegative matrix fac-
torisation model, we extend it to matrix tri-factorisation, and add automatic relevance
determination to both models to perform automatic model selection. We consider four
different inference methods: non-probabilistic inference, Gibbs sampling, a maximum-
a-posteriori approach called iterated conditional modes, and variational Bayesian
inference—the last of which is new for these two models. We then present experimen-
tal results on synthetic data, as well as four drug sensitivity datasets, studying the
convergence and runtime speed, predictive performance in cross-validation, robustness
to noise and sparsity, and the effectiveness of automatic relevance determination for
model selection.

Chapter 4 provides a study of the effects of different likelihood and Bayesian prior
choices for Bayesian matrix factorisation on predictive performance. We review pop-
ular approaches and identify four different groups: real-valued, nonnegative, semi-
nonnegative, and Poisson matrix factorisation. We consider three different application
domains—drug sensitivity predictions, collaborative filtering of movie ratings, and
methylation expression profiles—and measure the convergence speed and depth, predic-
tive performance in cross-validation, robustness to sparsity and noise, and factor values
on these applications. Using these results we discuss the trade-offs of the different
groups and provide novel insights, which can help guide design choices for future
models.

Chapter 5 considers the problem of integrating multiple datasets at the same time,
by jointly factorising them. We introduce a novel Bayesian model called hybrid
matrix factorisation, which hybridly combines multiple matrix factorisation and tri-
factorisation, as well as real-valued, nonnegative, and semi-nonnegative factorisations.
This model significantly improves in-matrix prediction performances on the drug
sensitivity datasets, outperforming state-of-the-art matrix factorisation and machine

6 Introduction

learning approaches. For out-of-matrix predictions this model provides excellent
performances as well, often outperforming methods like random forests and support
vector machines. Finally, we study different parameter choices for our model, including
the factorisation types that are used to integrate the datasets.

Chapter 6 summarises the contributions of this thesis, and discusses future research
directions.

1.3 Related publications

(a) Thomas Brouwer, Jes Frellsen, and Pietro Lió (2017). Comparative Study of
Inference Methods for Bayesian Nonnegative Matrix Factorisation. Proceedings
of the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2017).

(b) Thomas Brouwer and Pietro Lió (2017). Prior and Likelihood Choices for
Bayesian Matrix Factorisation on Small Datasets. Under review.

(c) Thomas Brouwer and Pietro Lió (2017). Bayesian Hybrid Matrix Factorisation for
Data Integration. Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS 2017).

The work presented in publication (a) establishes the content of Chapter 3. An
earlier version of this work was presented at the NIPS 2016 Workshop on Advances
in Approximate Bayesian Inference. The work in Chapter 4 is under review at a
conference. Finally, (c) contributes to the content of Chapter 5.

We consciously made an effort to make all code and datasets freely available online
for each the publications above—not just for the model implementations, but also
the experiments and preprocessing of the datasets. We hope that this will simplify
replication and future projects, and contributes to a future of more open research.
They can be accessed at at https://github.com/ThomasBrouwer.

https://github.com/ThomasBrouwer

Chapter 2

Background

In this thesis we extensively study Bayesian probabilistic models for matrix factorisation.
In this chapter, we review the theory behind probabilistic graphical models, Bayesian
inference approaches, matrix factorisation methods, and several applications we will
consider to validate our methods.

2.1 Probabilistic latent variable models

Latent variable models are a type of stochastic models in which we have a number of
variables that we observe, and some that we do not observe—the latent variables. Over
each of these variables we define probability distributions that are dependent on a
number of other variables in the model, thus defining a generative process that we can
use to generate new samples for the collection of random variables. Because we cannot
observe the latent variables, we can see our model as a hypothesis of how the data were
generated. For example, if we define a latent variable model for a biological problem,
our model can try to simulate the biological process that we cannot observe (in other
words, the latent process), but is considered to be the cause of what we observe. If
we are then given a set of actual observations, we can try to infer what the values or
distributions were that most likely generated these data from the specified model. This
can give us more precise details of the underlying biology.

Formally we can define probabilistic latent variable models as follows. We have a set
of observable variables X, a set of actual observations D (the data), and a set of latent
variables θ. For each latent variable θi ∈ θ and observable variable x ∈ X, we define a

8 Background

Z1 Z2

Z3

Z4

Z5i

X1

X2i

i=1..I

Figure 2.1 Example of a graphical model, detailing the conditional independencies
between observed variables X1, X2 and latent variables Z1, Z2, Z3, Z4.

probability distribution that determines the values it can take. These distributions
have a number of parameters—for example, a Gaussian distribution has a mean µ

and precision τ . We can place distributions over these parameters as well, giving
rise to a hierarchical structure of random variables that are dependant on each other.
Parameters in a probability distribution that itself do not have a distribution over
them (for example, if we did not place a prior over µ) are called hyperparameters, and
are not random variables.

The dependency structure induced by the hierarchical probability distributions can be
exploited to make inference easier, by making a distribution conditionally independent
of the other variables given only a few, which we call the parent nodes. We can then
represent the conditional independencies of the observed and latent variables as a
so-called graphical model. Each observed variable is represented by a grey node,
and each latent one by a white node. A directed arrow A1 → A2 indicates that the
distribution of A2 is conditionally dependent on that of A1; in other words, A1 is a
parent node of A2. Finally, plates denote repeated variables, each having a subscript to
identify it. A parent node of a variable inside the plates is therefore the parent of each
repeated variable (for example if A1 → Bi, where Bi is inside a plate with i = 1..I,
then A1 → B1, A1 → B2, and so on).

As an example, in Figure 2.1 we have latent variables Z1, Z2, Z3, Z4, Z51, .., Z5I and
observed variables X1, X21, .., X2I . Note that the flow of the diagram goes in only one
direction, allowing us to generate samples from the model: first drawing Z1 ∼ p(Z1),
then Z2 ∼ p(Z2|Z1), and so on.

2.1 Probabilistic latent variable models 9

The only parent node of X1 is Z4, and the only parent of X2n is Z5n (for each n = 1..I),
and therefore

p(X1|Z1, Z2, Z3, Z4, Z51, .., Z5I , X21, .., X2I) = p(X1|Z4)

p(X2n|Z1, Z2, Z3, Z4, Z51, .., Z5I , X21, .., X2(n−1), X2(n+1), .., X2I) = p(X2n|Z5n)

Note however that variables are not conditionally independent of their children nodes,
as observing the value of a child will also yield information about the value of a parent.
For example, p(Z4|Z1, Z2, Z3) = p(Z4|Z2, Z3), but p(Z4|Z1, Z2, Z3, X1) is not equal to
p(Z4|Z2, Z3). Instead it is

p(Z4|Z1, Z2, Z3, X1) =
p(X1|Z1, Z2, Z3, Z4)p(Z4|Z1, Z2, Z3)

p(X1|Z1, Z2, Z3)
(2.1)

∝ p(X1|Z4)p(Z4|Z2, Z3). (2.2)

We used conditional Bayes’ theorem for the first step (2.1),

p(A|B,C) = p(B|A,C)p(A|C)
p(B|C) ,

and the conditional independence rules specified by the graphical model for the second
(2.2). Note that the denominator does not depend on Z4 and can therefore be left out.

As stated before, we wish to infer the values or distributions of the underlying generative
model. In particular, we want to find the values (or distribution over values) of the
latent variables θ. There are typically three types of solutions we can find:

• Maximum likelihood (ML). For the ML solution, we simply wish to find the
parameter values θ that are most likely to have generated the data. In other
words, finding θML = maxθ p(D|θ), where p(D|θ) is the probability of observing
data D given the parameters values θ.

• Maximum a posteriori (MAP). The MAP solution also incorporates a prior
belief about how likely each of the parameter values is, before even seeing the
data. This allows us to discount solutions that are very unlikely, for example
containing extremely high values for a parameter θi. As a result, inference
involves a trade-off between our prior belief of the parameter values, and finding
parameters that make the model fit very well to the data. We find θMAP =

10 Background

maxθ p(θ|D) = maxθ [p(D|θ)p(θ)], where p(θ) is the prior probability of having
parameter values θ.

• Full posterior (fully Bayesian). Finally, in the fully Bayesian approach to
inference, we wish to find the posterior distribution p(θ|D) over the parameters
θ given the data D. In contrast to ML and MAP, where we found a single point
estimate, we now find a probability distribution, reducing the risk of getting
stuck in a local minimum.

We investigate the trade-offs between these different approaches in Chapter 3, where
we will see that ML methods are very prone to overfitting (see Section 2.4) to noise
and sparsity of a dataset, with MAP methods remedying that to an extent, and the
fully Bayesian approaches to inference being the most robust. Bayesian methods are
therefore especially useful for biological datasets, where data tend to be noisy, and we
have few observed datapoints.

2.2 Approximate Bayesian posterior inference

In Bayesian inference, we are interested in finding the posterior likelihood of the
parameters. To do this, we use Bayes’ theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
=

p(D|θ)p(θ)∫
θ
p(D|θ)p(θ)dθ

The integral in the denominator goes over the entire parameter space (all possible values
for θ) which is extremely high-dimensional, and as a result is usually intractable to
compute. Furthermore, for a lot of models this integral will not reduce to a closed-form
distribution (such as a Gaussian), and can therefore not be computed exactly anyways.
To address this, we can resort to approximate Bayesian inference methods, which
seek to approximate the true full posterior with one that we can more easily compute.
In this thesis we make use of two of these approaches: Gibbs sampling, and variational
Bayesian inference. Many others are also possible, including expectation maximisation,
variants of Markov Chain Monte Carlo (Gibbs is one), and expectation propagation.

Both of these approaches require something called model conjugacy, meaning that
the product of the prior distributions p(θ) and the likelihood p(D|θ) is of the same form
of distribution as the prior distribution. Examples of this are a Gaussian likelihood and
Gaussian prior, or a Multinomial likelihood and a Dirichlet prior over its distribution

2.2 Approximate Bayesian posterior inference 11

vector. All probability distributions in the exponential family (which includes most
common distributions) have a conjugate prior. Inference is also possible without
model conjugacy, but often requires significant (and imprecise) approximations and
complicated inference algorithms. In this thesis, we will focus on conjugate models to
avoid this additional complexity so that we can focus entirely on the research questions,
without worrying about potential influence of the approximations.

2.2.1 Gibbs sampling

Recall that our goal is to approximate the true posterior p(θ|D). We may not be able
to compute this distribution directly, but the idea behind Gibbs sampling is to try to
sample values from it. These samples can then be used to approximate the posterior,
or to estimate the expectation and variance of the parameters.

Gibbs sampling works by sampling new values for each parameter θi from its marginal
distribution p(θi|θ−i, D), given the current values of the other parameters θ−i, and
the observed data D. If we sample new values in turn for each parameter θi from
p(θi|θ−i, D), we will eventually converge to draws from the posterior, which can be
used to approximate the posterior p(θ|D). If our model has conjugacy, this conditional
posterior p(θi|θ−i, D) is of a closed form and we can sample from it. In order to obtain
good approximations to the posteriors of the parameters, we have to discard the first
n draws because it takes a while to converge (burn-in), and since consecutive draws
are correlated we only use every ith value (thinning).

Intuitively, the idea is that by focusing on one dimension of the posterior parameter
space (in other words, one parameter at a time) and sampling a new value from the
conditional posterior, we are more likely to sample a value with a higher posterior
probability than one with a lower one, and hence converge to high density posterior
space by repeatedly doing this. By sampling randomly, we are less likely go get stuck
in a bad (low density) posterior space, as there is always a chance that we “jump out”
of the bad space and into a better one.

2.2.2 Variational Bayesian inference

Gibbs sampling relies on random sampling behaviour to obtain draws from the true
posterior distribution. In contrast, the idea behind variational Bayesian inference (VB)
is to introduce an approximation q(θ) to the true posterior (the form of which we
can choose), and to make this variational distribution q(θ) as similar to p(θ|D) as

12 Background

possible (as measured by the KL-divergence). This new distribution has a number of
variational parameters which we can change, and by fine-tuning these we can obtain
a distribution that is very close to the true posterior, while being easier to compute.
The KL-divergence is defined as

DKL(q(θ)||p(D|θ)) = Eq

[
log

q(θ)

p(θ|D)

]
= Eq [log q(θ)]− Eq [log p(θ|D)]

= Eq [log q(θ)]− Eq [log p(D,θ)] + log p(D)

= −L+ log p(D),

where Eq [f(x)] denotes the expectation of function f(x), with respect to the distribution
q(x) over random variable x. Since log p(D) is independent of the variational approxima-
tion, maximising L = Eq [log p(θ, D)− log q(θ)] (the evidence lower bound, ELBO)
is equivalent to minimising the KL-divergence. So if we write down the expression
for the lower bound, and optimise it with respect to the variational parameters, our
distribution q will approximate the true posterior p(θ|D).

One way to do this is to write down the expression for the ELBO, take the derivative
with respect to each variational parameter, set to zero, and solve it to find the optimal
update. Alternatively, it can be shown (Beal and Ghahramani [2003]) that the optimal
distribution for the ith parameter, q∗(θi), can be expressed as follows (for some constant
C), allowing us to more easily find the optimal updates for the variational parameters.

log q∗(θi) = Eq(θ−i) [log p(θ, D)] + C.

We now take the expectation with respect to the distribution q(θ−i), which goes over all
parameters except the ith one, θ−i. This gives rise to an iterative algorithm: for each
parameter θi we update its distribution to that of its optimal variational distribution,
and then update the expectation and variance with respect to q. We therefore need
updates for the variational parameters, and to be able to compute the expectations
and variances of the random variables.

We typically assume that the variational distribution q(θ) factorises completely, so
that all variables are independent in the approximation of the posterior,

q(θ) =
∏
θi∈θ

q(θi).

2.3 Matrix factorisation 13

≈

R U V

?

?

?

?

?

Figure 2.2 Matrix factorisation with K = 2 factors. Unobserved entries are indicated
by question marks.

This is called the mean-field assumption, and it is what makes the variational
approximation q easier to compute.

2.3 Matrix factorisation

Matrix factorisation is a group of methods that seek to extract patterns in a given
dataset. Say we are given a matrix R ∈ RI×J that related two entity types. We have
I row entities (for example users), J columns (for example movies), and each entry Rij

gives the relation between row i and column j (such as the rating out of five stars that
this user has given to the movie).

Matrix factorisation works on the assumption that we can find a low-level represen-
tation of the data, and it seeks to find these low-level patterns through factorisation.
In particular, it assumes that each row i has K factor values Ui1, ..., UiK that give
a low-dimensional representation of the row. Similarly, each column j has K factor
values Vj1, ..., VjK . The value Rij representing the relation between row i and column
j then comes from the dot product of these factor values,

Rij = Ui · Vj =
K∑
k=1

UikVjk.

In other words, we decompose the matrix R ≈ UV T , where U ∈ RI×K , V ∈ RJ×K .
Note that this decomposition is not exact—the datasets we analyse are often very
noisy, and therefore we should only seek to approximate them, to prevent overfitting
to the noise. There is also a trade-off for the number of factors, or dimensionality, K:
if this value is too high we will overfit, and if it is too low we cannot fit enough to the

14 Background

In-matrix predictions Out-of-matrix predictions

?

?

?

?

?

? ? ? ? ?

Figure 2.3 Difference between in- and out-of-matrix predictions.

data to find the right patterns. Choosing this value is called model selection, and can
for example be done using cross-validation (see Section 2.4).

Not all the entries in the dataset R may be measured, as shown in Figure 2.2. We
represent the indices of observed entries by the set

Ω = {(i, j) | Rij observed} .

Note that in our example we have at least one other observed entry for each row and
column that we can learn from. This is the so-called in-matrix predictions setting,
and unknown values can be predicted using UV T . The other setting is out-of-matrix
predictions, where we predict values for entirely unseen rows or columns, such as a
new user that has not yet rated any movies. This is illustrated in Figure 2.3. Note that
this form of matrix factorisation can only be used for the former type of predictions,
and not the latter, as we do not have information about the new row that we wish to
predict values for. We will discuss extensions in Section 2.3.6 that allow us to make
out-of-matrix predictions.

In the framework of movie ratings introduced above, we can interpret the factor values
as capturing a grouping behaviour of users and movies. For example, a factor k might
capture in matrix U whether each user likes horror movies, and in matrix V whether
this is a horror movie. Therefore, if we then predict the value of an observed entry
Rij, and the factor value corresponding to horror movies is high for both the user
and movies, we predict a high rating. Note that these factor values are learning in an
unsupervised manner, and only by analysing them afterwards can we identify that a
factor corresponds to such a grouping of users and movies.

2.3 Matrix factorisation 15

The matrix factorisation problem as defined above uses real-valued factor values. This
is sometimes also called factor analysis. A related approach is called independent
component analysis, where we additionally aim to make the rows in the V factor
matrix as independent as possible, according to a given similarity measure (such as
entropy). There are many popular matrix factorisation models and extensions, which
we will review in the following sections.

2.3.1 Nonnegative matrix factorisation

If we assume that the dataset R is nonnegative, and constrain the factor values
to be nonnegative, we obtain nonnegative matrix factorisation (NMF). This
nonnegativity has several advantages: it makes the resulting factor values easier and
more intuitive to interpret; it is often inherent to the problem (such as in image
analysis); and it can prevent overfitting (as we will see in Chapter 4). This method
can also be interpreted as K-means clustering, where the U matrix gives the cluster
indicators for the rows, and V gives the cluster centroids (Ding et al. [2005a]).

One of the earliest formulations can be found in Paatero [1997]; Paatero and Tapper
[1994], but it was popularised by Lee and Seung [1999, 2000]. The last paper introduced
two models based on different cost functions that we seek to minimise in order to find
the factorisation, and the majority of papers that followed built on these two models.
Lee and Seung [2000] formulated nonnegative matrix factorisation of a matrix R ∈ RI×J

+

as follows. We wish to find nonnegative matrices U ∈ RI×K
+ and V ∈ RJ×K

+ such that
R ≈ UV . We do this either by minimising the total square error of predictions, also
called the Frobenius norm,

||R−UV T ||2F =
I∑

i=1

J∑
j=1

(Rij −UiVj)
2 ,

or by minimising the I-divergence (generalised KL-divergence),

D(R||UV T) =
I∑

i=1

J∑
j=1

(
Rij log

Rij

(UV T)ij
−Rij + (UV T)ij

)
,

subject to the constraints U ,V ≥ 0. The following multiplicative updates can be
shown to be correct and to converge using auxiliary functions, for the two cost functions

16 Background

above (respectively),

Uik = Uik ·
(RV)ik

(UV TV)ik
Vjk = Vjk ·

(RTU)jk
(V UTU)jk

Uik = Uik ·
∑

j VjkRij/(UV T)ij∑
j Vjk

Vjk = Vjk ·
∑

i UikRij/(UV T)ij∑
i Uik

They showed that these multiplicative updates are essentially gradient descent updates
where the step size is dependent on the current values of U ,V . Note that for the first
cost function it requires the entire matrix R to be observed, whereas for the latter
we can modify the cost function to only consider entries in the set Ω (by replacing∑I

i=1

∑J
j=1 with

∑
(i,j)∈Ω) and the updates can be modified as well to reflect this.

These models were extensively applied for clustering and analysis of datasets in image
analysis (Kong et al. [2011]; Li et al. [2001]; Shen and Si [2010]), bioinformatics (Brunet
et al. [2004]; Kim and Choi [2007]), document analysis (Ding et al. [2006]; Kuang et al.
[2012]; Pauca et al. [2004]), and many more fields. The base models are often extended
by adding additional penalty terms to the cost function, for example L1 or L2 sparsity
norms for the factor matrices.

2.3.2 Bayesian matrix factorisation

Probabilistic approaches to matrix factorisation describe the minimisation problem
(finding matrices U ,V) as that of trying to infer the distributions over latent variables
U ,V after observing the data R. Bayesian approaches extend this by placing prior
distributions over U ,V . As discussed in Section 2.2, we can either try to infer a point
estimate of the likelihood max{U ,V } p(R|U ,V) (maximum likelihood) or posterior
max{U ,V } p(U ,V |R) (maximum a posteriori), or find the full posterior distribution
p(U ,V |R).

Bayesian factor analysis papers go back as far as Kaufman and Press [1973] and
Mayekawa [1985], with the latter using an expectation-maximisation algorithm to find
a maximum-a-posteriori solution. These papers formulated the problem as finding
a low-dimensional representation for a number of multi-dimensional observations
(corresponding to the rows in matrix factorisation), rather than the decomposition of
a matrix directly. Although purely semantic, the former approach makes it easy to
forget that the columns of the matrix are also entities of their own right, and worth
studying. The matrix factorisation formulation was introduced by probabilistic latent

2.3 Matrix factorisation 17

semantic indexing (PLSI, Hofmann [1999]). Given a number of documents consisting
of words, PLSI finds a document-to-topic and topic-to-word distribution matrix for
that collection of documents. Inference was performed using EM to obtain a maximum
likelihood estimate. Ding et al. [2008] proved that PLSI and NMF were essentially
equivalent. This method was later extended as a fully Bayesian model called latent
dirichlet allocation (LDA, Blei et al. [2012]) by placing Dirichlet distribution priors
over the document-to-topic and topic-to-word distributions, and using using variational
Bayes or Gibbs sampling to find an estimate to the full posterior p(U ,V |R).

Bayesian matrix factorisation approaches use a likelihood distribution to capture noise
in the data (usually Poisson for count data, or Gaussian for real-valued data), and
place priors over the entries in U ,V . These priors can induce sparsity or constrain
the values to be nonnegative. Inference is often performed using Gibbs sampling or
variational Bayesian inference. Note the parallel with the non-probabilistic matrix
factorisation approaches: the likelihood acts as a cost function, and the priors are
additional penalty terms over the factor matrices.

The basic Bayesian matrix factorisation model that many papers in the literature build
on (Gönen [2012]; Salakhutdinov and Mnih [2008]; Virtanen et al. [2011, 2012]) uses a
Gaussian likelihood and independent Gaussian priors,

Rij ∼ N (Rij|UiVj, τ
−1) τ ∼ G(τ |ατ , βτ),

where N (x|µ, τ) = τ
1
2 (2π)−

1
2 exp

{
− τ

2
(x− µ)2

}
is the density of the Gaussian distri-

bution, with precision τ . Ui,Vj denote the ith and jth rows of U and V . We
place a further Gamma prior over τ , with G(τ |ατ , βτ) = βτ

ατ

Γ(ατ)
xατ−1e−βτx, where

Γ(x) =
∫∞
0
xt−1e−xdt is the gamma function.

Ui ∼ N (Ui|0, λ−1I) Vj ∼ N (Vj|0, λ−1I).

Here, N (x|µ,Σ) = |Σ|− 1
2 (2π)−

K
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
is the density of a

K-dimensional multivariate Gaussian distribution, and I is the identity matrix.

Another popular likelihood choice is the Poisson distribution (Gopalan and Blei [2014];
Gopalan et al. [2015]; Hu et al. [2015]). More complicated likelihood distributions can
also be used, such as modelling that the observed values are ordinal (Paquet et al.
[2012]).

18 Background

2.3.3 Bayesian nonnegative matrix factorisation

One particular model of interest, that we will build on in our models and experiments,
is Bayesian nonnegative matrix factorisation (BNMF, Schmidt et al. [2009]). This
model also uses a Gaussian likelihood, but now constrains U ,V to be nonnegative
using exponential priors over each individual entry in U and V , with rate parameters
λUik, λ

V
jk > 0.

Uik ∼ E(Uik|λUik) Vjk ∼ E(Vjk|λVjk),

where E(x|λ) = λ exp {−λx}u(x) is the density of the exponential distribution, and
u(x) is the unit step function. For the precision τ we again use a Gamma distribution
with shape ατ > 0 and rate βτ > 0,

p(τ) ∼ G(τ |ατ , βτ) =
βτ

ατ

Γ(ατ)
xατ−1e−βτx

where Γ(x) =
∫∞
0
xt−1e−xdt is the gamma function. They introduced a Gibbs sampling

algorithm for inference, which gave the following conditional posteriors to sample from.

p(Uik|τ,U−ik,V ,λ, D) = T N (Uik|µU
ik, τ

U
ik) p(τ |U ,V ,λ, D) = G(τ |α∗

τ , β
∗
τ)

p(Vjk|τ,U ,V−jk,λ, D) = T N (Vjk|µV
jk, τ

V
jk),

where

T N (x|µ, τ) =


√

τ
2π

exp
{
− τ

2
(x− µ)2

}
1− Φ(−µ√τ) if x ≥ 0

0 if x < 0

is a truncated normal: a normal distribution with zero density below x = 0 and
renormalised to integrate to one. Φ(·) is the cumulative distribution function of N (0, 1).
Note that this model is not actually conjugate—the prior is exponential but the
conditional posterior is a truncated normal. However, we can sample from the posterior
and therefore still perform inference.

The parameter values are given below, with Ω1
i = {j | (i, j) ∈ Ω} and Ω2

j = {i | (i, j) ∈ Ω}.
The Gibbs sampling algorithm then simply samples a new value for each random variable
in turn from these conditional posterior distributions.

α∗
τ = ατ +

|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

(Rij −UiVj)
2

2.3 Matrix factorisation 19

≈

Row factors

Column factors

?

?

?

?

?

Figure 2.4 Matrix tri-factorisation with K = 2 row factors and L = 3 column factors.
Unobserved entries are indicated by question marks.

τUik = τ
∑
j∈Ω1

i

V 2
jk µU

ik =
1

τUik

−λUik + τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk


τVjk = τ

∑
i∈Ω2

j

U2
ik µV

jk =
1

τVjk

−λVjk + τ
∑
i∈Ω2

j

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Uik

 .

2.3.4 Matrix tri-factorisation

Matrix tri-factorisation (MTF) is an extension to matrix factorisation, where instead
of decomposing a matrix into two matrices, we decompose it into three matrices,
R ≈ FSGT , where F ∈ RI×K , S ∈ RK×L, and G ∈ RJ×L. In a similar way to how
U indicated the clustering for NMF, we now have F indicating the clustering of rows,
G the clustering of columns, and S relating the row and column clusters (biclusters).
Much like how NMF is equivalent to K-means clustering, this is a form of biclustering
(simultaneously clustering rows and columns). If we factorise a single dataset, matrix
factorisation and tri-factorisation are not any different for predictive purposes. However,
for analysing the factor values it can be useful, as it separates the factor values of V
into column clusters in G, and bicluster indicators in S. Furthermore, when we use
this approach for factorising multiple datasets, it also becomes very interesting for
predictive purposes.

It is interesting to note that singular value decomposition (SVD, Golub and Reinsch
[1970]) is a special form of matrix tri-factorisation. More precisely, we decompose
R = UΣV ∗, with U ∈ RI×I , V ∈ RJ×J , and Σ ∈ RI×J is a diagonal matrix containing
the singular values of R. In contrast, with MTF we allow the off-diagonal entries to
be non-zero so that rows and columns can be assigned to different biclusters, and the
dimensionalities K,L are often much lower (for SVD, K = I and L = J).

20 Background

Ding et al. [2006] first introduced nonnegative matrix tri-factorisation (NMTF)
R ≈ FSGT , noting that without any constraints this is equivalent to NMF, but with
orthogonality constraints on F , G this gives a very different solution. Multiplicative
updates can again be used for non-probabilistic inference. NMTF has been used
for many applications, mainly to extract row and column clusters at the same time,
including sentiment analysis (Li [2010]; Li et al. [2009]) and bioinformatics (Hwang et al.
[2012]; Liu et al. [2014]; Wang et al. [2013]). No Bayesian models for specifically matrix
tri-factorisation were introduced, with only probabilistic (maximum-a-posteriori) ones
in Yoo and Choi [2009] and An et al. [2010]. However, MTF is the two-dimensional
case of the Tucker decomposition, for which we will see in Section 2.3.8 that several
Bayesian models exist.

2.3.5 Symmetric matrix factorisation

Symmetric matrix factorisation is a special case of matrix factorisation for which the
row entities are the same as the column entities—in other words, R ∈ RI×I . Examples
are the edge matrix of a graph, or similarity kernels denoting how similar entities
are to each other. These datasets are often nonnegative, so nonnegativity constraints
are usually placed on the factor matrices. We can either decompose R ≈ UUT with
U ∈ RI×K , or R ≈ FSF T with F ∈ RI×K and S ∈ RK×K . Ding et al. [2005b] argued
that the latter decomposition is a better choice: it provides more degrees of freedom
to fit to the data, and S gives a good characterisation of the quality of clustering—if
clusters are well-separated, the off-diagonal entries in S will be small.

2.3.6 Multiple matrix factorisation

In practical applications we often have a wide range of datasets, relating many different
entity types through multiple matrices. Therefore, we should consider how to best
integrate these datasets and hence improve our analysis or predictions. Fortunately,
matrix factorisation methods offer an elegant way to integrate them. In particular, we
usually assume that entities have the same factor values for the different datasets they
relate, and we perform a joint matrix factorisation where one or more latent matrices
are shared. This allows us to fuse different data sources together.

In the literature this has been addressed under many different names: data fusion by
matrix factorisation, joint matrix factorisation, collective matrix factorisation, multiple
matrix factorisation, matrix co-factorisation. We will refer to them as multiple matrix

2.3 Matrix factorisation 21

≈

≈

Multiple matrix factorisation

≈

≈

Multiple matrix tri-factorisation

Figure 2.5 Difference between multiple matrix factorisation and multiple matrix
tri-factorisation. The shared factor matrices are highlighted in grey.

factorisation. Models vary in complexity from jointly decomposing two datasets and
sharing a single latent matrix, to more general data fusion approaches between any
number of datasets.

There are several approaches in the literature. Some models just share the row factor
matrix U across multiple datasets (Lee et al. [2012]; Wang et al. [2015a,b]; Yang and
Dunson [2015]; Zhang et al. [2005]; Zhang and Yeung [2012]), as shown in Figure 2.5.
Bayesian versions are given by Virtanen et al. [2012] and Chatzis [2014]. Some methods
do not explicitly share the factor matrix, but instead add a penalisation term based on
the similarity between the dataset-specific factor matrices (Liu et al. [2014]; Seichepine
et al. [2013]; Zhang et al. [2014]).

Note that these models tend to be very specific: only the row factors can be shared,
and therefore if we have any other information about the column entity type, we
cannot use it. General matrix factorisation methods address this issue (Bouchard et al.
[2013]; Lippert et al. [2008]; Singh and Gordon [2008]), with Bayesian versions given in
Khan et al. [2016]; Klami et al. [2014]), by assigning each entity type its own latent
matrix, giving a general framework for multiple matrix factorisation. However, these
approaches cannot integrate multiple datasets between the same two entity types, since
both matrices are shared and the factorisation therefore cannot account for differences
between the two datasets. We would require a third, dataset-specific factor matrix to
solve this problem.

This is addressed by multiple matrix tri-factorisation (shown in Figure 2.5), where
we share the row and factor matrices F ,G across all factorisations, but we always have
a dataset-specific matrix S to account for differences. This is particularly interesting

22 Background

≈

? ? ? ? ?

Figure 2.6 Diagram showing how multiple matrix factorisation can be used for
out-of-matrix predictions.

for integrating repeated experiments, where different biological labs perform similar
experiments between the same two entity types, such as gene expression profiles and
methylation levels. Intuitively, this approach assumes that all entities of a specific
entity type are clustered in the same way across the datasets, since its factor matrix F

is shared. Models for multiple nonnegative matrix tri-factorisation are given by Wang
et al. [2008] and Žitnik and Zupan [2015], but they require all given datasets to be fully
observed. As a result, missing values inside each matrix need to be imputed. For binary
datasets a missing association can easily be imputed as a zero, but for real-valued
datasets this is not a viable option. In Chapter 5 we will introduce a Bayesian multiple
matrix factorisation and tri-factorisation model that addresses this issue.

Interestingly, the PARAFAC2 model introduced by Harshman [1972] which was for-
mulated in the context of tensors (see Section 2.3.8), is in fact a multiple matrix
tri-factorisation model for matrices (rather than tensors) with the same number of
columns but different numbers of rows. We jointly decompose Rk ≈ FkSkG, where we
share Fk,Sk across the different datasets, and the Sk are diagonal matrices.

These multiple matrix factorisation approaches can help us improve our in-matrix
predictions. Importantly, they also allow us to make out-of-matrix predictions, for
entirely unobserved rows or columns in a matrix. This is illustrated in Figure 2.6 for a
joint factorisation of two matrices, where the row factor matrix is shared. Note that
this is effectively the same as concatenating the columns of the two matrices, and doing
in-matrix predictions. However, if we have multiple datasets spanning more than two
different entity types, concatenating the matrices no longer works, and we need the
more general models for multiple matrix factorisation.

2.3 Matrix factorisation 23

≈

≈

+

+

Figure 2.7 An overview of the idea behind Bayesian canonical correlation analysis.

2.3.7 Canonical correlation analysis

Canonical correlation analysis (CCA) is a method for finding the common factors in
two datasets. Similarly to multiple matrix factorisation, we share the row factors. The
difference is that we also have dataset-specific row factors for both of the datasets. In
other words, in matrix factorisation we assume that we can share all the row factors,
whereas for CCA we say that some of the variation in the two datasets is not shared.
Effectively, we have one shared matrix factorisation, and one dataset-specific one, as
shown in Figure 2.7. An interesting Bayesian formulation of canonical correlation
analysis is given by Virtanen et al. [2011], where they use a special formulation of the
Bayesian automatic relevance determination prior, which we will now introduce.

Automatic relevance determination (ARD) is a Bayesian prior which helps perform
automatic model selection, and can be used for matrix factorisation. For the basic
Bayesian matrix factorisation model it works by replacing the λ hyperparameter in the
Gaussian priors for the factor matrices by one that is shared by all entries in the same
column (in other words, shared for each factor). We then place a further Gamma prior
over all these λk parameters. This changes the priors to

Ui ∼ N (Ui|0, diag(λ−1)) Vj ∼ N (Vj |0, diag(λ−1)) λk ∼ G(λk|α0, β0),

where diag(λ−1) is a diagonal matrix with entries λ−1
1 , .., λ−1

K on the diagonal. The
Gamma prior for the ARD is conjugate, and Gibbs sampling or variational Bayes can
be used for inference. Since this parameter is shared by all entries in the same column,
the entire factor k is either activated (if λtk has a low value) or “turned off” (if λtk has a
high value), pushing factors that are active for only a few entities further to zero. This
is shown in Figure 2.8, where there are three active factors, and one has been turned
off. This prior can be used for real-valued matrix factorisation (as in Virtanen et al.

24 Background

≈

Figure 2.8 An overview of the effect of using automatic relevance determination in
matrix factorisation models. The white column in the factor matrices is inactive.

[2011]), as well as nonnegative matrix factorisation (Tan and Févotte [2013]). Instead
of having to choose the correct K, we can give an upper bound and the model will
automatically try to determine the number of factors to use. A similar approach can
be found in Figueiredo and Jain [2002], which incorporates the elimination of unused
factors directly into their expectation-maximisation inference algorithm. In contrast,
ARD is implemented on a model-level. In Chapter 3 we will validate the effectiveness
of the above ARD for the Bayesian nonnegative matrix factorisation model.

The specific version of the ARD prior used in Virtanen et al. [2011] is called a group-wise
ARD. Instead of activating or turning off an entire factor, it can be turned on or off
for a specific dataset (group) only. This is done by having a separate λnk parameter
for each dataset n. As a result, if a factor is active for both groups, it is shared; if it
is active for one dataset but turned off for the other it is dataset-specific; and if it is
active for neither, it is unused. This formulation allows us to efficiently perform CCA
using a special formulation of matrix factorisation. This model is extended to three or
more datasets in Virtanen et al. [2012], called Bayesian group factor analysis.

2.3.8 Tensor decomposition

Matrices represent relations between two entity types. Tensors are the higher-dimensional
generalisation of matrices, usually relating three or more entity types in as many dimen-
sions. We can perform tensor decompositions very similarly to matrix factorisation.

The CANDECOMP/PARAFAC (CP, Harshman [1970]) method decomposes a
given tensor R ∈ RI×J×N into the sum of K rank-1 tensors. This is effectively a
generalisation of matrix factorisation to three (rather than two) dimensions, with each
dimension getting its own factor matrix: F 1 ∈ RI×K ,F 2 ∈ RJ×K ,F 3 ∈ RN×K . These
matrices are often constrained to be orthogonal. Overall, we perform the factorisation
R = F 1 ⊗F 2 ⊗F 3, where ⊗ denotes the matrix outer product. Each individual entry

2.3 Matrix factorisation 25

Tucker decomposition

≈

CANDECOMP/PARAFAC

≈
⊗

Figure 2.9 An overview of CANDECOMP/PARAFAC (CP, left) and the Tucker
decomposition (TD, right).

in R is decomposed as follows:

Rijn =
K∑
k=1

F 1
ik · F 2

jk · F 3
nk.

The Tucker decomposition (TD, Tucker [1966]) is defined similarly, but in addition to
the three factor matrices, we also get a core tensor S ∈ RK×L×Q, and the factor matrices
have their own number of latent factors K,L,Q; F 1 ∈ RI×K ,F 2 ∈ RJ×L,F 3 ∈ RN×Q.
We now factorise R = S • 1F

1 • 2F
2 • 3F

3, where •i denotes the matrix dot product
using the ith dimension of tensor S. Individual entries in R are decomposed as:

Rijn =
K∑
k=1

L∑
l=1

Q∑
q=1

F 1
ik · F 2

jl · F 3
nq · Sklq.

An interesting observation is that the tensor decomposition is actually a special case of
the Tucker decomposition, where the core tensor is diagonal. Both CP and TD are
shown in Figure 2.9.

Papers on CP go back as far as 1970, when it was first introduced by Harshman [1970]
with applications in chemometrics. A nonnegative CP model was introduced by Lawson
and Hanson [1995], and Welling and Weber [2001] extended the approach by Lee and
Seung [1999] to tensors, giving multiplicative updates. There is also a rich literature for
probabilistic (Chu and Ghahramani [2009]; Yılmaz and Cemgil [2010]) and Bayesian
(Hoff [2013]; Xu et al. [2012]; Zhao et al. [2015]) models for CP and TD models. These
often use Gaussian priors over the core tensor and matrices, although a Dirichet prior
to enforce sparsity is also possible (Zhe et al. [2015]). Yang and Dunson [2015] give a
Bayesian nonnegative approach for binary data.

26 Background

2.4 Collaborative filtering

In this thesis we are analysing the predictive performance of Bayesian matrix fac-
torisation models for predicting missing values in matrices. This is sometimes also
called collaborative filtering, expecially in the context of predicting movie ratings. We
test performances under different conditions and explore the best modelling choices.
We consider several real-world applications and datasets: drug sensitivity datasets,
detailing the effectiveness of cancer drugs on different cell lines; gene expression and
methylation values for breast cancer patients; and movie ratings. These applications
are briefly introduced in the next sections.

In order to measure how well our models are doing, it is tempting to simply measure
how well we can replicate the values in our datasets that we give to the model to
learn from. However, this leads to so-called overfitting. Real-world datasets always
have some amount of random noise in them, since none of the observed values can be
measured perfectly. If our models fit exactly to the training data, for example finding
a perfect matrix factorisation, this means we must have fitted to the noise in the data,
and this tends to give very poor predictions on new datapoints. Hence, we must always
measure the predictive performance on datapoints that the model has not yet seen.

To do this, we split the observed entries Ω = {(i, j) | Rij observed} into a training set
Ωtrain and a test set Ωtest. We then give the model only the training datapoints, and
obtain predictions for the test datapoints (for matrix factorisation the prediction for a
datapoint (i, j) is given by UiVj). We will use the mean squared error (MSE) to indicate
the predictive errror, with a lower value indicating better predictive performance,

MSE =
1

|Ωtest|
∑

(i,j)∈Ωtest

(Rij −UiVj)
2 .

There can be a lot of variation in predictive performance if we do this only once,
as some entries may be easier to predict than others. To address this, we often use
10-fold cross-validation: we split the observed entries Ω into ten folds of equal size,
use nine folds as training data at a time and the remaining one as test, and do this
for all ten possibilities. We can then average across the ten performances. We can
do N -fold cross-validation for any N , but it is usually chosen to be 5 or 10. There
can still be some variation across repeats of cross-validation, but it goes a long way to
addressing the issue.

2.4 Collaborative filtering 27

Train

Cross-validation

Test

Nested cross-validation

Figure 2.10 Overview of the nested cross-validation procedure. After splitting the
data into a train and test set, we split the train set into ten further folds and train
a model with each of the parameter values and measure the nested cross-validation
performance. After choosing the best parameter values, we then fit a final model to
the train data and measure our cross-validation performance on the test data.

Some of our models will have parameters whose values may influence the predictive per-
formance, most importantly the dimensionality K (and L) for matrix (tri-)factorisation.
It is tempting to run cross-validation for each of these values and simply pick the best
one as the predictive performance, but this can lead to bias: we effectively just rerun
the cross-validation until we get a favourable random splitting of train and test data,
and use the best performance. Other models with few or no parameter will therefore
have a disadvantage, and we cannot trust the final performance.

We should make sure that we choose the value of our parameters without seeing the
test data. This can be done using nested cross-validation (see Figure 2.10). As
before, we split the observed entries into 10 folds, and use nine to train and one to test.
However, we now perform an additional cross-validation on these nine folds together,
trying each possible value of the parameters that we wish to choose from. We then
choose the parameter values with the best cross-validation performance on the training
datapoints, and use those to train a model on the training data and measure the final
predictive performance of this fold. This method removes any bias towards models
with lots of parameters, and reduces subtle overfitting problems in our cross-validation
procedure.

2.4.1 Drug sensitivity

Drug sensitivity datasets detail the effectiveness of cancer drugs on different cell lines
(cancer types in a tissue). By measuring the cell line activity at different concentrations

28 Background

of the drug, and fitting a line through these data points, we can summarise the
effectiveness of a drug on a cell line. This is usually measured either as IC50 or EC50

values. IC50 indicates the required drug concentration needed to reduce the activity of
a given cell line (cancer type in a tissue) by half. We thus measure when an undesired
effect has been inhibited by half. With EC50 values we measure the maximal (desired)
effect a drug can have on a cell line, and then measure the concentration of the drug
where we achieve half of this value. In both cases, a lower value is better.

There are four main publicly available drug sensitivity datasets, each detailing IC50 or
EC50 values, where some of the entries are missing. In particular, we consider:

• Genomics of Drug Sensitivity in Cancer (GDSC v5.0, Yang et al. [2013])—giving
the natural log of IC50 values for 139 drugs across 707 cell lines, with 80%
observed entries.

• Cancer Therapeutics Response Portal (CTRP v2, Seashore-Ludlow et al. [2015])—
giving EC50 values for 545 drugs across 887 cell lines, with 80% observed entries.

• Cancer Cell Line Encyclopedia (CCLE, Barretina et al. [2012])—giving both IC50

and EC50 values for 24 drugs across 504 cell lines, with 96% and 63% observed
entries respectively.

The problem of predicting drug sensitivity values is still an active and ongoing research
area. A significant number of papers have explored making predictions using machine
learning methods, such as random forests (Menden et al. [2013]), nearest neighbours
(Pal et al. [2012]), support vector machines (Dong et al. [2015]), non-probabilistic
matrix factorisation (Wang et al. [2017]), kernelised Bayesian matrix factorisation
(Ammad-ud din et al. [2014]), and sometimes providing a comparison between different
methods (De Niz et al. [2016]; Jang et al. [2014]). Furthermore, a predictive competition
(DREAM 7; NCI-DREAM Drug Sensitivity Prediction Challenge, Costello et al. [2014])
was organised in 2012 where a total of 44 teams developed algorithms and pipelines to
predict drug sensitivity values.

We use the four drug sensitivity datasets in Chapters 3, 4, and 5.

2.4 Collaborative filtering 29

2.4.2 Gene expression and methylation

The human genome can be seen as a large recipe book, with each gene giving the recipe
of one or more proteins, which in turn can catalyse chemical reactions in the body.
Diseases are often studied by measuring the change in what genes are being copied
(transcribed) and translated into proteins, as this can give an indication of what is
going wrong. Gene expression profiles measure how often each gene is being copied,
and differential gene expression profiles give the relative change, usually compared to
a healthy patient or cell line. We can measure this for different drugs, diseases, or
patients. Hence, gene expression profiles are usually given as a matrix relating genes
to one of these three entity types.

Methylation values indicate the number of methyl groups that bind to different regions of
the genes. There is the promoter-region of the gene (this region initiates transcription of
the gene), and the gene body (which encodes the protein). Promoter-region methylation
gives the amount of methylation in the former part of the gene, and gene body
methylation in the latter. These data can be given as a dataset in the same way that
gene expression can. The Cancer Genome Atlas (TCGA, Koboldt et al. [2012]) gives
promoter-region methylation, gene body methylation, and gene expression profiles for
254 healthy and tumour tissues, across 13966 genes. It is sometimes worth focusing on
a subset of the genes, for example those that are known to be important for cancer—
so-called cancer driver genes—for which the IntOGen database (Gonzalez-Perez et al.
[2013]) is a good resource.

We use the gene expression and methylation datasets in Chapters 4 and 5.

2.4.3 Movie ratings

The classic collaborative filtering problem is that of predicting the rating that a user
will give to an unseen movie, based on the other movies they have rated and other
users’ ratings of the movie. The Netflix Prize was a famous competition for movie
recommendations, with a grand prize of $1, 000, 000 for the winners. Compared to the
drug sensitivity datasets, which have hundreds of rows and columns, movie ratings
datasets tend to be much larger in size, relating thousands to tens of thousands of users
and movies, with roughly 100 million observed ratings. The values are also integer
ratings of 1 to 5 stars, rather than real-valued. The Netflix dataset is publicly available
(Bennett and Lanning [2007]). Similarly, the MovieLens datasets (Harper and Konstan

30 Background

[2015]) provide movie ratings, varying in size from 100, 000 observed entries across
thousands of entities (MovieLens 100K), to millions of entries (MovieLens 1M, 10M,
20M).

These datasets have become very popular for benchmarking matrix factorisation
methods; see for example Bouchard et al. [2013]; Hu et al. [2015]; Jing et al. [2015];
Kim and Choi [2014]; Lakshminarayanan et al. [2011]; Salakhutdinov and Mnih [2008].

We use the MovieLens 100K and 1M datasets in Chapter 4.

Chapter 3

Effects of inference methods in Bayesian

nonnegative matrix factorisation

The inference methods used to find a solution of a Bayesian matrix factorisation model
can have a great impact on the predictive performance of this model. For example, if a
method fits extremely well to the data, there is a good chance that the method overfits
to the noise in the data. As a result, our predictive performances become extremely
poor—as well as the factor analysis we could perform on the resulting matrices. A
key question that arises is: what exactly are the trade-offs between different matrix
factorisation inference approaches? In particular, which perform better in terms of
speed of convergence, predictive performance, and robustness to noise and sparsity?

In this chapter we answer these questions by performing a thorough empirical study to
explore these trade-offs between non-probabilistic and Bayesian inference approaches,
for both matrix factorisation and tri-factorisation. We consider the popular non-
probabilistic matrix factorisation model from Lee and Seung [2000], and the Bayesian
nonnegative matrix factorisation model from Schmidt et al. [2009]. The latter uses
exponential priors to enforce nonnegativity, giving Gibbs sampling algorithms for
inference. They also introduced a maximum-a-posteriori algorithm called iterated
conditional modes (ICM). Both of these approaches rely on a sampling procedure to
eventually converge to draws of the desired distribution—in this case the posterior of
the matrices. This means that we need to inspect the values of the draws to determine
when our method has converged (burn-in), and then take additional draws to estimate
the posteriors.

32 Effects of inference methods in Bayesian nonnegative matrix factorisation

We also introduce a fourth inference technique for the Bayesian nonnegative models,
based on variational Bayesian inference (VB), where instead of relying on random draws
we obtain deterministic convergence to a solution. Some papers (for instance Salimans
et al. [2015]) assert that variational inference gives faster but less accurate inference
than sampling methods like Gibbs. One study investigating this for latent dirichlet
allocation can be found in Asuncion et al. [2009], and an arXiv paper explores the
effects on the sampling quality for Bayesian nonnegative matrix factorisation (Masood
et al. [2016]). However, this chapter is the first study giving a thorough empirical study
of the effects on predictive performance for matrix factorisation.

Furthermore, we extend the Bayesian nonnegative matrix factorisation model to matrix
tri-factorisation. For this model the variational Bayesian inference has a nontrivial
element due to the extra dependencies created by the extra matrix. We also add
automatic relevance determination (ARD) to both models, which could eliminate the
need for model selection.

We perform extensive experiments on both artificial and real-world datasets to explore
the trade-offs between speed of inference, and robustness to sparsity and noise for
predicting missing values. We show that Gibbs sampling is the most robust, while VB
and ICM give significant run-time speedups but sacrifice some robustness, and that non-
probabilistic inference tends to be fast but not robust. Finally, we show that ARD is
an effective way of performing automatic model selection, and increases the robustness
of matrix factorisation models if they are given the wrong dimensionality—even though
it does not improve robustness to noise and sparsity.

Although we study a specific Bayesian nonnegative matrix factorisation and tri-
factorisation model, we believe that many of our findings and insights apply to the
broad range of other matrix factorisation and tri-factorisation methods, as well as
tensor and Tucker decomposition methods—their three-dimensional extensions. In
Chapter 4 we provide a thorough exploration of the trade-offs between different prior
and likelihood choices.

There are also many other inference techniques possible—to name a few: expectation
propagation, Hamiltonian Monte Carlo, moment matching—but we believe the four that
we have chosen are representative of the wide range of possible inference approaches: a
non-probabilistic (maximum likelihood) approach; a maximum a posteriori inference; a
fully Bayesian MCMC method; and a deterministic fully Bayesian inference approach.

3.1 Models 33

In summary, the contributions of this chapter are as follows:

• Extending the Bayesian nonnegative matrix factorisation model to tri-factorisation,
and deriving Gibbs sampling and iterated conditional modes algorithms for this
model.

• Introducing a new variational Bayesian inference algorithm for both of these
models.

• Providing extensive experiments comparing four different inference approaches
for the models in terms of speed of convergence, predictive performance, and
robustness to noise and sparsity.

• Extending the models with automatic relevance determination, demonstrating
the effectiveness of automatic relevance determination for model selection, and
showing that it does not improve robustness to noise and sparsity.

• Provide a comparison of matrix factorisation and tri-factorisation, showing that
even though the former converges faster and fits more closely to the training
data, there is little to no difference in performance and robustness.

3.1 Models

3.1.1 Nonnegative matrix factorisation

We use the Bayesian nonnegative matrix factorisation model of Schmidt et al. [2009] as
our starting point. It was introduced in Section 2.3.3, but we review it briefly below.

Nonnegative matrix factorisation (NMF) can be formulated as decomposing a matrix
R ∈ RI×J into two latent matrices U ∈ RI×K

+ and V ∈ RJ×K
+ , whose values are

constrained to be positive. In other words, solving R = UV T + E, where noise is
captured by matrix E ∈ RI×J . The dataset R need not be complete: the indices
of observed entries can be represented by the set Ω = {(i, j) | Rij is observed}, and
these entries can then be predicted by UV T . We take a probabilistic approach to this
problem, by expressing a likelihood function for the observed data and treating the
latent matrices as random variables. As the likelihood we assume each value of R comes
from the product of U and V , with some Gaussian noise added of precision τ . We
place exponential priors over U and V , so that each element in U and V is assumed to

34 Effects of inference methods in Bayesian nonnegative matrix factorisation

Matrix factorisation

≈

Matrix tri-factorisation

≈
?

?

?

?

?

?

?

?

?

?

Figure 3.1 Overview of matrix factorisation and matrix tri-factorisation methods,
with missing values indicated as question marks. Repeated for clarity from Section 2.3.

be independently exponentially distributed with rate parameters λU , λV > 0. Finally,
for the precision τ we use a Gamma distribution with shape ατ > 0 and rate βτ > 0,
giving

Rij ∼ N (Rij|UiVj, τ
−1) τ ∼ G(τ |ατ , βτ) Uik ∼ E(Uik|λU) Vjk ∼ E(Vjk|λV).

3.1.2 Nonnegative matrix tri-factorisation

The problem of nonnegative matrix tri-factorisation (NMTF) can be formulated sim-
ilarly to that of nonnegative matrix factorisation. We now decompose R into three
matrices F ∈ RI×K

+ , S ∈ RK×L
+ , G ∈ RJ×L

+ , so that R = FSGT + E. We can
extend the Bayesian nonnegative matrix factorisation to tri-factorisation using the
prior distributions, again using a Gaussian likelihood and exponential priors for the
latent matrices,

Rij ∼ N (Rij|FiSGj, τ
−1) τ ∼ G(τ |ατ , βτ)

Fik ∼ E(Fik|λF) Skl ∼ E(Skl|λS) Gjl ∼ E(Gjl|λG).

3.1.3 Automatic relevance determination

Automatic relevance determination (ARD) is a Bayesian prior which helps perform
automatic model selection. It works by replacing the individual λ parameters in the
exponential priors for the factor matrices by one that is shared by all entries in the
same column (in other words, shared for each factor). We then place a further Gamma
prior over all these λk parameters. This has the advantage that factors that are used
by only a few datapoints will be pushed further to zero and made inactive. We will see
in the experiments that this helps massively with model selection. In Section 2.3.7 we
showed how this can be done for real-valued matrix factorisation with Gaussian priors

3.2 Inference approaches 35

RijUik

λk

Vjk

τατ βτ

α0 β0

i=1..I j=1..J

k=1..K

RijFik

λFk

Skl

Gjl

λGl

τ

λSkl

ατ βτ

α0

β0

α0

β0

i=1..I j=1..J

k=1..K l=1..L

Figure 3.2 Graphical model representation of Bayesian nonnegative matrix factori-
sation (left) and tri-factorisation (right), with ARD. The variables are introduced in
Section 3.1.

over the factor matrices. For NMF it can be added it similarly, changing the priors to

Uik ∼ E(Uik|λk) Vjk ∼ E(Vjk|λk) λk ∼ G(λk|α0, β0).

For NMTF we modify our model by employing two ARD’s: one over the F matrix
(λFk) and another for G (λGl), with the S matrix remaining the same,

Fik ∼ E(Fik|λFk) λFk ∼ G(λFk |α0, β0) Gjl ∼ E(Gjl|λGl) λGl ∼ G(λGl |α0, β0).

The graphical models for Bayesian NMF and NMTF, with ARD, are given in Figure
3.2.

3.2 Inference approaches

In this section we give details for four different types of inference for nonnegative
matrix factorisation (NMF) and tri-factorisation (NMTF) models. Non-probabilistic
inference gives a point estimate solution. Gibbs sampling and variational Bayesian
inference both give a full posterior estimate, whereas iterated conditional modes gives
a maximum a posteriori (MAP) point estimate.

36 Effects of inference methods in Bayesian nonnegative matrix factorisation

3.2.1 Non-probabilistic inference

We use the popular model in Lee and Seung [2000] for the non-probabilistic inference,
which we reviewed in Section 2.3.1, but extend here with missing values. Their
algorithm relies on multiplicative updates, where at each iteration the values in the U

and V matrices are updated using the following equations,

Uik = Uik ·
∑

j∈Ωi
RijVjk/(UiVj)∑
j∈Ωi

Vjk
Vjk = Vjk ·

∑
i∈Ωj

RijUik/(UiVj)∑
i∈Ωj

Uik

,

where Ω1
i = {j | (i, j) ∈ Ω} and Ω2

j = {i | (i, j) ∈ Ω}. These updates can be shown to
minimise the I-divergence (generalised KL-divergence),

D(R||UV T) =
∑

(i,j)∈Ω

(
Rij log

Rij

(UV T)ij
−Rij + (UV T)ij

)
.

Yoo and Choi [2009] extended this approach to NMTF, giving the following multiplica-
tive updates, with S·l denoting the lth column of S,

Fik = Fik ·
∑

j∈Ωi
Rij(SkGj)/(FiSGj)∑

j∈Ωi
(SkGj)

Gjl = Gjl ·
∑

i∈Ωj
Rij(FiS·l)/(FiSGj)∑

i∈Ωj
(FiS·l)

Skl = Skl ·
∑

(i,j)∈ΩRijFikGjl/(FiSGj)∑
(i,j)∈Ω FikGjl

,

which minimises the I-divergence

D(R||FSGT) =
∑

(i,j)∈Ω

(
Rij log

Rij

(FSGT)ij
−Rij + (FSGT)ij

)
.

3.2.2 Gibbs sampling

Bayesian nonnegative matrix factorisation

Schmidt et al. [2009] introduced a Gibbs sampling algorithm for approximating the
posterior distribution. Recall from Section 2.2.1 that Gibbs sampling works by sampling
new values for each parameter θi from its marginal distribution given the current values
of the other parameters θ−i, and the observed data D. For the NMF model this means

3.2 Inference approaches 37

that we need to be able to draw from the following distributions:

p(τ |U ,V ,λ, D) p(λk|τ,U ,V , D) p(Uik|τ,U−ik,V ,λ, D) p(Vjk|τ,U ,V−jk,λ, D)

where U−ik denotes all elements in U except Uik, and similarly for V−jk. λ is a
vector including all λk values. Using Bayes theorem we obtain the following posterior
distributions, where T N is a truncated normal distribution,

p(τ |U ,V ,λ, D) = G(τ |α∗
τ , β

∗
τ) p(Uik|τ,U−ik,V ,λ, D) = T N (Uik|µU

ik, τ
U
ik)

p(λk|τ,U ,V , D) = G(λk|α∗
k, β

∗
k) p(Vjk|τ,U ,V−jk,λ, D) = T N (Vjk|µV

jk, τ
V
jk)

We show the derivation for Uik below.

p(Uik|τ,R,U−ik,V ,λ) ∝ p(R|τ,U ,V) · p(Uik|λk)
∝
∏
j∈Ω1

i

N (Rij|Ui · Vj, τ
−1) · E(Uik|λk)

∝ exp

−τ
2

∑
j∈Ω1

i

(Rij −UiVj)
2

 · exp {−λkUik} · u(x)

∝ exp

−U
2
ik

2

τ ∑
j∈Ω1

i

V 2
jk


+Uik

−λk + τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

 · u(x)

∝ exp

{
−τ

U
ik

2
(Uik − µU

ik)
2

}
· u(x)

∝ T N (Uik|µU
ik, τ

U
ik).

The parameter values for the NMF Gibbs sampling algorithm are given below. The
Gibbs sampling algorithm then simply draws a new value for each random variable in
turn from these conditional posterior distributions. It takes a while to converge to the
right posterior parameter space, so we need to remove the first n samples (burn-in),
and since consecutive draws are correlated we only use every ith value (thinning).

α∗
τ = ατ +

|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

(Rij −UiVj)
2

38 Effects of inference methods in Bayesian nonnegative matrix factorisation

α∗
k = α0 + I + J β∗

k = β0 +
I∑

i=1

Uik +
J∑

j=1

Vjk

τUik = τ
∑
j∈Ω1

i

V 2
jk µU

ik =
1

τUik

−λk + τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk


τVjk = τ

∑
i∈Ω2

j

U2
ik µV

jk =
1

τVjk

−λk + τ
∑
i∈Ω2

j

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Uik

 .

Bayesian nonnegative matrix tri-factorisation

For the NMTF Gibbs sampling algorithm we need to sample from the following
posteriors, where λF is a vector including all λFk values, λF

−k excludes λFk , and similarly
for λG.

p(τ |F ,S,G,λF ,λG, D) = G(τ |α∗
τ , β

∗
τ)

p(λFk |F ,S,G,λF
−k,λ

G, D) = G(λFk |αF∗
k , βF∗

k)

p(λGl |F ,S,G,λF ,λG
−l, D) = G(λGl |αG∗

l , βG∗
l)

p(Fik|τ,F−ik,S,G,λ
F ,λG, D) = T N (Fik|µF

ik, τ
F
ik)

p(Skl|τ,F ,S−kl,G,λ
F ,λG, D) = T N (Skl|µS

kl, τ
S
kl)

p(Gjl|τ,F ,S,G−jl,λ
F ,λG, D) = T N (Gjl|µG

jl, τ
G
jl),

with

α∗
τ = ατ +

|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

(Rij − Fi · S ·Gj)
2

αF∗
k = α0 + I βF∗

k = β0 +
I∑

i=1

Fik

αG∗
l = α0 + J βG∗

l = β0 +
J∑

j=1

Gjl

τFik = τ
∑
j∈Ω1

i

(Sk ·Gj)
2 µF

ik =
1

τFik

−λFk + τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

L∑
l=1

Fik′Sk′lGjl

)
(Sk ·Gj)


τSkl = τ

∑
(i,j)∈Ω

F 2
ikG

2
jl µS

kl =
1

τSkl

−λS + τ
∑

(i,j)∈Ω

Rij −
∑

(k′,l′)̸=(k,l)

Fik′Sk′l′Gjl′

FikGjl



3.2 Inference approaches 39

τGjl = τ
∑
i∈Ω2

j

(Fi · S·,l)
2 µG

jl =
1

τGjl

−λGl + τ
∑
i∈Ω2

j

(
Rij −

K∑
k=1

∑
l′ ̸=l

FikSkl′Gjl′

)
(Fi · S·,l)

 .

3.2.3 Iterated conditional modes

The iterated conditional models (ICM) algorithm for inference in the NMF model was
also given in Schmidt et al. [2009]. This algorithm works very similarly to the Gibbs
sampler, but instead of randomly drawing a value from the conditional posteriors, we
take the mode at each iteration. This gives a maximum a posteriori (MAP) point
estimate θMAP = maxθ p(θ|D), rather than a full posterior distribution. For random
variables X ∼ G(a, b), Y ∼ T N (µ, τ), the modes are a−1

b
and max (0, µ), respectively.

In practice, the ICM methods often converge to solutions where multiple columns in
the matrices are all zeros, leading to poor approximations. We have addressed this
issue by resetting zeros to a small positive value like 0.1 at each iteration.

3.2.4 Variational Bayesian inference

Variational Bayesian inference (VB) has been used for other matrix factorisation models
before (Gönen [2012]), but not for the nonnegative model in this paper. We therefore
now introduce a new VB algorithm for our model. Like Gibbs sampling, VB is a way
to approximate the true posterior p(θ|D). Recall from Section 2.2.2 that the idea
behind VB is to introduce an approximation q(θ) to the true posterior that is easier to
compute, and to make our variational distribution q(θ) as similar to p(θ|D) as possible
(as measured by the KL-divergence). We make the mean-field assumption, so that the
variational distribution q(θ) factorises completely and all variables are independent in
the approximation of the posterior, q(θ) =

∏
θi∈θ q(θi).

Bayesian nonnegative matrix factorisation

We can derive the forms of q(θi) using the expression given in Equation 2.2.2, which
turn out to be the same as the posterior sampling distributions in the Gibbs sampling
algorithms,

q(τ) = G(τ |α∗
τ , β

∗
τ) q(λk) = G(λk|α∗

k, β
∗
k)

q(Uik) = T N (Uik|µU
ik, τ

U
ik) q(Vjk) = T N (Vjk|µV

jk, τ
V
jk).

40 Effects of inference methods in Bayesian nonnegative matrix factorisation

Variational Bayesian inference works by iteratively updating the posterior approxima-
tions q(θi) to all the random variables θi in the model. We do this by computing the
variational parameters above for each variable, and then updating the expectation and
variance with respect to the variational approximation q.

The derivation for the variational parameter values for Uik is given below. We use
f̃(X) as a shorthand for Eq [f(X)], where X is a random variable and f is a function
over X.

q∗(Uik) ∝ exp
{
Eq(θ−Uik

) [log p(D|θ) + log p(θ)]
}

∝ exp

Eq(θ−Uik
)

∑
j∈Ω1

i

log p(Rij|U ,V) + log p(Uik|λk)


∝ exp

Eq(θ−Uik
)

∑
j∈Ω1

i

log

[√
τ

2π
exp

{
−τ
2
(Rij −UiVj)

2
}]

+ log [λk exp {−λkUik}]
]}

· u(x)

∝ exp

Eq(θ−Uik
)

∑
j∈Ω1

i

−τ
2
(Rij −UiVj)

2 − λkUik

 · u(x)

∝ exp

−U
2
ik

2

τ̃ ∑
j∈Ω1

i

Ṽjk
2


+Uik

−λ̃k + τ̃
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Ũik′ Ṽjk′

)
Ṽjk

 · u(x)

∝ exp

{
−τ

U
ik

2
(Uik − µU

ik)
2

}
· u(x)

∝ T N (Uik|µU
ik, τ

U
ik).

Note that we use the expectation of the other variables in these updates. The expecta-
tion and variance for random variables X ∼ G(a, b) and Y ∼ T N (µ, τ) are

X̃ =
a

b
Ỹ = µ+

1√
τ
λ
(
−µ√τ

)
Var [Y] =

1

τ

[
1− δ

(
−µ√τ

)]
,

where ψ(x) = d
dx

log Γ(x) is the digamma function, λ(x) = ϕ(x)/[1 − Φ(x)], and
δ(x) = λ(x)[λ(x)− x]. ϕ(x) = 1√

2π
exp{−1

2
x2} is the density function of N (0, 1).

3.2 Inference approaches 41

All the variational parameter values for NMF are given below. In the code implemen-
tation of these updates we make use of the identity X̃2 = X̃2 + Varq [X]. Finally, note

that Eq [(Rij −UiVj)
2] =

(
Rij −

∑K
k=1 Ũik Ṽjk

)2
+
∑K

k=1

(
Ũ2
ikṼ

2
jk − Ũik

2
Ṽjk

2
)
.

α∗
τ = ατ +

|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

Eq

[
(Rij −UiVj)

2
]

α∗
k = α0 + I + J β∗

k = β0 +
I∑

i=1

Ũik +
J∑

j=1

Ṽjk

τUik = τ̃
∑
j∈Ω1

i

Ṽ 2
jk µU

ik =
1

τUik

−λ̃k + τ̃
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Ũik′ Ṽjk′

)
Ṽjk


τVjk = τ̃

∑
i∈Ω2

j

Ũ2
ik µV

jk =
1

τVjk

−λ̃k + τ̃
∑
i∈Ω2

j

(
Rij −

∑
k′ ̸=k

Ũik′ Ṽjk′

)
Ũik

 .

We can see the similarity with the Gibbs sampling algorithm: the posterior parameter
values are identical, except in this algorithm we use the expectation of random variables
(as opposed to their current draw value), and the expectation term Eq [(Rij −UiVj)

2]

yields an additional variance term.

Bayesian nonnegative matrix tri-factorisation

Our VB algorithm for NMTF follows the same steps as for NMF, but now has an
added complexity due to the term Eq [(Rij − FiSGj)

2]. For NMF all covariance terms
for k′ ≠ k are zero due to the factorisation in q, but we now obtain some additional
non-zero covariance terms,

Eq

[
(Rij − FiSGj)

2
]
=

(
Rij −

K∑
k=1

L∑
l=1

F̃ikS̃klG̃jl

)2

+
K∑
k=1

L∑
l=1

Varq [FikSklGjl] (3.1)

+
K∑
k=1

L∑
l=1

∑
k′ ̸=k

Cov [FikSklGjl, Fik′Sk′lGjl] (3.2)

+
K∑
k=1

L∑
l=1

∑
l′ ̸=l

Cov [FikSklGjl, FikSkl′Gjl′] . (3.3)

42 Effects of inference methods in Bayesian nonnegative matrix factorisation

The above variance and covariance terms (3.1, 3.2, 3.3) are equal to the following,
respectively.

F̃ 2
ikS̃

2
klG̃

2
jl − F̃ik

2
S̃kl

2
G̃jl

2
, Varq [Fik] S̃klG̃jlS̃kl′G̃jl′ , F̃ikS̃klVarq [Gjl] F̃ik′S̃k′l.

We have the following approximations to the posteriors for the NMTF Variational
Bayes algorithm:

q(τ) = G(τ |α∗
τ , β

∗
τ) q(λFk) = G(λFk |αF∗

k , βF∗
k) q(λGl) = G(λGl |αG∗

l , βG∗
l)

q(Fik) = T N (Fik|µF
ik, τ

F
ik) q(Skl) = T N (Skl|µS

kl, τ
S
kl) q(Gjl) = T N (Gjl|µG

jl, τ
G
jl),

with

α∗
τ = ατ +

|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

Eq

[
(Rij − FiSGj)

2
]

αF∗
k = α0 + I βF∗

k = β0 +
I∑

i=1

F̃ik

αG∗
l = α0 + J βG∗

l = β0 +
J∑

j=1

G̃jl

τFik = τ̃
∑
j∈Ω1

i

(L∑
l=1

S̃klG̃jl

)2

+
L∑
l=1

(
S̃2
klG̃

2
jl − S̃kl

2
G̃jl

2
)

µF
ik =

1

τFik

−λ̃Fk + τ̃
∑
j∈Ω1

i

[(
Rij −

∑
k′ ̸=k

L∑
l=1

F̃ik′S̃k′lG̃jl

)
L∑
l=1

S̃klG̃jl

−
L∑
l=1

S̃klVarq [Gjl]
∑
k′ ̸=k

F̃ik′S̃k′l

])
τSkl = τ̃

∑
(i,j)∈Ω

F̃ 2
ikG̃

2
jl

µS
kl =

1

τSkl

−λSkl + τ̃
∑

(i,j)∈Ω

Rij −
∑

(k′,l′)̸=(k,l)

F̃ik′S̃k′l′G̃jl′

 F̃ikG̃jl

−F̃ikVarq [Gjl]
∑
k′ ̸=k

F̃ik′S̃k′l − Varq [Fik] G̃jl

∑
l′ ̸=l

S̃kl′G̃jl′

])

τGjl = τ̃
∑
i∈Ω2

j

(K∑
k=1

F̃ikS̃kl

)2

+
K∑
k=1

(
F̃ 2
ikS̃

2
kl − F̃ik

2
S̃kl

2
)

3.3 Implementation details 43

µG
jl =

1

τGjl

−λ̃Gl + τ̃
∑
i∈Ω2

j

[(
Rij −

K∑
k=1

∑
l′ ̸=l

F̃ikS̃kl′G̃jl′

)
K∑
k=1

F̃ikS̃kl

−
K∑
k=1

Varq [Fik] S̃kl

∑
l′ ̸=l

S̃kl′G̃jl′

])
.

Again note the similarity with the posterior parameter values for the Gibbs sampler for
NMTF. However, the VB algorithm now has several additional terms, due to the extra
dependencies (variance and covariance terms) that come with the tri-factorisation.

3.3 Implementation details

3.3.1 Software implementation

Implementations of all methods, the datasets, and experiments described in the next
section, are available at https://github.com/ThomasBrouwer/BNMTF_ARD. We
used the Python language. The numpy package was used for fast matrix operations,
and for random draws of the truncated normal distribution we used the Python package
rtnorm by C. Lassner (http://miv.u-strasbg.fr/mazet/rtnorm/), giving more efficient
draws than the standard libraries and dealing with rounding errors.

The mean and variance of the truncated normal involve operations prone to numerical
errors when µ takes high negative values. To deal with this we observe that when
µτ ≪ 0 the truncated normal distribution approximates an exponential one with rate
|µτ |, and therefore has mean 1/|µτ | and variance 1/|µτ |2.

All experiments in Section 3.5 were run on a MacBook Pro laptop, with 2.2 GHz Intel
Core i7 processor, 16 GB 1600 MHz DDR3 memory, and an Intel Iris Pro 1536 MB
Graphics card.

3.3.2 Computational complexity

Each of the four approaches have the same time complexities, but vary in how efficiently
the updates can be computed, and how quickly they converge. The time complexity
per iteration for NMF is O(IJK2), and O(IJ(K2L+KL2)) per iteration for NMTF.
However, the updates in each column of U ,V ,F ,G are independent of each other and
can therefore be updated in parallel. This means we can joinly compute and update the
(parameter values of the) columns using a single matrix operation. Modern computer

https://github.com/ThomasBrouwer/BNMTF_ARD
http://miv.u-strasbg.fr/mazet/rtnorm/

44 Effects of inference methods in Bayesian nonnegative matrix factorisation

architectures can exploit this using vector processors, leading to a great speedup. For
the Gibbs sampler and ICM algorithms we can also draw the new values in parallel.

Furthermore, after the VB algorithm converges we have our approximation to the
posterior distributions immediately, whereas with Gibbs and ICM we need to obtain
further draws after convergence and use a thinning rate to obtain an accurate MAP
(ICM) or posterior (Gibbs) estimate. This deterministic behaviour of VB and NP
makes them easier to use. Although additional variables need to be stored to represent
the posteriors, this does not result in a worse space complexity, as the Gibbs sampler
needs to store draws over time.

3.3.3 Initialisation

Initialising the parameters of the models can vastly influence the quality of convergence.
This can be done by using the hyperparameters (λU , λV , λF , λS, λG, α, β, α0, β0, αF

0 ,
βF
0 , αG

0 , βG
0) to set the initial values to the mean of the priors of the model, or using

random draws. We found that random draws tend to give faster and better convergence
than the expectation. For matrix tri-factorisation we can also initialise F by running
the K-means clustering algorithm on the rows as datapoints, and similarly G for the
columns, as suggested by Ding et al. [2006]. For the VB and NP algorithms we then
set the µ parameters to the cluster indicators, and for Gibbs and ICM we set the
matrices to the cluster indicators, plus 0.2 for smoothing. We found that this improved
the convergence as well, with S initialised using random draws. These findings are
confirmed by the initialisation experiment in the last chapter (5.6.1).

3.4 Data preprocessing

We consider a total of six different datasets: two synthetic ones (randomly generated
from the NMF and NMTF model distributions), and four drug sensitivity datasets.

For the synthetic datasets we generated the latent matrices using unit mean exponential
distributions, and adding zero mean unit variance Gaussian noise to the resulting
product. For the matrix factorisation model we used I = 100, J = 80, K = 10, and for
the matrix tri-factorisation I = 100, J = 80, K = 5, L = 5. These datasets perfectly
satisfy the Bayesian models’ priors and likelihood choice, and therefore we would expect
Gibbs sampling, ICM, and VB to do especially well on them.

3.5 Experiments 45

Table 3.1 Overview of the four drug sensitivity datasets, giving the number of cell
lines (rows), drugs (columns), and the fraction of entries that are observed.

Dataset Cell lines Drugs Fraction observed

GDSC IC50 707 139 0.806
CTRP EC50 887 545 0.801
CCLE IC50 504 24 0.965
CCLE EC50 504 24 0.630

0 20 40 60 80 100

(a) GDSC IC50

0 20 40 60 80 100

(b) CTRP EC50

0 2 4 6 8

(c) CCLE IC50

0 2 4 6 8 10

(d) CCLE EC50

Figure 3.3 Plots of the distribution of values in the drug sensitivity datasets, after
capping the extremely high values in the CTRP EC50 and GDSC IC50 datasets to 100.

We considered the four drug sensitivity datasets introduced in Section 2.4.1, each
detailing the effectiveness (IC50 or EC50 values) of a range of drugs on different cell
lines for cancer and tissue types, where some of the entries are missing. In particular,
we used the Genomics of Drug Sensitivity in Cancer (GDSC v5.0, Yang et al. [2013],
IC50), Cancer Therapeutics Response Portal (CTRP v2, Seashore-Ludlow et al. [2015],
EC50), and Cancer Cell Line Encyclopedia (CCLE, Barretina et al. [2012], both IC50

and EC50) datasets. The values in the CCLE datasets were in the range [0,8] for
IC50, and [0,10] for EC50. The CTRP values were all nonnegative, with some very
high values, so we capped them at 100. For the GDSC dataset we undid the natural
log transform by taking the exponent, making all values nonnegative, and then also
capped high values at 100. For this dataset we also had two cell lines with only one
and two observed entries, so we filtered them out.

A summary of the datasets can also be found in Table 3.1. Distributions of the values
are plotted in Figure 3.3.

3.5 Experiments

To demonstrate the trade-offs between the four inference methods presented, we con-
ducted experiments on the two synthetic and four real-world drug sensitivity datasets.

46 Effects of inference methods in Bayesian nonnegative matrix factorisation

We compare the convergence speeds, robustness to noise, robustness to sparsity, ef-
fectiveness of the ARD for model selection, and sensitivity to the hyperparameter
values. At the end of each section we provide a short summary of our findings for that
experiment.

For all models we used weak priors (λ = 0.1, ατ = βτ = α0 = β0 = 1). Unless explicitly
stated otherwise, we used the models without ARD. We generally ran each algorithm
for 1000 iterations (burn-in 800, thinning rate 5), and sometimes longer, to ensure all
models properly converged.

3.5.1 Convergence and runtime speed

We firstly measured the convergence speeds of the different inference methods on the
datasets, using the versions of NMF and NMTF without ARD. Convergence plots on
all datasets are given in Figure 3.4, plotting the error (mean squared error) on the
training data against the number of iterations taken, for the NMF (left column) and
NMTF (right column) models. For the synthetic data we used the correct number of
factors, and for the drug sensitivity datasets we used K = 20 for NMF and K = L = 10

for NMTF. We ran each method 20 times, taking the average training errors and
timestamps.

Although the results are empirical, they illustrate that different inference approaches
have different convergence speeds and depths (the final training error reached). On
the synthetic data (left column), VB is the fastest against iterations, followed by ICM
and Gibbs, and finally NP. All methods reach the optimal MSE of 1 (which is the
level of noise added). On the real-world drug sensitivity datasets, all methods reach
their lowest depth at roughly the same number of iterations. However, ICM and NP
generally converge much deeper than VB and Gibbs. Although this initially seems
good, this is a sign of overfitting to the training data, and can lead to poor predictions
for unseen data. We will see this later in the noise and sparsity experiments (Sections
3.5.3 and 3.5.4), where VB and Gibbs are more robust than ICM and NP.

The average time taken per iteration for each of the methods on the five datasets
are given in Table 3.2, which demonstrate that the ICM and NP methods can be
implemented much more efficiently than the fully Bayesian models. The NP approach
takes the least amount of time per iteration, followed by ICM, VB, and then Gibbs.
We also plotted the convergence against time taken (in seconds), which is given in

3.5 Experiments 47

(a) NMF, synthetic (b) NMTF, synthetic

(c) NMF, GDSC (d) NMTF, GDSC

(e) NMF, CTRP (f) NMTF, CTRP

(g) NMF, CCLE IC50 (h) NMTF, CCLE IC50

(i) NMF, CCLE IC50 (j) NMTF, CCLE IC50

Figure 3.4 Convergence of the different inference approaches on the synthetic and
drug sensitivity datasets, measuring the training data fit (mean square error) against
iterations, for NMF (left column) and NMTF (right column).

48 Effects of inference methods in Bayesian nonnegative matrix factorisation

Table 3.2 Average time (in seconds) taken per iteration for the four Bayesian matrix
factorisation and tri-factorisation inference methods, on the synthetic and four drug
sensitivity datasets.

Method Synthetic GDSC IC50 CTRP EC50 CCLE IC50 CCLE EC50

NMF VB 0.015 0.125 0.387 0.067 0.064
NMF Gibbs 0.024 0.251 0.655 0.175 0.143
NMF ICM 0.003 0.047 0.279 0.012 0.012
NMF NP 0.002 0.042 0.268 0.010 0.013
NMTF VB 0.019 0.298 1.703 0.114 0.111
NMTF Gibbs 0.014 0.264 1.557 0.107 0.107
NMTF ICM 0.005 0.173 1.259 0.035 0.034
NMTF NP 0.004 0.124 0.697 0.026 0.030

Figure 3.5. Note the weird fitting behaviour of NP-NMF on the synthetic data, which
occasionally happens.

Finally, note that the matrix factorisation models generally converge deeper than the
matrix tri-factorisation ones (for example on GDSC, NMF reaches a MSE of 450,
whereas NMTF only gets to 550).

Summary: ICM and NP give the fastest convergence, followed by VB, and then Gibbs.
ICM and NP converge the deepest, followed by Gibbs, and then VB. Finally, NMF
converges deeper than NMTF.

3.5.2 Cross-validation performance

Next we measured the cross-validation performances of the methods on the four drug
sensitivity datasets. For each method we performed 10-fold nested cross-validation
(nested to pick the dimensionality K; for simplicity we used L = K for the NMTF
models), giving the average performance in Figure 3.6. For the ARD models we did not
need to pick the dimensionality, instead using K = 20 for NMF, and K = 10, L = 10

for NMTF.

We can see that most models perform very similarly, with little to no difference between
the matrix factorisation and tri-factorisation versions. Using the ARD models generally
works equally well as without ARD, but with the added benefit of not having to run
nested cross-validation to choose the dimensionality, reducing the running time from
hours to minutes. We will see in Section 3.5.5 that the ARD is actually very efficient

3.5 Experiments 49

(a) NMF, synthetic (b) NMTF, synthetic

(c) NMF, GDSC (d) NMTF, GDSC

(e) NMF, CTRP (f) NMTF, CTRP

(g) NMF, CCLE IC50 (h) NMTF, CCLE IC50

(i) NMF, CCLE EC50 (j) NMTF, CCLE EC50

Figure 3.5 Convergence of the different inference approaches on the synthetic and
drug sensitivity datasets, measuring the training data fit (mean square error) against
time taken (in seconds), for NMF (top row) and NMTF (bottom row).

50 Effects of inference methods in Bayesian nonnegative matrix factorisation

Figure 3.6 10-fold cross-validation results (mean squared error) for drug sensitivity
predictions on each of the four datasets. Each boxplot gives the mean and standard
deviation.

at turning off unnecessary factors and reducing overfitting. However, sometimes the
ARD does not work as desired and overfits (for example VB NMF on CTRP EC50,
ICM NMF on CCLE IC50, and Gibbs NMF on CCLE EC50).

We can also see that the VB and Gibbs models often do better than the NP and
ICM versions, such as on the CCLE IC50 and GDSC IC50 datasets. On the CTRP
and CCLE EC50 datasets the NP NMF model overfits massively on some of the folds,
leading to extremely high predictive errors.

In addition to the predictive performances, we give the most common dimensionalities
found in nested cross-validation in Table 3.3. This is used for the sparsity tests in
Section 3.5.4, but also provides us with some interesting insights. First of all, note
that the best dimensionality is roughly the same for NMF and NMTF. Furthermore,
VB and Gibbs have the highest values, because they overfit less when given more
factors and can therefore leverage more of them. Finally, the CCLE IC50 dataset has
dimensionality 1 for all methods, indicating that no sensible predictions can be made
other than a weighted row and column average. We see this in the crossvalidation
results as well, where most models achieve identical performances.

Summary: the fully Bayesian models tend to outperform the NP and ICM ones; the
ARD models are often as efficient as the non-ARD ones using nested cross-validation;

3.5 Experiments 51

Table 3.3 Average nested cross-validation dimensionality (K for NMF,K,L for NMTF)
of the inference approaches on the four drug sensitivity datasets.

Method GDSC IC50 CTRP EC50 CCLE IC50 CCLE EC50

NMF VB 7 6 5 1
NMF Gibbs 8 7 5 1
NMF ICM 5 4 4 1
NMF NP 6 3 1 1
NMTF VB 5,5 9,9 7,7 1,1
NMTF Gibbs 10,10 8,8 7,7 1,1
NMTF ICM 6,6 6,6 4,4 1,1
NMTF NP 6,6 4,4 1,1 1,1

and there is little to no difference between the matrix factorisation and tri-factorisation
models.

3.5.3 Noise test

We conducted a noise test on the synthetic data, to measure the robustness of the
different methods. We added different levels of Gaussian noise to the data, with the
noise-to-signal ratio being given by the ratio of the variance of the Gaussian noise we
add, to the variance of the generated data. For each noise level we split the datapoints
randomly into ten folds, and measure the predictive performance of the models on one
held-out set. The results are given in Figures 3.7(a) (NMF) and 3.7(b) (NMTF), where
we can see that the non-probabilistic approach starts overfitting heavily at low levels
of noise, whereas the fully Bayesian approaches achieve the best possible predictive
performances even at high levels of noise. ICM only does slightly worse in the very
noisy cases. Note that the addition of ARD to the models does not make a difference
for the robustness of the Bayesian models.

Summary: VB, Gibbs, and ICM are all very robust to noise; NP starts overfitting
very quickly; ARD makes no difference for robustness.

3.5.4 Sparse predictions

We furthermore measured the robustness to sparsity of the data for each inference
technique. For different fractions of missing values, varying between 10% and 90%, we
randomly split the data ten times into train and test sets using those proportions, and
measure the average predictive error. We conducted this experiment on the synthetic

52 Effects of inference methods in Bayesian nonnegative matrix factorisation

(a) NMF (b) NMTF

Figure 3.7 Noise test performances on the drug sensitivity datasets, measured by
average predictive performance on test set (mean square error) for different noise-to-
signal ratios.

data, using the true dimensionality K (and L) for each model. We also performed it
on the four drug sensitivity datasets, using the most common dimensionalities in the
cross-validation from Section 3.5.2, given in Table 3.3.

The results are given in Figure 3.8 for the models without ARD. We can see that the
non-probabilistic models generally start overfitting even on very low sparsity levels—in
Figure 3.8(a) we cannot even see the line as the model overfits at each level of sparsity.
The ICM models are also less robust when the sparsity is high. In contrast, the Gibbs
sampling model achieves very good predictive performance even under extreme sparsity.
The VB models are similar, but for sparser data it can sometimes not find the best
solution, as can be seen in Figure 3.8(b). Finally, we repeated this experiment for
the models with ARD (results omitted), but found that it makes no difference to the
robustness to sparsity.

Summary: Gibbs is most robust to sparsity, closely followed by VB; NP is not robust
to sparsity at all; and ICM is somewhere in the middle.

3.5.5 Model selection

We also conducted an experiment to see the extent of overfitting if the model is given
a high dimensionality K, and whether this is remedied through the use of ARD. If we
give a model a higher dimensionality, it can fit more closely to the data, but this can
lead to overfitting and a higher predictive error. ARD can remedy this by turning off
scarsely used factors, hopefully leading to less overfitting.

3.5 Experiments 53

(a) Synthetic, NMF (b) Synthetic, NMTF

(c) GDSC, NMF (d) GDSC, NMTF

(e) CTRP, NMF (f) CTRP, NMTF

(g) CCLE IC50, NMF (h) CCLE IC50, NMTF

(i) CCLE EC50, NMF (j) CCLE EC50, NMTF

Figure 3.8 Sparsity test performances on the drug sensitivity datasets, measured by
average predictive performance on test set (mean square error) for different sparsity
levels. The left column gives the performances for NMF, and the right for NMTF.

54 Effects of inference methods in Bayesian nonnegative matrix factorisation

On each of the four drug sensitivity datasets, we performed 10-fold cross-validation for
different values of K (and L for NMTF, using K = L) for VB (red, top row), Gibbs
(blue, middle row), and ICM (green, bottom row). We show these results in Figures
3.9 for NMF, and 3.10 for NMTF, where the results for models without ARD are given
by dotted lines with crosses (x), and with ARD by solid lines with circles (o).

We can see that in most graphs, the models with ARD have a much flatter line as
the dimensionality increases, hence reducing overfitting. This effect is more apparent
for the NMF models than for the NTMF ones, probably because the NMF models
generally converge deeper and therefore more easily overfit. The NMF ICM models in
particular make very effective use of the ARD. The only exception to ARD improving
the performances in model selection is NMTF ICM on the GDSC dataset (bottom row
of Figure 3.10(a)), where the ARD is potentially preventing the model from fitting
as much to the data, hence leading to poor predictive results. However, we did not
observe this behaviour for any of the other inference methods or datasets.

On the CCLE IC50 and EC50 datasets the Gibbs and VB models without ARD already
have a flat line, demonstrating that the fully Bayesian approaches are naturally robust
to overfitting (although it can help—as can be seen on the CTRP and GDSC datasets).

Summary: ARD can greatly improve the robustness of the models to overfitting in
model selection, and especially for ICM.

3.5.6 Hyperparameter values

Finally, we consider the effect that the choice of the hyperparameter values λU , λV , λF ,
λS, λG have on predictive performance, and in particular how sensitive the choice of
these hyperparameters is. Lower values for λ correspond to a weaker prior belief, which
could lead to overfitting when the sparsity of the methods is high—we saw before that
the advantage of the Bayesian approach is that the prior belief prevents overfitting.
High values correspond to a strong belief that all factor values are close to zero, which
can also lead to high predictive errors as we cannot fit well to the data.

For three different sparsity levels—20% unobserved entries, 50%, and 80%—we mea-
sured the predictive error on the GDSC dataset of Gibbs, ICM, and VB. We used
K = 10 for NMF, and K = L = 10 for NMTF. We repeated the random training-test
data splits ten times, and plot the average predictive performances in Figure 3.11.

3.5 Experiments 55

(a) GDSC, NMF (b) CTRP, NMF (c) CCLE IC50, NMF (d) CCLE EC50, NMF

Figure 3.9 Model selection experiment results, giving 10-fold cross-validation perfor-
mances of the Bayesian NMF models on the drug sensitivity datasets, where we vary
the dimensionality K and L (L = K). We plot results for VB (top), Gibbs (middle),
and ICM (bottom), comparing the models with ARD (o) with those without (x).

(a) GDSC, NMTF (b) CTRP, NMTF (c) CCLE IC50, NMTF (d) CCLE EC50, NMTF

Figure 3.10 Model selection experiment results, giving 10-fold cross-validation perfor-
mances of the Bayesian NMTF models on the drug sensitivity datasets, where we vary
the dimensionality K and L (L = K). We plot results for VB (top), Gibbs (middle),
and ICM (bottom), comparing the models with ARD (o) with those without (x).

56 Effects of inference methods in Bayesian nonnegative matrix factorisation

(a) NMF, VB (b) NMF, Gibbs (c) NMF, ICM

(d) NMTF, VB (e) NMTF, Gibbs (f) NMTF, ICM

Figure 3.11 Hyperparameter experiment results for different inference approaches for
Bayesian nonnegative matrix factorisation and tri-factorisation. We plot the average
predictive error (across ten repeats) on the GDSC drug sensitivity datasets for three
different sparsity levels (20% unobserved entries, 50%, and 80%), and different values
for the hyperparameters λ.

As expected, the predictive performance becomes very poor as the prior becomes too
strong (high values for λ), and it also increases as the prior becomes too weak (low
values for λ). The Gibbs NMF, VB NMF, and VB NMTF inference approaches are
fairly insensitive to the choice of λ, even when the sparsity is high (80%). In contrast,
Gibbs NMTF, ICM NMF, and ICM NMTF are more sensitive to the choice under high
sparsity. This again demonstrates that the fully Bayesian methods are more robust to
sparsity and overfitting.

Summary: Gibbs and VB are fairly insensitive to the choice of the hyperparameter
λ, even under high sparsity levels. A weak prior belief (λ = 0.1) usually works well.
ICM is more prone to overfitting if λ is not chosen carefully.

3.6 Conclusion 57

Table 3.4 Qualitative comparison of inference methods.

Requires Speed of
Method Estimate sampling convergence Robustness

Non-probabilistic Point No High Low
Iterated conditional modes Point (MAP) No High Medium
Gibbs sampling Full posterior Yes Low High
Variational Bayes Full posterior No Medium Fairly high

3.6 Conclusion

We have studied the trade-offs between different inference approaches for Bayesian
nonnegative matrix factorisation and tri-factorisation models. We considered three
methods, namely Gibbs sampling, iterated conditional modes, and non-probabilistic
inference, and introduced a fourth one based on variational Bayesian inference. We
furthermore extended these models with the Bayesian automatic relevance determi-
nation prior, to perform automatic model selection. Through experiments on both
synthetic data, and real-world drug sensitivity datasets, we explored the trade-offs in
convergence, robustness to noise, and robustness to sparsity.

A qualitative summary based on our quantitative findings can be found in Table 3.4.
We found that the non-probabilistic methods are not very robust to noise and sparsity.
Gibbs sampling is the most robust of the methods, especially for sparse datasets, and
gives a full Bayesian posterior estimate. However, it converges slowly, and requires
additional samples to estimate the posterior. Iterated conditional modes offers a much
faster convergence and run-time speed, but sacrifices some robustness, still requires
sampling, no longer returns a full posterior (giving a MAP estimate instead), and is
very sensitive to the hyperparameter choice. Our variational Bayesian inference gives
good convergence speeds while maintaining more robustness properties.

In many ways, these results confirm our prior expectations. Fully Bayesian inference
methods such as variational Bayes maintain more uncertainty information about their
current estimates of the variables than maximum a posteriori or maximum likelihood
versions, and Gibbs sampling explores more of the posterior space before committing
to a high density region. As a result, they are less likely to overfit, especially when
the uncertainty increases—such as under high sparsity or noise levels. Due to the
widespread usage of non-probabilistic models for matrix factorisation, this study
provides important evidence of the importance of using Bayesian models. We will

58 Effects of inference methods in Bayesian nonnegative matrix factorisation

see in Chapter 4 that MAP solutions in Bayesian models are equivalent to adding
regularisation to non-probabilistic models. This chapter demonstates that this vastly
improves the robustness of our models. However, the fully Bayesian approaches give
an additional performance gain by obtaining a full posterior estimate, something the
non-probabilistic models with regularisation cannot achieve. This is most likely due to
the better exploration of the posterior space.

Furthermore, we found that there is little to no difference in predictive performance
between the matrix factorisation and tri-factorisation versions. The former fitted
more closely to the drug sensitivity datasets, but this did not lead to better or worse
predictive performances in any of the experiments.

Finally, we have shown that ARD is an effective way of reducing overfitting when using
the wrong dimensionality in matrix factorisation models. This can eliminate the need
for performing model selection, or nested cross-validation. We also discovered that
adding ARD has little impact on performance, or on the robustness of the models to
sparsity and noise.

These experiments were conducted for a specific version of Bayesian matrix factorisation
and tri-factorisation, but we believe they offer insights into the trade-offs between
different inference techniques in other matrix factorisation models, as well as tensor
and Tucker decomposition methods. For future work it would be interesting to see
how these findings extend to real-valued matrix factorisation models (for example with
Gaussian priors), and Poisson-likelihood based models.

Chapter 4

Prior and likelihood choices for Bayesian

matrix factorisation

As we saw in the previous chapter, the technique to infer the distribution over the
factor matrices U and V can have a great impact on the performance of our Bayesian
(and non-Bayesian) matrix factorisation models. In this chapter, we study the effects
of the likelihood and prior choice on predictive performance. These choices can be
grouped based on the constraints they place on the factor matrices. Firstly, many
approaches place no constraints, using real-valued factor matrices (commonly done in
the Bayesian literature—Gönen [2012]; Salakhutdinov and Mnih [2008]). Instead, as
in the last chapter we could constrain them to be nonnegative (as is popular in the
non-probabilistic literature—Lee and Seung [2000]; Tan and Févotte [2013]), limiting
its applicability to nonnegative datasets, but making it easier to interpret the factors
and potentially also making the method more robust to overfitting. Thirdly, semi-
nonnegative variants constrain one factor matrix to be nonnegative, leaving the other
real-valued (Ding et al. [2010]; Wang et al. [2008]). Finally, some versions work only
on count data.

In the Bayesian setting, the first three groups of methods all generally use a Gaussian
likelihood for noise, and place either real-valued or nonnegative priors over the matrices.
For the former, Gaussian is a common choice (Gönen [2012]; Salakhutdinov and Mnih
[2008]; Virtanen et al. [2011, 2012]), and for the latter options include the exponential
distributions (Schmidt et al. [2009]). The fourth group uses a Poisson likelihood to
capture count data (Gopalan and Blei [2014]; Gopalan et al. [2015]; Hu et al. [2015]).

60 Prior and likelihood choices for Bayesian matrix factorisation

All these models are often extended by using complicated hierarchical prior structures
over the factor matrices, giving additional desired behaviour (such as automatic model
selection). Some papers also introduce general exponential family models that can
capture both Gaussian and Poisson likelihood approaches (Hayashi et al. [2009]; Klami
et al. [2010]). However, these papers generally do not provide a thorough comparison
between the different options.

This chapter offers the first systematic comparison between different Bayesian variants
of matrix factorisation. Similar comparisons have been provided in other fields, such as
for the regression parameter in Bayesian model averaging (Eicher et al. [2011]; Ley and
Steel [2009]), where it was demonstrated that the choice of prior can greatly influence
the predictive performance of these models. However, a similar study for Bayesian
matrix factorisation is still missing. Strikingly, many papers that introduce new matrix
factorisation models do not provide a thorough comparison with competing approaches,
or popular non-probabilistic ones such as Lee and Seung [2000]—for example, the
seminal paper by Salakhutdinov and Mnih [2008] compares their approach with only
one other matrix factorisation method; although Gopalan et al. [2015] compares with
three others.

In this chapter we give an overview of some of the different approaches that can be
found in the literature, including hierarchical priors, and then study the effects of
these different Bayesian prior and likelihood choices. We furthermore discuss the prior
choices and their relation to different sparsity types and matrix norms. We aim to make
general statements about the behaviour of the four different groups of methods on small
real-world datasets (up to a million observed entries), by considering eight datasets
across three different applications—four drug effectiveness datasets, two collaborative
filtering datasets, and two methylation expression datasets. Our experiments consider
each model’s convergence and runtime speed, cross-validation performance, sparse and
noisy prediction performance, and model selection effectiveness. This study offers novel
insights into the differences between the four approaches, and the effects of popular
hierarchical priors. The novelty of this chapter is not proposing new models, as we
mainly reviewed popular models for the literature. Instead, it is bringing all these
models into the same space of experiments.

Most interestingly, where Poisson matrix factorisation models are often claimed to
provide faster inference and better predictive performances (Gopalan et al. [2015]), we
found that on the smaller datasets that we considered, the opposite was true—with

4.1 Models and inference 61

all Gaussian models consistently outperforming the Poisson ones. We provide several
further insights in Section 4.6.

We note that there is a rich literature of Bayesian nonparametric matrix factorisation
models, which learn the size of the factor matrices automatically. However, these
models often require complex inference approaches to find good solutions, and hence
their predictive performance is more determined by the inference method than the
precise model choices (such as likelihood and prior). In this paper we therefore focus
on parametric matrix factorisation models, to isolate the effects of likelihood and prior
choices.

Finally, we acknowledge that the models we study were generally introduced for a
specific application domain, and that this makes it hard to make general statements
about the behaviour of these methods on different datasets. However, we believe that
it is essential to provide a cross-application comparison of the different approaches,
as this teaches us valuable lessons for the applications studied, and they are likely
to apply to different areas as well. The lack of other studies exploring the trade-offs
between likelihood and prior choices for Bayesian matrix factorisation make this an
essential study.

In summary, the contributions of this chapter are as follows:

• We review a large number of Bayesian matrix factorisation models from the
literature, and group them into four categories.

• We discuss the relation of different Bayesian priors to sparsity types and matrix
norms.

• On three different application areas we compare the models’ convergence and
runtime speeds, and cross-validation, noise, sparsity, and model selection perfor-
mances. This yields several new insights into the advantages and disadvantages
of the four groups of methods.

4.1 Models and inference

There are three types of choices we make that determine the type of matrix factorisation
model we use: the likelihood function, the priors we place over the factor matrices
U and V , and whether we use any further hierarchical priors (such as automatic

62 Prior and likelihood choices for Bayesian matrix factorisation

Table 4.1 Overview of the Bayesian matrix factorisation models.

Category Name Likelihood Prior U Prior V Hierarchical prior

Real-valued GGG N (Rij|UiVj , τ
−1) N (Ui|0, λ−1I) N (Vj|0, λ−1I) -

GGGU N (Rij|UiVj , τ
−1) N (Ui|0, λ−1I) N (Vj|0, λ−1I) -

GGGA N (Rij|UiVj , τ
−1) N (Ui|0, diag(λ−1)) N (Vj|0, diag(λ−1)) λk ∼ G(α0, β0)

GGGW N (Rij|UiVj , τ
−1) N (Ui|µU ,ΣU) N (Vj|µV ,ΣV) (µU ,ΣU) and (µV ,ΣV)

∼ NIW(µ0, β0, ν0,W0)
GLL N (Rij|UiVj , τ

−1) L(Uik|0, η) L(Vjk|0, η) -
GLLI N (Rij|UiVj , τ

−1) L(Uik|0, ηUik) L(Vjk|0, ηVjk) ηUik and ηVjk ∼ IG(µ, λ)
GVG N (Rij|UiVj , τ

−1) p(U) ∝ N (Vj|0, λ−1I) -
exp{−γ det(UTU)}

Nonnegative GEE N (Rij|UiVj , τ
−1) E(Uik|λ) E(Vjk|λ) -

GEEA N (Rij|UiVj , τ
−1) E(Uik|λk) E(Vjk|λk) λk ∼ G(α0, β0)

GTT N (Rij|UiVj , τ
−1) T N (Uik|µU , τU) T N (Vjk|µV , τV) -

GTTN N (Rij|UiVj , τ
−1) T N (Uik|µU , τU) T N (Vjk|µV , τV) p(µU

ik, τ
U
ik |µµ, τµ, a, b) ∝

1√
τUik

(
1− Φ(−µU

ik

√
τUik)
)

N (µU
ik|µµ, τ

−1
µ)G(τUik |a, b)

GL2
1 N (Rij|UiVj , τ

−1) p(U) ∝ exp p(V) ∝ exp -
{−λ

2

∑
i(
∑

k Uik)
2} {−λ

2

∑
j(
∑

k Vjk)
2}

with Uik ≥ 0 with Vjk ≥ 0

Semi- GEG N (Rij|UiVj , τ
−1) E(Uik|λ) N (Vj|0, λ−1I) -

nonnegative GVnG N (Rij|UiVj , τ
−1) GVG with Uik ≥ 0 N (Vj|0, λ−1I) -

Poisson PGG P(Rij|UiVj) G(Uik|a, b) G(Vjk|a, b) -
PGGG P(Rij|UiVj) G(Uik|a, hUi) G(Vjk|a, hVj) hUi and hVj ∼ G(a′, a′

b′
)

relevance determination). We have identified four different groups of Bayesian matrix
factorisation approaches in the literature based on these choices: Gaussian-likelihood
with real-valued priors, nonnegative priors (constraining the matrices U ,V to be
nonnegative), semi-nonnegative models (constraining one of the two factor matrices
to be nonnegative), and finally Poisson-likelihood approaches. Models within each
group use different priors and hierarchical priors, and many choices can be found in the
literature. We consider a total of sixteen models, as summarised in Table 4.1. We have
focused on fully conjugate models to ensure inference for each model is guaranteed to
work well, so that all performance differences in Section 4.5 come entirely from the
choice of likelihood and priors.

In the following subsections we will define the model choices for each of the sixteen
Bayesian matrix factorisation models. We also give the Gibbs sampling posterior
distributions for U , which can be derived using Bayes’ theorem (see Section 3.2.2 for
an example). Expressions for V are symmetrical, and hence omitted.

4.1 Models and inference 63

4.1.1 Real-valued matrix factorisation

The first group of methods use a Gaussian likelihood for noise, and place real-valued
prior distributions over U and V , typically Gaussian as well. We assume each value in
R comes from the product of U and V , with Gaussian noise added with precision τ
(as in the previous chapter),

Rij ∼ N (Rij|UiVj , τ
−1) τ ∼ G(τ |ατ , βτ)

In the Gibbs sampling algorithm, the posterior for the noise parameter is

τ ∼ G(τ |α∗
τ , β

∗
τ) α∗

τ = ατ +
|Ω|
2

β∗
τ = βτ +

1

2

∑
(i,j)∈Ω

(Rij −UiVj)
2.

All Gaussian model (GGG)

The most common approach is to use independent zero-mean Gaussian priors for U ,V
(Gönen [2012]; Salakhutdinov and Mnih [2008]; Virtanen et al. [2011, 2012]) with
hyperparameter λ,

Ui ∼ N (Ui|0, λ−1I) Vj ∼ N (Vj |0, λ−1I)

where N (x|µ,Σ) = |Σ|− 1
2 (2π)−

K
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
is the density of a

K-dimensional multivariate Gaussian distribution, and I is the identity matrix. The
conditional posterior distributions we obtain in the Gibbs sampling algorithm are
also multivariate Gaussians. The parameter values are given below, with Ω1

i =

{j | (i, j) ∈ Ω}.

Ui ∼ N (Ui|µU
i ,Σ

U
i) µU

i = ΣU
i ·

τ ∑
j∈Ω1

i

RijVj

 ΣU
i =

λI + τ
∑
j∈Ω1

i

(Vj ⊗ Vj)

−1

.

All Gaussian model with univariate posterior (GGGU)

It is also possible to have a univariate posterior for the Gibbs sampler. We expect this
to have little effect, but it will be interesting to see whether there is any difference in

64 Prior and likelihood choices for Bayesian matrix factorisation

performance.

Uik ∼ N (Uik|µU
ik, (τ

U
ik)

−1) µU
ik =

1

τUik

[
τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

]

τUik = λ+ τ
∑
j∈Ω1

i

V 2
jk.

All Gaussian model with ARD hierarchical prior (GGGA)

We reviewed in Section 2.3.7 how to extend the all Gaussian model with automatic
relevance determination (ARD), by replacing the λ hyperparameter by a factor-specific
variable λk, which has a further Gamma prior (Virtanen et al. [2011, 2012]),

Ui ∼ N (Ui|0, diag(λ−1)) Vj ∼ N (Vj |0, diag(λ−1)) λk ∼ G(λk|α0, β0).

The Gibbs sampling posteriors for Ui and Vj are largely unchanged compared to
the GGG model, replacing λI in the expressions for ΣU

i ,Σ
V
j by diag(λ1, .., λK). The

posterior for λk is

λk ∼ G(λk|α∗
0, β

∗
0) α∗

0 = α0 +
I

2
+
J

2
β∗
0 = β0 +

1

2

I∑
i=1

U2
ik +

1

2

J∑
j=1

V 2
jk.

All Gaussian model with Wishart hierarchical prior (GGGW)

Another hierarchical prior was introduced in the seminal paper of Salakhutdinov and
Mnih [2008]. Instead of assuming independence of each entry in U ,V , we now assume
each row of U comes from a multivariate Gaussian with row mean µU and covariance
ΣU , and similarly for V . We place a further Normal-Inverse Wishart prior over these
parameters,

Ui ∼ N (Ui|µU ,ΣU) µU ,ΣU ∼ NIW(µU ,ΣU |µ0, β0, ν0,W0)

Vj ∼ N (Vj|µV ,ΣV) µV ,ΣV ∼ NIW(µV ,ΣV |µ0, β0, ν0,W0)

where NIW(µU ,ΣU |µ0, β0, ν0,W0) = N (µ|µ0,
1
β0

I)W−1(Σ|ν0,W0) is the density of
a normal-inverse Wishart distribution, and W−1(Σ|ν0,W0) is the inverse Wishart
distribution.

4.1 Models and inference 65

For the Gibbs sampling algorithm we obtain the posteriors Ui ∼ N (Ui|µU
i ,Σ

U
i) and

µU ,ΣU ∼ NIW(µU ,ΣU |µ∗
0, β

∗
0 , ν

∗
0 ,W

∗
0), with

µU
i = ΣU

i ·
[
Σ−1

U µU + τ
∑
j∈Ω1

i

RijVj

]
ΣU

i =
[
Σ−1

U + τ
∑
j∈Ω1

i

(Vj ⊗ Vj)
]−1

β∗
0 = β0 + I ν∗0 = ν0 + I µ∗

0 =
β0µ0 + IŪ

β0 + I
Ū =

1

I

I∑
i=1

Ui

W ∗
0 = W0 + IS̄ +

β0I

β0 + I
(µ0 − Ū)⊗ (µ0 − Ū) S̄ =

1

I

I∑
i=1

(Ui ⊗Ui).

Gaussian likelihood with Laplace priors (GLL)

An alternative to the Gaussian prior is to use the Laplace distribution L(x|µ, ρ) =
1
2ρ
exp

{
− |x−µ|

ρ

}
, which has a much more pointy distribution than Gaussian around

x = µ (Jing et al. [2015]). This leads to more sparse solutions, as more factors are set
to low values. The priors are

Uik ∼ L(Uik|0, η) Vjk ∼ L(Vjk|0, η)

To simplify inference we introduce a new variable λUik for each Uik, with prior λUik ∼
E(λUik|η). The idea behind this is that we can rewrite a Laplace distribution as

L(x|µ, ρ) =
∫ ∞

ϵ=0

N (x|µ, ϵ)E(ϵ|ρ
2
)dϵ

This leads to the following Gibbs sampling posteriors:

Ui ∼ N (Ui|µU
i ,Σ

U
i) µU

i = ΣU
i ·

τ ∑
j∈Ω1

i

RijVj


ΣU

i = diag((λU
i)

−1) +

τ ∑
j∈Ω1

i

(Vj ⊗ Vj)

−1

1

λUik
∼ IG(x|µU

ik, λ
U
ik) µU

ik =

√
η

|Uik|
λUik = η.

66 Prior and likelihood choices for Bayesian matrix factorisation

Gaussian and Laplace model with hierarchical inverse Gaussian priors (GLLI)

We can place a further hierarchical prior over the η parameters, which Jing et al. [2015]
claim helps with variable selection. We replace each η with ηUik, ηVjk, and use priors

ηUik ∼ IG(µ, λ) ηVjk ∼ IG(µ, λ).

That paper originally placed a Generalised Inverse Gaussian GIG(γ, a, b) prior over the
η parameters, but then used γ = −1

2
, which reduces the prior to the Inverse Gaussian

above with µ =
√
b/a, λ = b (or a = 1/µ, b = λ).

The posteriors for U ,V are identical, and for λUik we only replace η with ηUik. We obtain
another Inverse Gaussian posterior for the ηUik parameters,

ηUik ∼ IG(ηUik|µη
ik, λ

η
ik) µU

ik =

√
λUik + 1/µ

λ
λUik = 1/µ.

Gaussian likelihood with volume prior (GVG)

The final real-valued model we consider was presented by Arngren et al. [2011]. The
prior over V is Gaussian, as in the GGG model, but we now use a so-called volume
prior (VP) for the U matrix, with density p(U) ∝ exp{−γ det(UTU)}. The γ

hyperparameter determines the strength of the volume penalty (higher means stronger
prior). This model leads to the posterior

Uik ∼ N (Uik|µU
ik, (τ

U
ik)

−1) µU
ik =

1

τUik

[
γUik̃Ak̃k̃(U

T
ĩk̃
Uĩk) + τ

∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

]

τUik = τ
∑
j∈Ω1

i

V 2
jk + γ(Dk̃k̃ −Uik̃Ak̃k̃U

T
ik̃
).

In the above, vector Uik̃ is the ith row of U excluding column k; vector Uĩk is the kth
column of U excluding row i; matrix Uĩk̃ is U excluding row i and column k; matrix
U·k̃ is U excluding column k; Dk̃k̃ = det{UT

·k̃U·k̃}; and matrix Ak̃k̃ = det{UT
·k̃U·k̃} is

the matrix adjugate.

4.1 Models and inference 67

4.1.2 Nonnegative matrix factorisation

Nonnegative matrix factorisation models use the same Gaussian noise model as the
real-valued ones, but placing nonnegative prior distributions over entries in U and V .
As a result these models can only deal with nonnegative datasets, but by making the
factor matrices constrained it is hoped that this will lead to less overfitting to noise
and sparsity. Furthermore, the factor values may be easier to interpret, for example
as cluster indicators—negative factor values are much harder to understand in that
context.

Gaussian likelihood with exponential priors (GEE)

This is the model used for the previous chapter, introduced by Schmidt et al. [2009].
We place independent Exponential priors over the entries in U ,V ,

Uik ∼ E(Uik|λ) Vjk ∼ E(Vjk|λ),

with posteriors

Uik ∼ T N (Uik|µU
ik, τ

U
ik) µU

ik =
1

τUik

[
− λ+ τ

∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

]

τUik = τ
∑
j∈Ω1

i

V 2
jk.

Gaussian likelihood with exponential prior and ARD (GEEA)

As before, we can extend this with the ARD priors,

Uik ∼ E(Uik|λk) Vjk ∼ E(Vjk|λk) λk ∼ G(λk|α0, β0).

The posteriors for U and V are the same as in the GEE model, but replacing λ by λk.
The posteriors for λk become

λk ∼ G(λk|α∗
0, β

∗
0) α∗

0 = α0 + I + J β∗
0 = β0 +

I∑
i=1

Uik +
J∑

j=1

Vjk.

68 Prior and likelihood choices for Bayesian matrix factorisation

Gaussian likelihood with truncated normal priors (GTT)

We can also use the truncated normal distribution directly as the priors for U and V

(Schmidt and Mohamed [2009]),

Uik ∼ T N (Uik|µU , τU) Vjk ∼ T N (Vjk|µV , τV)

This again gives a truncated normal posterior, but with slightly different values.

Uik ∼ T N (Uik|µU
ik, (τ

U
ik)

−1) µU
ik =

1

τUik

[
µUτU + τ

∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

]

τUik = τU + τ
∑
j∈Ω1

i

V 2
jk.

An alternative to the truncated normal distribution is the so-called half normal. If
random variable y has density N (y|0, σ2), and random variable x = |y|, then x follows
a half normal distribution with density HN (x|σ) =

√
2

σ
√
π
exp{− x2

2σ2}u(x). Note however
that when µ = 0 in the truncated normal distribution, then these distributions are
equivalent, with τ = 1

σ2 . Therefore, the GTT model is more general and includes the
half normal prior.

Gaussian likelihood with truncated normal and hierarchical priors (GTTN)

We can place a further prior over the parameters of the truncated normal distributions
(Schmidt and Mohamed [2009]),

Uik ∼ T N (Uik|µU
ik, τ

U
ik) Vjk ∼ T N (Vjk|µV

jk, τ
V
jk)

p(µU
ik, τ

U
ik |µµ, τµ, a, b) ∝

1√
τUik

(
1− Φ(−µU

ik

√
τUik)

)
N (µU

ik|µµ, τ
−1
µ).G(τUik |a, b)

The density for µV
jk, τ

V
jk is identical. Note that the distribution p(µU

ik, τ
U
ik |µµ, τµ, a, b) is

not the same as the product of a normal and gamma distribution. We cannot easily
sample from it due to its nonstandard form, but it can be used as a hierarchical prior.
The posteriors for Uik remain the same as in the GTT model (replacing µU and τU by
µU
ik and τUik), and for µU

ik and τUik we obtain posteriors

µU
ik ∼ N (µU

ik|mµ, t
−1
µ) mµ =

1

tµ

[
τUikUik + µµτµ

]
tµ = τUik + τµ

4.1 Models and inference 69

τUik ∼ G(τUik |a∗, b∗) a∗ = a+
1

2
b∗ = b+

(Uik − µU
ik)

2

2
.

Gaussian likelihood with L2
1 norm priors (GL2

1)

Finally, we can use a prior inspired by the L2
1 norm (discussed further in Section 4.3)

for both U and V , giving prior densities

p(U) ∝


exp

−λ
2

∑
i

(∑
k

Uik

)2
 if Uik ≥ 0 for all i, k

0 if any Uik < 0

p(V) ∝


exp

−λ
2

∑
j

(∑
k

Vjk

)2
 if Vjk ≥ 0 for all j, k

0 if any Vjk < 0

The nonnegativity constraint is used to address the fact that the L2
1 norm uses the

absolute value of entries in U ,V , which makes inference impossible unless we constrain
them to be nonnegative (in which case the values are automatically absolute).

The posteriors are similar to the GEE and GTT models, but now adding a term that
depends on the other entries in the ith (or jth) row of U ,

Uik ∼ T N (Uik|µU
ik, τ

U
ik) µU

ik =
1

τUik

[
− λ

∑
k′ ̸=k

Uik′ + τ
∑
j∈Ω1

i

(
Rij −

∑
k′ ̸=k

Uik′Vjk′

)
Vjk

]

τUik = λ+ τ
∑
j∈Ω1

i

V 2
jk.

4.1.3 Semi-nonnegative matrix factorisation

In the nonnegative matrix factorisation models we place nonnegative priors over both
U and V . Instead, we could constrain only one to be nonnegative, as was done in
Wang et al. [2008] and Ding et al. [2010]. In the Bayesian setting this is done by
placing a real-valued prior over one matrix, and a nonnegative prior over the other.
The major advantage is that we can handle real-valued datasets, while still enforcing
some nonnegativity. However, we will see in Section 4.5 that their performances are
identical to the real-valued approaches.

70 Prior and likelihood choices for Bayesian matrix factorisation

Gaussian likelihood with exponential and Gaussian priors (GEG)

For this model we use an exponential prior for entries in U , and a Gaussian for V .
The posteriors are given in the GEE and GGG model sections.

Gaussian likelihood with nonnegative volume prior (GVnG)

The volume prior discussed earlier was originally formulated to be nonnegative. In
particular, the probability distribution over U was

p(U) ∝
{

exp{−γ det(UTU)} if Uik ≥ 0 for all i, k
0 if any Uik < 0

The posterior parameters are the same as for the GVG model, but drawing new values
from a truncated normal, rather than normal. For V we again use a Gaussian.

4.1.4 Poisson-likelihood matrix factorisation

The final category of matrix factorisation models do not use a Gaussian likelihood,
instead opting for a Poisson one. This only works for nonnegative count data, with
R ∈ NI×J , but has been studied extensively in the literature due to the popularity and
prevalence of datasets like the Netflix Prize. We again assume each value in R comes
from the product of U and V , Rij ∼ P(Rij|UiVj), where P(x|λ) = λx exp{−λ}

x!
is the

density of a Poisson distribution. We will consider two Poisson matrix factorisation
models.

Poisson likelihood with Gamma priors (PGG)

The classical Poisson matrix factorisation model (Gopalan and Blei [2014]; Gopalan
et al. [2015]; Hu et al. [2015]) uses independent Gamma priors over the entries in U

and V . To make inference simpler, we also introduce random variables Zijk such that
Rij =

∑K
k=1 Zijk, each effectively accounting for the contribution of factor k to Rij.

We use the following distributions and priors:

Zijk ∼ P(Zijk|UikVjk) Uik ∼ G(Uik|a, b) Vjk ∼ G(Vjk|a, b).

Note that we can do this because the sum of Poisson distributed random variables
(like Zijk) is again Poisson distributed, with rate λ equal to the sum of rates of the
Zijk, giving us the original Poisson likelihood for Rij. The above is also equivalent

4.2 Implementation details 71

to saying that Zij ∼ Mult(Zij|n,p) with n = Rij and p = (
Ui1Vj1

UiVj
, ..,

UiKVjK

UiVj
), where

Zij is a vector containing Zij1, .., ZijK , and Mult(x|n,p) = n!
x1!..xK !

px1
1 p

x2
2 ..p

xK
K is a

K-dimensional multinomial distribution. Using the above trick, the posteriors are

Zij ∼ Mult(Zij|n,p) n = Rij p = (
Ui1Vj1
UiVj

, ..,
UiKVjK
UiVj

)

Uik ∼ P(Uik|a∗ik, b∗ik) a∗ik = a+
∑
j∈Ω1

i

Zijk b∗ik = b+
∑
j∈Ω1

i

Vjk.

Poisson likelihood with Gamma and hierarchical Gamma priors (PGGG)

Gopalan et al. [2015] introduced a Poisson matrix factorisation model with hierarchical
priors. They presented a variational Bayesian algorithm for inference—we derived a
Gibbs sampling version for this chapter. The priors are

Uik ∼ G(Uik|a, hUi) Vjk ∼ G(Vjk|a, hVj) hUi ∼ G(a′, a
′

b′
) hVj ∼ G(a′, a

′

b′
)

The posteriors for Uik are identical, but replacing b with hUi in the expression for b∗ik.
For the hierarchical part we obtain the following posteriors:

hUi ∼ G(hUi |a∗i , b∗i) a∗i = a′ +Ka b∗i =
a′

b′
+

K∑
k=1

Uik.

4.2 Implementation details

4.2.1 Software implementation

We provide an open-source Python implementation of all models at https://github.
com/ThomasBrouwer/HMF, as well as all datasets, preprocessing scripts, and Python
code for the experiments in Section 4.5.

4.2.2 Computational complexity

The different matrix factorisation models have different time complexities for computing
the parameter values and sample new values for U , V , and any other random variables.
The space complexity for all models is O(IK + JK) per iteration, with an additional
K|Ω| term for the Poisson models (for the Zijk).

https://github.com/ThomasBrouwer/HMF
https://github.com/ThomasBrouwer/HMF

72 Prior and likelihood choices for Bayesian matrix factorisation

Figure 4.1 Plots of the prior distributions with hyperparameters from Section 4.2.3.

The time complexities per iteration for the multivariate Gaussian posterior models
(GGG, GGGA, GGGW, GLL, GLLI) is O((I + J)K3 + IJK2). However, these row
draws and parameter value computations can all be done in parallel. The univariate
posterior models (GGGU, GEE, GEEA, GTT, GTTN, GL2

1) have complexity O(IJK2),
but the parameters can be computed efficiently per column. The volume prior models
(GVG, GVnG) have the highest complexity, with O(I2JK2). Finally, the Poisson
models are O(IJK), but this hides a big constant that effectively makes it the slowest
model for low values of K.

4.2.3 Hyperparameters

The hyperparameter values we choose for each model can influence their performance,
especially when the data is sparse. The hierarchical models try to automatically choose
the correct values, by placing a prior over the original hyperparameters. This introduces
new hyperparameters, but the models are generally less sensitive to these. However, as
we saw in Section 3.5.6, the models without hierarchical priors are usually not very
sensitive to this choice, as long as we use fairly weak priors. In particular, we used
λ = 0.1 (GGG, GGGU, GEE, GL2

1, GEG), µU = 0, τU = 0.1 (GTT), η =
√
10 (GLL),

and a = 1, b = 1 (PGG). The distributions with these hyperparameter values are
plotted in Figure 4.1.

For the other models we used: ατ = βτ = 1 (Gaussian likelihood); α0 = β0 = 1

(GGGA, GEEA); µ0 = 0, β0 = 1, ν0 = K,W0 = I (GGGW); µ = λ = K (GLLI),
µµ = 0, τµ = 0.1, a = b = 1 (GTTN), a = a′ = b′ = 1 (PGGG).

We did find that the volume prior models (GVG, GVnG) were very sensitive to the
hyperparameter choice γ. The following values were chosen by trying a range on each

4.3 Priors and norms 73

dataset (see Section 4.4) and choosing the best one: γ = 10{−30,−20,−10,−10,0,0,0,0} for
{GDSC,CTRP,CCLE IC50,EC50,MovieLens 100K,1M,GM,PM}.

4.3 Priors and norms

The prior distributions in Bayesian models act as a regulariser that prevents us from
overfitting to the data and obtaining poor predictive performance. We can write out
the expression of the log posterior of the parameters, which for a Gaussian likelihood
and no hierarchical priors becomes

log p(θ|D) = log p(D|θ) + log p(θ) + C1

=
∑

(i,j)∈Ω

log p(Rij|UiVj , τ
−1) + log p(U ,V) + C2

= −τ
2

∑
(i,j)∈Ω

(Rij −UiVj)
2 + log p(U ,V) + C3

for some constants Ci. Note that this last expression is proportional to the negative
Frobenius norm (squared error) of the training fit, plus a regularisation term over the
matrices U ,V . This training error is frequently used in the nonprobabilistic matrix
factorisation literature (Lee and Seung [2000]; Pauca et al. [2004, 2006]), where different
regularisation terms are used. These are often based on row-wise matrix norms, such
as

L1 =
I∑

i=1

K∑
k=1

Uik L2 =
I∑

i=1

√√√√ K∑
k=1

U2
ik L2

1 =
I∑

i=1

(
K∑
k=1

Uik)
2 L2

2 =
I∑

i=1

K∑
k=1

U2
ik.

This offers some interesting insights: the L2
2 norm is equivalent to an independent

Gaussian prior (GGG), due to the square in the exponential of the Gaussian prior; the
L1 norm is equivalent to a Laplace prior distribution (GLL); if we constrain U ,V to
be nonnegative then the L1 norm is equivalent to an exponential prior distribution
(GEE); and finally, the L2

1 norm can be formulated as a nonnegative prior distribution,
which we use for the GL2

1 model (see Table 4.1).

The type of priors chosen for Bayesian matrix factorisation determine the type of
sparsity that we add to the model. The L1 norm causes the rows of the factor matrices
to have very few non-zero entries because reducing a value Uik causes a linear reduction
in the penalisation term regardless of how close it is to zero. In contrast, the L2

2 norm

74 Prior and likelihood choices for Bayesian matrix factorisation

Table 4.2 Overview of the four drug sensitivity, two MovieLens, and two methylation
datasets, giving the number of rows (cell lines, users, genes), columns (drugs, movies,
patients), and the fraction of entries that are observed.

Dataset Rows Columns Fraction obs.

GDSC IC50 707 139 0.806
CTRP EC50 887 545 0.801
CCLE IC50 504 24 0.965
CCLE EC50 502 24 0.632
MovieLens 100K 943 1473 0.072
MovieLens 1M 6040 3503 0.047
Gene body methylation (GM) 160 254 1.000
Promoter methylation (PM) 160 254 1.000

gives a smaller reduction the closer Uik gets to zero. Finally, the reduction for the L2
1

norm depends on the values of the other entries Uik′ in the same row.

Note that, although the cost function minimised by the nonprobabilistic approach with
additional regularisation terms is the same as the log likelihood function of Bayesian
approaches, the latter holds additional advantages. This is because in Bayesian inference
we approximate the full posterior distribution, whereas the nonprobabilistic methods
still only find a point estimate (in this case, a maximum a posteriori one); we saw in
Chapter 3 that this is less robust than fully Bayesian solutions. In addition, we can
use hierarchical priors to model further desired behaviour (such as ARD), which is
much harder in nonprobabilistic models.

4.4 Data preprocessing

We conduct our experiments on a total of eight real-world datasets across three different
applications, allowing us to see whether our observations on one dataset or application
also hold more generally. We will focus on a couple of these datasets for some specific
experiments. Also note that we make sure all datasets contain only positive integers,
so that we can compare all four groups of Bayesian matrix factorisation approaches.

Firstly we used the four drug sensitivity datasets, as in last chapter. We preprocessed
them nearly the same way: undoing the natural log transform of the GDSC dataset;
capping high values to 100 for GDSC and CTRP; and then casting them as integers.
We also filtered out rows and columns with only one or two observed datapoints.

4.5 Experiments 75

Figure 4.2 Distributions of the values of the eight datasets: GDSC IC50, CTRP EC50,
CCLE IC50, CCLE EC50, MovieLens 100K, MovieLens 1M, gene body methylation,
and promoter-region methylation.

The second application is collaborative filtering, where we are given movie ratings for
different users (one to five stars) and we wish to predict the number of stars a user
will give to an unseen movie. We use the MovieLens 100K and 1M datasets (Harper
and Konstan [2015]), with 100,000 and 1,000,000 ratings respectively.

Finally, another bioinformatics application, this time looking at methylation expression
profiles (Koboldt et al. [2012]). These datasets give the amount of methylation measured
in either the body region of genes (gene body methylation) or the promoter region
(promoter methylation) for 254 different patients. We focused on 160 cancer driver
genes given by the IntOGen database (Gonzalez-Perez et al. [2013]). We multiplied all
values by twenty and cast them as integers.

The datasets are summarised in Table 4.2, and the distribution of values for each
dataset is visualised in Figure 4.2. This shows us that the drug sensitivity datasets tend
to be bimodal, whereas the MovieLens and methylation datasets are more normally
distributed. We can also see that the MovieLens datasets tend to be large and sparse,
whereas the others are well-observed and relatively small.

4.5 Experiments

We conducted experiments to compare the four different groups of approaches. In
particular, we measured their convergence and runtime speed, cross-validation perfor-

76 Prior and likelihood choices for Bayesian matrix factorisation

mance, sparse prediction performance, and model selection effectiveness. We sometimes
focus on a selection of the methods for clarity. To make the comparison complete, we
also added a non-probabilistic nonnegative matrix factorisation model (NMF, Lee and
Seung [2000]) as a baseline.

4.5.1 Convergence and runtime speed

Firstly we compared the convergence speed of the models on the GDSC and MovieLens
100K datasets. We ran each model with K = 20, and measured the average mean
squared error on the training data across ten runs. We plotted the results in Figure 4.3,
where each group is plotted as the same colour: red for real-valued, blue for nonnegative,
green for semi-nonnegative, yellow for Poisson, and grey for the non-probabilistic
baseline. We can see that the Gaussian-likelihood methods all converge after the same
number of iterations, but they differ in their depth. Real-valued methods converge
the deepest, and nonnegative ones converge less deep, as they are more constrained.
The semi-nonnegative models converge similarly to the real-valued ones. The Poisson
versions converge either slowly (on GDSC) or less deep (on MovieLens 100K).

Furthermore, the average runtime (in seconds) per iteration is given in Table 4.3, for
different values of K on the GDSC drug sensitivity and MovieLens 100K datasets.
Here we see that the univariate posterior models (GGGU, GEE, GEEA, GTT, GTTN,
GL2

1, GEG) are faster than the multivariate ones (GGG, GGGA, GGGW, GLL, GLLI).
GGGU is faster than the other univariate posterior versions because sampling from
distributions like a truncated normal is slow. We can also see that the hierarchical
priors are not noticably slower than their non-hierarchical counterparts. The volume
prior models are by far the slowest, due to their higher time complexity. Finally, the
Poisson models are slow for low K, but at K = 50 this is no longer true.

4.5.2 Cross-validation performance

Next we measured the 5-fold cross-validation performance on each of the eight datasets.
We used the hyperparameter values from Section 4.2.3, and used 5-fold nested cross-
validation to choose the dimensionality K. The average mean squared error of predic-
tions are given in Figure 4.4 for all eight datasets. The average dimensionality found
in nested cross-validation can be found in Table 4.4.

Firstly, we can see that the Poisson and non-probabilistic models generally perform
much more poorly than all other models. The dimensionalities used are also much lower,

4.5 Experiments 77

(a) GDSC drug sensitivity (b) MovieLens 100K

Figure 4.3 Convergence of the Bayesian matrix factorisation models on the GDSC
drug sensitivity (left) and MovieLens 100K (right) datasets, measuring the training
data fit (mean square error).

Table 4.3 Average runtime per iteration (in seconds) of the different Bayesian matrix
factorisation models on GDSC drug sensitivity and MovieLens 100K.

GDSC drug sensitivity MovieLens 100K

Method K = 5 = 10 = 20 = 50 K = 5 = 10 = 20 = 50

GGG 0.14 0.18 0.29 0.93 1.04 1.29 1.86 5.07
GGGU 0.02 0.03 0.07 0.16 0.48 0.79 1.49 3.99
GGGA 0.14 0.17 0.28 0.93 1.03 1.30 1.88 5.75
GGGW 0.13 0.17 0.26 0.82 1.27 1.23 1.84 5.06
GLL 0.24 0.30 0.38 0.95 0.81 0.94 1.30 3.01
GLLI 0.22 0.29 0.42 0.98 0.82 0.99 1.49 3.26
GVG 0.42 1.02 2.58 22.1 1.22 2.86 5.94 40.9

GEE 0.06 0.12 0.25 0.66 0.49 0.86 1.68 4.16
GEEA 0.06 0.12 0.24 0.63 0.68 1.27 2.53 6.50
GTT 0.06 0.12 0.25 0.68 0.70 1.27 2.34 6.00
GTTN 0.07 0.14 0.29 0.77 0.71 1.22 2.55 6.56
GL2

1 0.06 0.13 0.26 0.62 0.43 0.80 1.56 3.88

GVnG 0.45 1.16 2.88 22.9 2.02 5.08 9.63 53.2
GEG 0.07 0.12 0.22 0.61 0.96 1.30 1.34 3.51

PGG 0.36 0.40 0.50 0.78 1.32 1.96 3.36 7.07
PGGG 0.56 0.49 0.50 0.78 1.34 2.02 3.40 7.19

NMF-NP 0.01 0.04 0.04 0.16 0.32 0.52 1.11 2.62

78 Prior and likelihood choices for Bayesian matrix factorisation

Figure 4.4 Average mean squared error of 5-fold nested cross-validation for the
seventeen methods on the eight datasets. We also plot the standard deviation of errors
across the folds.

except on CCLE IC50. Secondly, we can see that most other methods have very similar
performances. The Wishart, ARD, and Laplace models (GGGW, GGGA, GLL, GLLI)
sometimes offer better performances (such as on GDSC, MovieLens 100K and 1M, and
gene body methylation) but not always (such as GGGW on CCLE EC50). Finally,
we can see that the nonnegative models often have to use a higher dimensionality K
to achieve the same predictive performance as the default GGG model. This seems
to imply that they are more constrained and can therefore not use each factor as
freely, which makes sense: they cannot form the same complex patterns of positive
and negative values. We see something similar for the Laplace, Wishart, and volume
prior models.

4.5.3 Noise test

We then measured the predictive performance when the datasets are very noisy. We
added different levels of Gaussian noise to the data, with the noise-to-signal ratio
being given by the ratio of the variance of the Gaussian noise we add, to the standard
deviation of the generated data. For each noise level we split the datapoints randomly

4.5 Experiments 79

Table 4.4 Average dimensionality found in 5-fold nested cross-validation for each
Bayesian matrix factorisation model on the eight datasets.

Drug sensitivity MovieLens Methylation

Method GDSC CTRP CCLE IC50 CCLE EC50 100K 1M GM PM

GGG 6 4 5 1 2 5 4 3
GGGU 6 5 5 1 2 2 3 3
GGGA 10 6 5 1 4 10 6 3
GGGW 16 8 6 2 5 13 7 3
GLL 10 6 5 1 3 8 4 2
GLLI 10 6 5 1 2 7 4 2
GVG 10 5 6 2 3 3 4 4

GEE 8 6 5 1 2 8 6 5
GEEA 10 6 5 1 2 10 6 4
GTT 9 6 5 1 2 8 5 4
GTTN 8 6 5 1 2 8 5 4
GL2

1 6 6 4 1 2 8 5 5

GEG 6 5 5 1 2 5 4 3
GVnG 11 8 5 2 2 1 3 3

PGG 4 2 13 1 1 1 2 3
PGGG 5 2 12 1 1 1 2 3

NMF 4 2 1 1 1 3 2 2

into ten folds, and measured the predictive performance of the models on one held-out
set at a time. We used K = 5 for all methods. The results for the GDSC drug
sensitivity dataset are given in Figure 4.5, where we plot the ratio of the variance of
the data to the mean squared error of the predictions—higher values are better, and
using the row average gives a performance of one.

This shows that the Poisson and nonprobabilistic models have a significantly lower
ratio, and are outperformed by the majority of the other models on all noise levels.
The other models generally perform similarly and their variance can be explained by
randomness. The Wishart model does seem to perform poorly, but as we saw in Table
4.4 this model requires a much higher dimensionality than K = 5 to obtain optimal
predictions. As the noise increases it becomes harder for the models to give good
predictions, although even at 200% noise they still pick up some signals.

80 Prior and likelihood choices for Bayesian matrix factorisation

Figure 4.5 Noise experiment results on the GDSC drug sensitivity dataset. We added
different levels of Gaussian noise to the data, and measured the 10-fold cross-validation
performance.

4.5.4 Sparse predictions

Next we measured the predictive performances when the sparsity of the data increases.
For different fractions of unobserved data, we randomly split the data based on that
fraction, trained the model on the observed data, and measured the performance on
the held-out test data. We used K = 5 for all models. The average mean squared
error of ten repeats is given in Figure 4.6, showing the performances on the GDSC
drug sensitivity, gene body methylation, and MovieLens 100K datasets. For each we
provide a colour-coded global comparison of all models (Figures 4.6(a)(f)(k)) as well
as comparing a couple of models at a time.

There are a couple of interesting observations. First of all, the Poisson models do not
do well under high sparsity levels on the GDSC dataset. On the MovieLens 100K one
they initially do poorly, but as the sparsity increases they start outperforming the other
models. This implies that for large and extremely sparse datasets a Poisson likelihood
might be better. We also see in Figures 4.6(c)(h)(m) that the standard nonnegative
models (GEE, GTT, GL2

1) are more robust to sparsity than the real-valued one (GGG).

Although some hierarchical models (such as Wishart) can give advantages, we observe
little to no difference for some others—GLLI, GTTN, and PGGG give nearly identical
performances in Figures 4.6(d)(i)(n) to GLL, GTT, and PGG. Similarly, we observe
no difference between real-valued and semi-nonnegative models in Figure 4.6(e)(j)(o).

4.5 Experiments 81

Figure 4.6 Sparsity experiment results on the GDSC drug sensitivity (top, a-e) gene
body methylation (middle, f-j), and MovieLens 100K (bottom, k-o) datasets. We
measure the predictive performance (mean squared error) on a held-out dataset for
different fractions of unobserved data.

82 Prior and likelihood choices for Bayesian matrix factorisation

4.5.5 Model selection

We also measured the robustness of the models to overfitting if the dimensionality
K is high. As a result, most models will fit very well to the training data, but give
poor predictions on the test data. Here, we vary the dimensionality K for each of the
models on the GDSC drug sensitivity and MovieLens 100K datasets, randomly taking
out 10% as test data, and repeating ten times. The results are given in Figure 4.7.
The model-level comparisons in 4.7(a)(f)(k) shows that the nonnegative models tend
to have a flatter line as K increases than the real-valued ones, showing that they are
more robust to overfitting. However, we also observe a few red lines that go much lower
than the blue ones, such as the GGGW and GGGA models, which then outperform
the nonnegative ones.

Last chapter we saw that ARD was effective at reducing overfitting for nonnegative
matrix factorisation, and Figures 4.7(b)(c)(g)(h)(l)(m) show that the same holds for
the real-valued model (GGG). The Wishart model (GGGW) also gives a similar effect.

As with the sparsity experiment, some of the hierarchical models have performances
identical to their non-hierarchical counterparts (Figures 4.7(d)(i)(n)) and similarly
for the semi-nonnegative and real-valued models (Figures 4.7(e)(j)(o)). Finally, we
observe no difference in predictive performance between the multivariate and univariate
posterior models (GGG, GGGU), as shown in Figures 4.7(b)(g)(l).

4.5.6 Factor usage

Finally, we consider the difference in factor values between the different models. When
performing factor analysis we try to identify clusters in the rows and columns of the
datasets, by looking at the values in the U and V matrices. Each factor can be seen
as a cluster, and the value Uik as the degree of membership of row i to cluster k.

In practice we want that similar datapoints have similar factor values, and that those
in different clusters have dissimilar ones. To measure this, we can construct a similarity
kernel based on the rows of the U and V matrices, computing the Pearson correlation
for each. We therefore ran each model ten times on the GDSC drug sensitivity dataset,
and plot the average similarity kernel across those ten runs. We used the absolute value
of the factor matrices (it is the strength of the factor values that matters, not their
sign), and also of the similarity kernels (a negative correlation still indicates similarity).

4.5 Experiments 83

Figure 4.7 Model selection experiment results on the GDSC drug sensitivity (top,
a-e), gene body methylation (middle, f-j), and MovieLens 100K (bottom, k-o) datasets.
We measure the predictive performance (mean squared error) on a held-out dataset for
different dimensionalities K.

84 Prior and likelihood choices for Bayesian matrix factorisation

(a) GGG (b) GGGU (c) GGGA

(d) GGGW (e) GLL (f) GLLI

(g) GVG (h) GEE (i) GEEA

(j) GTT (k) GTTN (l) GL2
1

(m) GVnG (n) GEG (o) PGG

(p) PGGG (q) NMF-NP

Figure 4.8 Plots of the average Pearson correlation similarity kernels based on the U
(left) and V (right) factor matrices for each method, on the GDSC drug sensitivity
dataset. We took the absolute of all factor values, and also of the correlations. Red
indicates stronger correlation.

4.6 Conclusion 85

We also reordered the rows of the GDSC dataset according to a hierarchical clustering
(UPGMC) of the data, and similarly for the columns, to better display the patterns.

In Figure 4.8 we plot these average similarity kernels. If a method gives the sparsity
that we want, we should expect small blocks of red (indicating high similarity) for
datapoints close to each other, and other than that low values. Methods that give
similar factor values for all datapoints will have nearly entirely red similarity kernels.

Some models display the desired behaviour on both matrices: GGG, GGGU, GLLI,
GEE, GTT, GTTN, GVnG, GEG, PGG, PGGG, and NMF-NP. In contrast, GLL,
GVG, and GL2

1 have a good V matrix, but the U is largely red. The worst models
are GGGA, GGGW and GVG. The first two are especially interesting, because we
saw before that the ARD and Wishart hierarchical priors can massively help with
predictive tasks. However, this experiment shows that the factor values for each row
and column are much more similar, hence making the factor matrices harder to analyse.
This makes us believe there may be some trade-off between giving the models the
freedom to best fit to the data for predictive performances on the one hand, and giving
the desired row- and column-wise sparsity for good factor analysis on the other.

4.6 Conclusion

In this chapter we reviewed sixteen different Bayesian matrix factorisation models, that
all use different likelihood and prior distributions. We provided the first systematic
study of the effects of these choices on predictive performance, considering convergence
and runtime speed, cross-validation performance, robustness to noise and sparsity,
and model selection effectiveness. The novelty of this chapter is not in proposing new
models, as we mainly reviewed popular models for the literature. Instead, it is bringing
all these models into the same space of experiments. From the results shown in the
previous section, we were able to draw the following conclusions. Although they are
specific to the applications and dataset sizes studied, we believe that general insights
can be drawn from them about the behaviour of the four different groups of Bayesian
matrix factorisation models, which can assist future researchers in their model design.

Poisson likelihood methods perform poorly compared to the Gaussian like-
lihood—they overfit quickly, give worse predictive performances in cross-validation
and under noisy conditions, partly because they cannot converge as deep as the other
methods. At high sparsity levels they can start to perform better, seeming to indicate

86 Prior and likelihood choices for Bayesian matrix factorisation

that for larger and more sparse datasets they could start outperforming Gaussian
models, as some papers (Gopalan et al. [2015]) claim they do. However, for small and
well-observed datasets we found the opposite to be true.

Nonnegative models are more constrained than the real-valued ones, causing
them to converge less deep, and to be less likely to overfit to high sparsity levels than
the standard GGG model. However, the right hierarchical prior for a real-valued model
(such as Wishart) can bridge this gap.

The automatic relevance determination and Wishart hierarchical priors are
effective ways of preventing overfitting: the GGGA, GGGW, and GEEA models
maintain a low predictive error as the dimensionality K increase, whereas the GGG
and GEE models start overfitting more. We saw the same behaviour last chapter for
nonnegative models, but the effect is even stronger for the real-valued ones. However,
these hierarchical priors make the factor values for each row and column entity much
more similar as well, and hence harder to analyse.

Similarly, the Laplace priors are good at reducing overfitting as the dimen-
sionality grows, without requiring additional hierarchical priors.

Some other hierarchical priors do not make a difference, such as with GLLI,
GTTN, and PGGG. They can help us automatically choose the hyperparameters, but
in our experience the models are not very sensitive to this choice anyway.

There is no difference in performance between semi-nonnegative and real-
valued matrix factorisation, as shown in the model selection and sparsity experi-
ments: the performance for GGG and GEG, as well as GVG and GVnG, are nearly
identical.

There is no difference in predictive performance between univariate and
multivariate posteriors (GGG, GGGU), as shown in the model selection experiment.

We based the conclusions above on our experiments on three different applications.
Some caution should be exercised about generalising these findings to other fields,
and we do observe some variation in performance between the different datasets. It
would be interesting to further explore some of these findings, for example finding out
whether Poisson models really are better at larger and sparser datasets, and at what
point they start outperforming the Gaussian ones.

Chapter 5

Bayesian hybrid matrix factorisation for

data integration

In the previous two chapters we studied the trade-offs between inference approaches,
as well as prior and likelihood choices, for Bayesian matrix factorisation. We now
turn our attention to the final research question: how can we best integrate multiple
datasets to improve our predictions? In this chapter we introduce a new Bayesian
multiple matrix factorisation model, that can be used to integrate multiple datasets
and to make both in- and out-of-matrix predictions. The model is very general and
can be used to integrate many datasets across different entity types, including repeated
experiments, similarity matrices, and very sparse datasets.

In our model, each dataset can either be decomposed into two matrices, in which case
only the row factor matrices are shared, or into three, in which case the row and column
matrices are shared. This results in a hybrid model between matrix factorisation and
tri-factorisation. Additionally, each of the latent matrices can have nonnegative or
real-valued factors, giving a hybrid between nonnegative, semi-nonnegative, and real-
valued factorisations. By using a probabilistic approach, our method can effectively
handle missing values and predict them, for both in- and out-of-matrix predictions,
and as we saw before the Bayesian approach is much less prone to overfitting than
non-probabilistic models. Furthermore, the rank of each matrix is automatically
chosen using automatic relevance determination, eliminating the need to perform model
selection. We will show that this hybrid combination of multiple matrix factorisation
and tri-factorisation gives a more general model than tensor and Tucker decompositions.

88 Bayesian hybrid matrix factorisation for data integration

Repeated experiments

≈

Row feature datasets

≈

Column feature datasets

≈
Figure 5.1 Overview of hybrid matrix factorisation, combining the multiple matrix
tri-factorisation of two repeated experiments with multiple matrix factorisations of row
and column feature datasets. Shared factor matrices are grey.

To demonstrate the effectiveness of our method for predicting missing values, we apply
it to two different settings. Firstly, we again consider the four drug sensitivity datasets,
where the matrices are similar (high correlation) and hence have high predictivity (low
predictive error). We measure the in-matrix predictive performance of our method, as
well as Bayesian and non-probabilistic matrix factorisation methods, and several state-
of-the-art machine learning methods. Our model consistently outperforms all other
methods, especially when the sparsity of the data increases. Secondly, we integrate gene
expression, promoter region methylation, and gene body methylation profiles for breast
cancer patients. These datasets are much more dissimilar, hence predicting one dataset
given the others is much harder. However, out-of-matrix prediction experiments show
that our method achieves better performance than state-of-the-art machine learning
methods on two of the three combinations.

Our method is novel in several aspects. Firstly, it is the first general hybrid model
between matrix factorisation and tri-factorisation. A non-probabilistic hybrid model

5.1 Hybrid matrix factorisation 89

can be found in Zhu et al. [2007], but it only combined a single matrix tri-factorisation
with a single matrix factorisation. Secondly, our model is a hybrid between nonnegative
and real-valued factors: if multiple datasets are jointly decomposed, one can be a
nonnegative matrix factorisation, where another can be semi-nonnegative, and another
can be real-valued. Finally, through formulating the method as a Bayesian probabilistic
model, it can deal with missing values, perform automatic model selection, and is much
less prone to overfitting (especially for sparse datasets).

The contributions of this chapter are as follows.

• We introduce a novel Bayesian matrix factorisation model, that hybridly combines
matrix factorisation and tri-factorisation, as well as real-valued, nonnegative, and
semi-nonnegative factorisations.

• We demonstrate that this model can vastly improve both in- and out-of-matrix
predictions.

• Finally, we explore several model choices, such as initialisation, hyperparameter
values, and factorisation type trade-offs.

5.1 Hybrid matrix factorisation

The idea behind hybrid matrix factorisation (HMF) is to integrate multiple datasets by
jointly decomposing them, and sharing their latent factors. We consider three different
types of datasets, and each is decomposed using a different type of factorisation. These
datasets span a number of different entity types (such as drugs, cell lines, targets) and
each type has its own matrix of factor values that will be shared across the different
factorisations that relate this entity type.

Formally, we are given a number of datasets spanning T different entity types E1, .., ET .
Each entity type Et has It instances, Kt factors, and a factor matrix F t ∈ RIt×Kt ,
which is shared across the relevant factorisations. We decompose the three dataset
types as follows (see Figure 5.2):

1. Main datasets R = {R1, ..,RN}, relating two different entity types. For both
entity type we have other matrices that we factorise, and therefore we share their
factor matrices across different factorisations. By using matrix tri-factorisation
here, and hence sharing two factor matrices, we can share more common patterns.

90 Bayesian hybrid matrix factorisation for data integration

2) Dl = F tl(Gl)T Etl

Features

≈

1) Rn = F tnSn(F un)T Etn

Eun

≈

3) Cm = F tmSm(F tm)T Etm

Etm

≈ ∗ ∗

Figure 5.2 The three different types of datasets and factorisations used in hybrid
matrix factorisation. Shared factor matrices are grey, and dataset-specific ones are
white. The two grey matrices for the third factorisation type are the same (*).

Each dataset Rn ∈ RItn×Iun relates entity types Etn , Eun . We use matrix tri-
factorisation to decompose it into two entity type factor matrices F tn ,F un , and
a dataset-specific matrix Sn ∈ RKtn×Kun .

Rn = F tnSn(F un)T +En.

2. Feature datasets D = {D1, ..,DL} are similar to main datasets, but we do not
have any other datasets relating the column entity type (the features) so we
might as well use matrix factorisation rather than tri-factorisation—the third
matrix would not be shared anyways.

Each dataset Dl ∈ RItl×Jl relates an entity type Etl to Jl features. We use
matrix factorisation to decompose it into one entity type factor matrix F tl , and
a dataset-specific matrix Gl ∈ RJl×Ktl .

Dl = F tl(Gl)T +El.

5.1 Hybrid matrix factorisation 91

3. Similarity datasets C = {C1, ..,CM} are those where the rows and the columns
are the same entities, hence giving similarity values (such as Jaccard kernels). In
the factorisation we use that entity type’s factor matrix twice.

Each dataset Cm ∈ RItm×Itm relates an entity type Etm to itself. We use matrix
tri-factorisation to decompose it into a entity type factor matrix F tm , a dataset-
specific matrix Sm ∈ RKtm×Ktm , and F tm again.

Cm = F tmSm(F tm)T +Em.

Each dataset has a set indicating observed entries: Ωn = {(i, j)| Rn
ij observed}, Ωl =

{(i, j)| Dl
ij observed}, Ωm = {(i, j)| Cm

ij observed}, respectively.

For the similarity matrix factorisation we could have also decided to decompose
C = FF T +E, without the intermediate matrix S. Ding et al. [2005b] includes a good
discussion of the benefits to our approach (see Section 2.3.5). For this decomposition
we do not consider diagonal entries of C (in other words, (i, i) /∈ Ω, i = 1..I) as this
leads to third and fourth order terms in the posteriors and makes Gibbs sampling
impossible. See Zhang and Yeung [2012] for a non-probabilistic approach that does
consider these elements, leading to a very complicated optimisation problem.

The above formulation allows the user to very easily choose the kind of joint factorisation.
By passing a set of matrices as D1, ..,DL, multiple matrix factorisation is performed.
Instead, passing them as R1, ..,RN gives multiple matrix tri-factorisation. A hybrid
combination is also possible, as illustrated in Figure 5.1. Furthermore, each of the
factor matrices can either be nonnegative (using an exponential prior), or real-valued
(using a Gaussian prior), additionally giving a hybrid of nonnegative, semi-nonnegative
and real-valued matrix factorisation.

Recall from Section 2.3.6 that if we wanted to integrate multiple datasets relating the
same two entity types, and we use multiple matrix factorisation, we can only share
one of the two factor matrices. Instead, by using multiple matrix tri-factorisation,
more factor values can be shared between the datasets, with only small dataset-specific
matrices (Sn) in the middle. We expect that for datasets where the values are fairly
similar (such as different biological labs conducting similar experiments—repeated
experiments) this allows the model to more easily find the common patterns between
the datasets and hence yield better predictions for missing values. For more dissimilar
datasets, the multiple matrix factorisation approach might be better.

92 Bayesian hybrid matrix factorisation for data integration

5.1.1 Model definition

Formally, the HMF model is defined as follows. The model likelihood functions are

Rn
ij ∼ N (Rn

ij|F tn
i · Sn · F un

j , (τn)−1)

Dl
ij ∼ N (Dl

ij|F tl
i ·Gl

j, (τ
l)−1)

Cm
ij ∼ N (Cm

ij |F tm
i · Sm · F tm

j , (τm)−1),

with Bayesian priors

τn, τ l, τm ∼ G(τ ∗|ατ , βτ)

F t
ik ∼ E(F t

ik|λtk) or F t
ik ∼ N (F t

ik|0, (λtk)−1)

Gl
jk ∼ E(Gl

jl|λtlk) or Gl
jk ∼ N (Gl

jl|0, (λtlk)−1)

Sn
kl ∼ E(Sn

kl|λnS) or Sn
kl ∼ N (Sn

kl|0, (λnS)−1)

Sm
kl ∼ E(Sm

kl |λmS) or Sm
kl ∼ N (Sm

kl |0, (λmS)−1).

Recall from Chapter 4 that the Gaussian prior is equivalent to the L2
2 norm, whereas

the exponential one is the same as the nonnegative L1 norm. This allows the user to
choose the type of sparsity desired, with the strength of the norm determined by the
hyperparameter values λtk, λnS, λmS , λ

tl
k .

We furthermore use the automatic relevance determination prior, to help perform
automatic relevance determination. We demonstrated the effectiveness of this prior in
Chapter 3 for both matrix factorisation and tri-factorisation. We use one ARD prior
for each factor matrix belonging to an entity type, through the λtk parameters in the
prior of F t

ik and Gl
jk. This parameter is shared by all entities of type Et, and hence

the entire factor k is either activated (if λtk has a low value) or “turned off” (if λtk has a
high value). We place Gamma prior over each of these variables,

λtk ∼ G(λtk|α0, β0).

Through this construction, factors that are active for only a few entities will be pushed
further to zero, turning the factor off. Instead of having to choose the correct values
for the Kt, we can give an upper bound and our model will automatically determine
the number of factors to use.

5.1 Hybrid matrix factorisation 93

One challenge with multiple matrix factorisation is that it relies on finding common
patterns in multiple datasets. If two datasets are very different, the methods may end
up finding a solution that fits one dataset much better, resulting in poor predictions
for the other one. To address this, we add an importance value hyperparameter for
each of the Rn,Dl,Cm datasets, respectively αn, αl, αm, to ensure that the method
will converge to a solution that better fits datasets with higher importance values. We
modify the likelihood of the model by using these importance values,

p(θ|R,D,C) ∝ p(θ)×
N∏

n=1

p(Rn|F tn ,Sn,F un , τn)α
n

×
L∏
l=1

p(Dl|F tl ,Gl, τ l)α
l

×
M∏

m=1

p(Cm|F tm ,Sm, τm)α
m

where θ is the set of model parameters. This technique was used by Remes et al. [2015]
to ensure their model fits the binary training labels. It effectively makes the prior
less strong if the importance value is higher, and since the prior acts as a regulariser
it makes the model fit more to the data. It can be interpreted as repeating each of
the values in the dataset Dl αl times, although it is not the same as simply passing
the dataset αl times to the model, since then we would fit to each dataset separately.
It is also not the same as simply multiplying the noise parameters τn, τ l, τm by the
importance value αn, αl, αm, as can be seen below.

N (Dl
ij|F tl

i G
l
j, (τ

l)−1)α
l ∝

[
(τ l)

1
2 exp

{
−τ

l

2

(
Dl

ij − F tl
i ,G

l
j

)2}]αl

∝ (τ l)
αl

2 exp

{
−τ

lαl

2

(
Dl

ij − F tl
i ,G

l
j

)2}
̸= (τ lαl)

1
2 exp

{
−τ

lαl

2

(
Dl

ij − F tl
i ,G

l
j

)2}
∝ N (Dl

ij|F tl
i G

l
j, (τ

lαl)−1)

The latter approach would not work: if we multiplied the noise by a constant αl as
above, the model would simply learn a value for τ l to balance it out (so multiplied by
1
αl). The importance value approach does give the desired behaviour of fitting better
to the data.

94 Bayesian hybrid matrix factorisation for data integration

Figure 5.3 Overview of the CANDECOMP/PARAFAC (CP, top left), Tucker de-
composition (TD, top right), and multiple matrix tri-factorisation (MMTF, bottom)
methods. CP uses the outer product (⊗), whereas TD and MMTF use the matrix
product.

5.1.2 Relation to tensor decomposition

Multiple matrix factorisation and tri-factorisation methods are closely linked with
tensor decomposition. Here, we explore some of these connections. In particular, we
show that the CANDECOMP/PARAFAC (CP, Harshman [1970]) method is a less
general version of the multiple matrix tri-factorisation (MMTF) part of our HMF
model; and furthermore that the Tucker Decomposition (TD, Tucker [1966]), without
its orthogonality constraints, is equivalent to MMTF. All three decompositions are
illustrated in Figure 5.3, and we define them mathematically below. Our model is
effectively more general than TD, due to its ability to incorporate datasets across more
than three entity types (rather than just tensors), as well as performing both matrix
factorisation and tri-factorisation at the same time.

Recall from Section 2.3.8 that the CP method decomposes a given tensor R ∈ RI×J×N

into R = F 1 ⊗ F 2 ⊗ S, where ⊗ denotes the matrix outer product, and F 1 ∈
RI×K ,F 2 ∈ RJ×K ,S ∈ RN×K . Each individual entry in R is decomposed as follows:

Rijn =
K∑
k=1

F 1
ik · F 2

jk · Snk. (5.1)

The Tucker decomposition is defined similarly, with an additional core tensor G ∈
RK×L×Q, and the factor matrices having its own number of latent factors K,L,Q;
F 1 ∈ RI×K ,S ∈ RJ×L,F 2 ∈ RN×Q. We now factorise R = G • 1F

1 • 2F
2 • 3S, where •i

denotes the matrix dot product using the ith dimension of tensor G. Individual entries

5.1 Hybrid matrix factorisation 95

in R are decomposed as:

Rijn =
K∑
k=1

L∑
l=1

Q∑
q=1

F 1
ik · F 2

jl · Snq ·Gklq. (5.2)

Now consider the multiple matrix tri-factorisation part of our HMF model. Say we are
given N datasets Rn, all spanning the same two entity types E1, E2, with I rows, J
columns, K row factors (for entity type E1), and L row factors (for entity type E2).
Performing MMTF on these datasets can be seen as effectively concatenating the N
matrices into one big tensor. Each entry is decomposed as:

Rn
ij =

K∑
k=1

L∑
l=1

F 1
ik · F 2

jl · Sn
kl. (5.3)

Firstly, compare this with the TD formulation. If we define a new matrix Hn
kl =∑Q

q=1 Snq ·Gklq = Sn ·Gkl, we can rewrite the TD expression as:

Rijn =
K∑
k=1

L∑
l=1

F 1
ik · F 2

jl ·Hn
kl. (5.4)

Note that this is now equivalent to our MMTF expression in Equation 5.3, with
F 1
ik ↔ F 1

ik, F
2
jl ↔ F 2

jl, S
n
kl ↔ Hn

kl. Since both the S and G matrices have to be inferred
by our model, we can in fact collapse them into one—as long as no further constraints
are placed on them individually. Often in the TD method the three factor matrices
(F 1,F 2,S) have orthogonality constraints placed on them. If these constraints are
dropped, TD is equivalent to MMTF.

Moving on to CP, consider constraining our MMTF model to have only diagonal entries
in the Sn matrices (so that Sn

kl = 0 for k ̸= l). Equation 5.3 then becomes:

Rn
ij =

K∑
k=1

F 1
ik · F 2

jk · Sn
kk. (5.5)

This is equivalent to the CP formulation in Equation 5.1, with F 1
ik ↔ F 1

ik, F
2
jk ↔

F 2
jk, S

n
kk ↔ Snk, showing that CP is a constrained version of MMTF, where the middle

factor matrices Sn
kl are diagonal.

96 Bayesian hybrid matrix factorisation for data integration

5.2 Gibbs sampling algorithm

Gibbs sampling can be used for inference due to the model’s conjugacy, similarly to
the models presented in the previous two chapters. Variational Bayesian inference is
also possible, but as we discovered in Chapter 3, Gibbs sampling is more robust. We
expect this to be especially the case in the multiple matrix factorisation case, as the
optimisation landscape will be even more complex and therefore it is be easier to get
stuck in a bad local minimum, which Gibbs sampling is better able to “jump out” of.
As a result, we believe that the differences in performances due to different model
choices will be minimally impacted by the inference method.

Although the inference is fairly straightforward for each individual factorisation, com-
bining them into one general model is more tricky and requires careful notational
definition. The datasets relating an entity type Et are indicated by the following sets,

U t
1 = {n | Rn ∈ R ∧ tn = t } V t =

{
l | Dl ∈ D ∧ tl = t

}
U t
2 = {n | Rn ∈ R ∧ un = t } W t = {m | Cm ∈ C ∧ tm = t } .

Since the updates for the ARD can be different if a feature dataset is decomposed
using negative factors or real-valued factors for Gl, we also introduce the sets

V t
+ =

{
l ∈ V t | Gl is nonnegative

}
V t
− =

{
l ∈ V t | Gl is real-valued

}
.

All F t matrices are either real-valued or nonnegative, but if we wish to allow the user
to specify this individually for each one, we can extend the model in the same way as
we did for the Gl. Observed entries per row i and column j are given by

Ωn1
i = {j |(i, j) ∈ Ωn} Ωl1

i =
{
j |(i, j) ∈ Ωl

}
Ωm1

i = {j |(i, j) ∈ Ωm}
Ωn2

j = {i |(i, j) ∈ Ωn} Ωl2
j =

{
i |(i, j) ∈ Ωl

}
Ωm2

j = {i |(i, j) ∈ Ωm} .

We obtain the following posterior distributions and parameter values.

Noise parameters

τn ∼ G(τn|αn
∗ , β

n
∗) αn

∗ = ατ + αn |Ωn|
2

βn
∗ = βτ + αn1

2

∑
(i,j)∈Ωn

(Rn
ij − F tn

i SnF un
j)2

5.2 Gibbs sampling algorithm 97

τ l ∼ G(τ l|αl
∗, β

l
∗) αl

∗ = ατ + αl |Ωl|
2

βl
∗ = βτ + αl 1

2

∑
(i,j)∈Ωl

(Dl
ij − F tl

i G
l
j)

2

τm ∼ G(τm|αm
∗ , β

m
∗) αm

∗ = ατ + αm |Ωm|
2

βm
∗ = βτ + αm1

2

∑
(i,j)∈Ωm

(Cm
ij − F tm

i SmF tm
j)2

Note that this is the same as for the single-matrix factorisations and tri-factorisations.

ARD — If F t contains nonnegative factors:

λtk ∼ G(λtk|αt
k, β

t
k) αt

k = α0 + It +
∑
l∈V t

+

Itl +
∑
l∈V t

−

Itl
2

βt
k = β0 +

It∑
i=1

Fik +
∑
l∈V t

+

Jl∑
j=1

Gjk +
∑
l∈V t

−

1

2

Jl∑
j=1

G2
jk.

If F t contains real-valued factors:

λtk ∼ G(λtk|αt
k, β

t
k) αt

k = α0 +
It
2
+
∑
l∈V t

+

Itl +
∑
l∈V t

−

Itl
2

βt
k = β0 +

1

2

It∑
i=1

F 2
ik +

∑
l∈V t

+

Jl∑
j=1

Gjk +
∑
l∈V t

−

1

2

Jl∑
j=1

G2
jk.

These expressions generalise the ARD updates presented in Chapter 3 by considering
all datasets that share the λtk parameter: all Rn, Dl, Cm that use the factor matrix F t

in their factorisation.

Dataset-specific factor matrices — If Gl,Sn,Sm contain nonnegative factors:

Gl
jk ∼ T N (Gl

jk|µl
jk, τ

l
jk)

τ ljk = τ lαl
∑
i∈Ωl2

j

(F tl
ik)

2

µl
jk =

1

τ ljk

−λtlk + τ lαl
∑
i∈Ωl2

j

(Dl
ij −

∑
k′ ̸=k

F tl
ik′G

l
jk′)F

tl
ik


Sn
kl ∼ T N (Sn

kl|µn
kl, τ

n
kl)

98 Bayesian hybrid matrix factorisation for data integration

τnkl = τnαn
∑

(i,j)∈Ωn

(F tn
ik)

2(F un
jl)

2

µn
kl =

1

τnkl

−λnS + τnαn
∑

(i,j)∈Ωn

(Rn
ij −

∑
(k′,l′)̸=(k,l)

F tn
ik′S

n
k′l′F

un

jl′)F
tn
ik F

un
jl


Sm
kl ∼ T N (Sm

kl |µm
kl, τ

m
kl)

τmkl = τmαm
∑

(i,j)∈Ωm

(F tm
ik)2(F tm

jl)
2

µm
kl =

1

τmkl

−λmS + τmαm
∑

(i,j)∈Ωm

(Cm
ij −

∑
(k′,l′) ̸=(k,l)

F tm
ik′ S

m
k′l′F

tm
jl′)F

tm
ik F

tm
jl


These expressions are also very similar to those presented in Chapter 3, with the
notation updated according to this chapter’s model definition.

If Gl,Sn,Sm contain real-valued factors:

Gl
jk ∼ N (Gl

jk|µl
jk, (τ

l
jk)

−1) µl
jk =

1

τ ljk

τ lαl
∑
i∈Ωl2

j

(Dl
ij −

∑
k′ ̸=k

F tl
ik′G

l
jk′)F

tl
ik


τ ljk = λtlk + τ lαl

∑
i∈Ωl2

j

(F tl
ik)

2

Gl
j ∼ N (Gl

j|µl
j,Σ

l
j) µl

j = Σl
j ·

τ lαl
∑
i∈Ωl2

j

Dl
ijF

tl
i


Σl

j =

diag(λt) + τ lαl
∑
i∈Ωl2

j

F tl
i ⊗ F tl

i

−1

Sn
kl ∼ N (Sn

kl|µn
kl, (τ

n
kl)

−1) µn
kl =

1

τnkl

τnαn
∑

(i,j)∈Ωn

(Rn
ij −

∑
(k′,l′) ̸=(k,l)

F tn
ik′S

n
k′l′F

un

jl′)F
tn
ik F

un
jl


τnjk = λnS + τnαn

∑
(i,j)∈Ωn

(F tn
ik)

2(F un
jl)

2

Sn
k ∼ N (Sn

k |µn
k ,Σ

n
k) µn

k = Σn
k ·

τnαn
∑

(i,j)∈Ωn

(Rn
ij −

∑
k′ ̸=k

F tn
ik′(S

n
k′ · F un

j))F tn
ik F

un
j


Σn

k =

λnSI + τnαn
∑

(i,j)∈Ωn

(F tn
ik)

2(F un
j ⊗ F un

j)

−1

5.2 Gibbs sampling algorithm 99

Sm
kl ∼ N (Sm

kl |µm
kl, (τ

m
kl)

−1) µm
kl =

1

τmkl

τmαm
∑

(i,j)∈Ωm

(Cm
ij −

∑
(k′,l′)̸=(k,l)

F tm
ik′ S

m
k′l′F

tm
jl′)F

tm
ik F

tm
jl


τmkl = λmS + τmαm

∑
(i,j)∈Ωm

(F tm
ik)2(F tm

jl)
2

Sm
k ∼ N (Sm

k |µm
k ,Σ

m
k) µm

k = Σm
k ·

τmαm
∑

(i,j)∈Ωm

(Cm
ij −

∑
k′ ̸=k

F tm
ik′ (S

m
k′ · F tm

j))F tm
ik F tm

j


Σm

k =

λmS I + τmαm
∑

(i,j)∈Ωm

(F tm
ik)2(F tm

j ⊗ F tm
j)

−1

The updates for Gl
jk and Gl

j were introduced in Chapter 4, with updated notation here.
For the remaining expressions Bayes’ theorem was used in a similar way to derive
the above parameter values. Although we saw in that chapter that there is little to no
difference in performance between using a univariate or multivariate posterior, we still
provide both options above.

Shared factor matrices — If F t contains nonnegative factors:

F t
ik ∼ T N (F t

ik|µt
ik, τ

t
ik)

µt
ik =

1

τ tik

−λtk +
∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

(Rn
ij −

∑
k′ ̸=k

F t
ik′(S

n
k′ · F un

j))(Sn
k · F un

j)

+
∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

(Rn
i′i −

∑
l ̸=k

F t
il(F

tn
i′ · Sn

.,l))(F
tn
i′ · Sn

.,k)

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

(Dl
ij −

∑
k′ ̸=k

F t
ik′G

l
jk′)G

l
jk

+
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

(Cm
ij −

∑
k′ ̸=k

F t
ik′(S

m
k′ · F t

j))(S
m
k · F t

j)

+
∑

i′∈Ωm2
i

(Cm
i′i −

∑
l ̸=k

F t
il(F

t
i′ · Sm

.,l))(F
t
i′ · Sm

.,k)


τ tik =

∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

(Sn
k · F un

j)2 +
∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

(F tn
i′ · Sn

.,k)
2

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

(Gl
jk)

2 +
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

(Sm
k · F t

j)
2 +

∑
i′∈Ωm2

i

(F t
i′ · Sm

.,k)
2



100 Bayesian hybrid matrix factorisation for data integration

This expression does the bulk of the work. Similar to the ARD parameters, the update
for each entry in F t has to consider all datasets that use this factor matrix for its
decomposition. Note that we are effectively adding up the contribution of the prior and
each individual dataset (using expressions similar to those presented in Chapter 3).

If F t contains real-valued factors:

F t
ik ∼ N (F t

ik|µt
ik, (τ

t
ik)

−1)

µt
ik =

1

τ tik

∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

(Rn
ij −

∑
k′ ̸=k

F t
ik′(S

n
k′ · F un

j))(Sn
k · F un

j)

+
∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

(Rn
i′i −

∑
l ̸=k

F t
il(F

tn
i′ · Sn

.,l))(F
tn
i′ · Sn

.,k)

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

(Dl
ij −

∑
k′ ̸=k

F t
ik′G

l
jk′)G

l
jk

+
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

(Cm
ij −

∑
k′ ̸=k

F t
ik′(S

m
k′ · F t

j))(S
m
k · F t

j)

+
∑

i′∈Ωm2
i

(Cm
i′i −

∑
l ̸=k

F t
il(F

t
i′ · Sm

.,l))(F
t
i′ · Sm

.,k)



τ tik = λtk +
∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

(Sn
k · F un

j)2 +
∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

(F tn
i′ · Sn

.,k)
2

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

(Gl
jk)

2 +
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

(Sm
k · F t

j)
2 +

∑
i′∈Ωm2

i

(F t
i′ · Sm

.,k)
2


F t

i ∼ N (F t
i |µt

i,Σ
t
i)

µt
i = Σt

i ·

∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

Rn
ij(S

n · F un
j) +

∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

Rn
i′i(F

tn
i′ · Sn)

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

Dl
ijG

l
j

+
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

Cm
ij (S

m · F t
j) +

∑
i′∈Ωl2

i

Cm
i′i(F

t
i′ · Sm)



5.3 Implementation details 101

Σt
i =

diag(λt
k) +

∑
n∈Ut

1

τnαn
∑
j∈Ωn1

i

(Sn · F un
j)⊗ (Sn · F un

j)

+
∑
n∈Ut

2

τnαn
∑

i′∈Ωn2
i

(F tn
i′ · Sn)⊗ (F tn

i′ · Sn)

+
∑
l∈V t

τ lαl
∑
j∈Ωl1

i

(Gl
j ⊗Gl

j)

+
∑

m∈W t

τmαm

 ∑
j∈Ωm1

i

(Sm · F t
j)⊗ (Sm · F t

j)

+
∑

i′∈Ωm2
i

(F t
i′ · Sm)⊗ (F t

i′ · Sm)

−1

These parameter values are very similar to the nonnegative factors case, effectively just
moving λtk from µt

ik to τ tik. Again we also provide the option of a multivariate posterior.

5.3 Implementation details

5.3.1 Software implementation

We provide an open-source Python implementation of all models discussed in the paper,
available at https://github.com/ThomasBrouwer/HMF. We furthermore provide all
datasets, preprocessing scripts, and Python code for the experiments.

5.3.2 Computational complexity

Recall that the updates for the Gibbs sampler for Bayesian matrix tri-factorisation have
time complexity O(IJK2L), compared to O(IJK2) for Bayesian matrix factorisation.
For HMF the complexity becomes O((N + M + L)I2K3) where I = maxt It and
K = maxtKt. Notice that our model scales linearly in the number of observed datasets.
Furthermore, the random draws for columns of the factor matrices are independent of
each other, and therefore the parameter updates can be formulated as efficient joint
matrix operations and new values drawn in parallel. Alternatively, the draws can be
done per row by using a multivariate posterior, and then all these row-wise draws can
be done in parallel as well.

https://github.com/ThomasBrouwer/HMF

102 Bayesian hybrid matrix factorisation for data integration

5.3.3 Missing values and predictions

Missing values can be indicated to the model through the mask sets Ωn,Ωl,Ωm. Note
that this also means that if specific feature values are missing for one of the entities,
these features can still be included for the other entities, simply by marking them as
unobserved when we do not know their value. This is much better than imputing those
values, for example using the row or column average, as the model will still fit to those
imputed values. This was the approach of previous multiple matrix tri-factorisation
models (Žitnik and Zupan [2015]).

The missing values can then be predicted, by using the posterior draws of the Gibbs
sampler (after burn-in and thinning) to estimate the posteriors of the factor matrices.
For example, if we wish to predict missing values in the matrix Dl, we estimate F tl

and Gl, and predictions for the missing entries are given by F tl · (Gl)T .

5.3.4 Initialisation strategies

Gibbs sampling can get stuck in a local maximum of the posterior, and therefore
initialisation of the random variables is essential to obtain a good solution. As in
the previous chapters, we can use the hyperparameters α0, β0, ατ , βτ , λnS, λmS to
initialise the variables F t, Gl, Sn, Sm, τn, τ l, τm, λtk either using the expectation of
the prior model distribution, or by randomly drawing their value according to that
distribution. Alternatively, we can initialise the entity type factor matrices F t using
K-means clustering, as suggested by Ding et al. [2006]. We can furthermore initialise
the dataset-specific matrices Sn,Sm,F l using least squares. This can be done using the
Moore-Penrose pseudo-inverse (+), as long as the dataset-specific matrices (Sn,Sm,Gl)
are real-valued. For example,

Sn = (F tn)+ ·Rn · ((F un)T)+.

If the datasets are not real-valued, we can still initialise Sn or the other factor matrices
in this way, but then set all values below zero to zero. We measure the effectiveness of
the different initialisation methods in Section 5.6.1, which shows that this combination
of K-means and least squares initialisation generally gives the fastest convergence.

5.4 Data preprocessing 103

8 4994

91

6
36

6
CCLE

CTRP

GDSC
(a) Overlap of drugs

39
279184

261

22 165
259

CCLE
CTRP

GDSC
(b) Overlap of cell lines

Figure 5.4 Venn diagrams of the overlap of drugs and cell lines in the three drug
sensitivity data sources.

5.4 Data preprocessing

To demonstrate the advantages of our approach for missing values prediction, we
consider two different applications. Firstly, integrating four drug sensitivity datasets,
where the datasets are similar (high correlation) and hence predictivity of the datasets
is high. Here we perform in-matrix predictions of missing values. Secondly, integrating
gene expression and methylation level datasets for breast cancer patients and cancer
driver genes, where the datasets are much more dissimilar. We perform out-of-matrix
predictions, using the methylation levels of patients to predict gene expression values,
and vice versa. We discuss the datasets and preprocessing in this section.

5.4.1 Drug sensitivity

We consider the same four drug sensitivity datasets as before—Genomics of Drug
Sensitivity in Cancer (GDSC v5.0, Yang et al. [2013]), Cancer Therapeutics Response
Portal (CTRP v2, Seashore-Ludlow et al. [2015]), Cancer Cell Line Encyclopedia
(CCLE, Barretina et al. [2012])—but in this chapter we use different preprocessing on
them so we can better measure the effectiveness of our data integration method.

In particular, we only considered drugs and cell lines that are present in at least two
of the three data sources (considering CCLE IC50 and EC50 as one). Venn diagrams
displaying the overlaps between drugs and cell lines are given in Figures 5.4(a) and

104 Bayesian hybrid matrix factorisation for data integration

(a) GDSC IC50 (b) CTRP EC50 (c) CCLE IC50 (d) CCLE EC50

Figure 5.5 Plots of the distribution of values in the four drug sensitivity datasets
after preprocessing.

5.4(b), respectively. The CTRP dataset contains a large number of small molecule
probes (311) causing very little intersection with the other datasets.

We also filtered out cell lines with no features available (to allow us to compare with
other machine learning methods), which are provided by the GDSC dataset (gene
expression levels, copy number variations, and mutation information). For the drugs
we extracted 1D and 2D descriptors and structural fingerprints, obtained using the
PaDeL-Descriptor software (http://www.yapcwsoft.com/dd/padeldescriptor/). We
obtained primary protein targets from GDSC for 48 of the 52 drugs.

Recall that the CCLE and CTRP datasets all give the drug concentration levels, but
the GDSC dataset gives the natural log transform of these values. We undid this
transform by taking the exponent of each value. The drug sensitivity values for the
CCLE IC50 and EC50 datasets lie in the range [0,8] and [0,10], but the other two
datasets sporadically have extremely large values. This is a result of the curve fitting
procedure used to approximate IC50 and EC50, and in those cases it indicates an
inefficient drug for the cell line. We cap all values above 20 to 20 to resolve this issue,
and as a result obtain a similar shape of distribution of values to the CCLE datasets.
Finally, we map the values in each row (per cell line) to the range [0,1]. The final
distribution of values in each dataset is given in Figure 5.5, where we see that the data
tends to be bimodal.

Before preprocessing the four datasets spanned 650 unique drugs and 1209 cell lines,
and afterwards they cover 52 unique drugs and 399 cell lines, with 95.1% of the entries
having at least one observed value, and 62.9% of the entries having at least two observed
values. The information on the four datasets is summarised in Table 5.1, along with
the fraction of overlapping observed entries between the datasets.

http://www.yapcwsoft.com/dd/padeldescriptor/

5.5 Experiments 105

Table 5.1 Overview of the four drug sensitivity dataset after preprocessing.

Dataset GDSC IC50 CTRP EC50 CCLE IC50 CCLE EC50

Number of cell lines 399 379 253 252
Number of drugs 48 46 16 16
Fraction observed 73.57% 86.03% 96.42% 58.88%

Overlap with GDSC IC50 - 57.39% 44.19% 28.52%
Overlap with CTRP EC50 52.25% - 51.51% 31.87%
Overlap with CCLE IC50 9.34% 11.96% - 55.28%
Overlap with CCLE EC50 6.00% 7.37% 55.06% -

Finally, we constructed similarity kernels for each of the feature datasets, to compare
predictive performances with a competing method. For binary data we used a Jaccard
kernel, and for real-valued data we first standardised each feature to have zero mean
and unit variance, and then used a Gaussian kernel to compute similarities, with as
variance parameter the number of features.

5.4.2 Methylation and gene expression data

Our second application is that of integrating promoter-region methylation (PM) and
gene body methylation (GM) datasets with a gene expression (GE) profile for breast
cancer patients, coming from the The Cancer Genome Atlas (TCGA, Koboldt et al.
[2012]). There are 254 different samples (both healthy and tumor tissues), across
13966 genes. We focus on 160 breast cancer driver genes, from the IntOGen database
(Gonzalez-Perez et al. [2013]). We standardise the datasets to have zero mean and
unit standard deviation per gene. Plots of the datasets containing the 160 genes after
standardising can be found in Figure 5.6. Note that this dataset is not nonnegative.
Finally, we constructed similarity kernels using these three datasets, giving similarity
values between the cell lines. We used a Gaussian kernel with σ2 = no. genes.

5.5 Experiments

We measured the predictive performance of our method in both the in-matrix prediction
setting, on the drug sensitivity data, and for out-of-matrix predictions, on the gene
expression and methylation data. We compare our results against other matrix
factorisation models, as well as several state-of-the-art machine learning methods.

106 Bayesian hybrid matrix factorisation for data integration

(a) Gene expression (b) Promoter-region methylation (c) Gene body methylation

Figure 5.6 Plots of the distribution of the methylation datasets after standardising.

5.5.1 In-matrix predictions

We performed 10-fold cross-validation on each of the four drug sensitivity datasets to
predict missing values. We tested two variants of our HMF model: multiple matrix tri-
factorisation using all four drug sensitivity datasets (HMF D-MTF, Rn), and multiple
matrix factorisation on all four drug sensitivity datasets, sharing the cell line factors
(HMF D-MF, Dl). Many hybrid combinations in between these two models are possible,
which we explore further in Section 5.6.4.

We compare our model to several state of the art methods. Since the four datasets are all
nonnegative, we can use nonnegative matrix factorisation (NMF) and tri-factorisation
(NMTF) models. We compare with non-probabilistic NMF by Lee and Seung [2000]
(NP-NMF), Bayesian NMF by Schmidt et al. [2009] (BNMF), non-probabilistic NMTF
by Yoo and Choi [2009] (NP-NMTF), Bayesian NMTF (BNMTF), and Multiple NMF
(concatenating the datasets and using NMF-NP, sharing the cell line factors). We also
applied several state-of-the-art machine learning models using the skikit-learn Python
package, particularly: Linear Regression (LR), Random Forests (RF, 100 trees), and
Support Vector Regression (SVR, rbf kernel). These methods were given the drug
and cell line features for training. We considered a method called Kernelised Bayesian
Matrix Factorisation (KBMF, Gönen and Kaski [2014]), which was used by Ammad-ud
din et al. [2014] to predict drug sensitivity values for the GDSC dataset. This method
leverages similarity kernels of the drugs and cell lines. Finally, we compared against the
CP tensor decomposition model, to demonstrate that the more general multiple matrix
factorisation and tri-factorisation approaches are better suited for making predictions.
We modified our HMF D-MTF model by restricting the off-diagonal entries in Sn to
be zero, giving the HMF CP model.

5.5 Experiments 107

Table 5.2 Mean squared error (MSE) of 10-fold in-matrix cross-validation results
on the drug sensitivity datasets. We also give the relative improvement (% impr.)
compared to NMF. The best performances are highlighted in bold.

GDSC IC50 CTRP EC50 CCLE IC50 CCLE EC50

Method MSE % impr. MSE % impr. MSE % impr. MSE % impr.

NMF 0.0896 - 0.0959 - 0.0746 - 0.1535 -
NMTF 0.0879 1.91% 0.0954 0.44% 0.0747 -0.18% 0.1506 1.91%
Multiple NMF 0.0859 4.10% 0.0928 3.18% 0.0666 10.64% 0.1157 24.66%

BNMF 0.0805 10.20% 0.0919 4.05% 0.0594 20.29% 0.1318 14.19%
BNMTF 0.0799 10.81% 0.0920 4.03% 0.0593 20.52% 0.1292 15.84%
KBMF 0.0819 8.60% 0.0919 4.13% 0.0618 17.13% 0.1303 15.13%

LR 0.0886 1.10% 0.0949 1.00% 0.0719 3.62% 0.1342 12.60%
RF 0.0876 2.21% 0.0989 -3.15% 0.0668 10.47% 0.1219 20.62%
SVR 0.1091 -21.72% 0.1091 -13.80% 0.0916 -22.76% 0.1230 19.92%

HMF D-MF 0.0775 13.54% 0.0919 4.11% 0.0592 20.65% 0.1062 30.81%
HMF D-MTF 0.0768 14.25% 0.0908 5.28% 0.0558 25.17% 0.1073 30.12%
HMF CP 0.0796 11.16% 0.0913 4.80% 0.0560 24.93% 0.1104 28.08%

We performed nested cross-validation to select the dimensionality K for the matrix
factorisation models and KBMF. In contrast, our model simply used Kt = 10 for
each entity type Et, and let the ARD choose the correct number of factors. We used
nonnegative factors for the entity type factor matrices (Ft), and real-valued for all
other factors. We used K-means and least squares initialisation, and set all importance
values to one. We explore these choices in depth in Section 5.6.

The results for cross-validation are given in Table 5.2. We see that our HMF models
outperform all other methods, giving predictive gains of up to 30%. The multiple
matrix tri-factorisation approach (HMF D-MTF) achieves the best performance on
three of the datasets, and is a close second on the fourth. This makes sense: the
four drug sensitivity datasets are highly correlated, so sharing more patterns by using
multiple matrix tri-factorisation leads to better predictive performances. The tensor
decomposition method (HMF CP) comes close, but restricting the off-diagonal elements
to be zero resulted in a performance drop.

We also see that the Bayesian matrix factorisation models outperform both the non-
probabilistic approaches, and the state-of-the-art machine learning methods, demon-
strating that Bayesian matrix factorisation is a powerful paradigm for in-matrix
predictions, with our proposed HMF model giving significant gains in predictive per-
formance. The machine learning methods (LR, RF, SVR) have to rely on the feature

108 Bayesian hybrid matrix factorisation for data integration

(a) Grouped per row (b) Grouped per column

Figure 5.7 In-matrix cross-validation performances on the GDSC drug sensitivity
dataset grouped by the number of observed datapoints—number of drugs per cell lines
on the left, and number of cell lines per drug on the right.

values to predict missing values, which can often be a problem because the features may
only be weakly predictive of the values in the matrix. In contrast, matrix factorisation
models can directly leverage the hidden patterns in the matrix to predict them, leading
to much better predictive performances.

We also experimented with using the feature datasets in our HMF model, either as
similarity kernels C or feature datasets D, but the two variants exploiting the four
drug sensitivity datasets achieved the best performance. This is most likely because
the feature datasets are not very predictive of the drug sensitivity values, as shown by
the machine learning algorithms (LR, RF, SVR) achieving very poor performances.
Multiple matrix factorisation methods rely on finding good common patterns between
the datasets, and therefore the features did not contribute much.

To give a further intuition on where the improvements in predictions come from, we
analysed the performances for the GDSC dataset and grouped them based on how
many observed datapoints we have. In Figure 5.7(a) we grouped the rows based on
how many cell lines (rows) they have observed entries for, and in Figure 5.7(b) for
drugs (columns). We again ran ten-fold cross-validation, using the most common
dimensionality found in nested cross-validation: K = 2 for NMF, (K,L) = (4, 4) for
NMTF, K = 4 for BNMF, and (K,L) = (7, 7) for BNMTF. This shows us that the
gain in performance for our proposed HMF models are very consistent across the board,
regardless of how many datapoints are observed.

5.5 Experiments 109

(a) GDSC (b) CTRP

Figure 5.8 Graphs showing average mean squared error (MSE) and standard deviation
of in-matrix predictions on the GDSC (left) and CTRP (right) drug sensitivity datasets.
We vary the fraction of missing entries, averaging performance across 20 random
splits between train and test data, and compare our HMF models (HMF D-MF, HMF
D-MTF) with several matrix factorisation models (NMF, NMTF, BNMF, BNMTF).

5.5.2 Sparse predictions

A very important use case is when there are few observed entries, leading to a sparse
matrix. We measured the performances of in-matrix predictions on sparse matrices,
focusing on the GDSC and CTRP drug sensitivity datasets as these are the largest.
We vary the fraction of missing values and predict those entries, taking the average
of twenty random training-test data splits per fraction. We compared our multiple
matrix factorisation and tri-factorisation models (HMF D-MF and HMF D-MTF)
with the other matrix factorisation models. For the dimensionality of HMF we used
Kt = 10 as before, and for the matrix factorisation models (NMF, NMTF, BNMF,
BNMTF) we used the most common dimensionality from the cross-validation in Section
5.5.1—GDSC: K = 2, (K,L) = (4,4), K = 4, (K,L) = (7,7). CTRP: K = 2, (K,L) =
(2,4), K = 3, (K,L) = (3,3).

Figure 5.8 shows that the non-probabilistic models start overfitting very quickly as the
sparsity levels of two datasets increase, on both the GDSC and CTRP datasets. The
Bayesian versions perform a lot better, but our HMF models consistently outperform
all other models, even when only 10% of the values are observed. The multiple matrix
tri-factorisation model (HMF D-MTF) performs particularly well, again as expected.

110 Bayesian hybrid matrix factorisation for data integration

Table 5.3 Mean squared error (MSE) of 10-fold out-of-matrix cross-validation results
on the promoter-region methylation (PM), gene body methylation (GM), and gene
expression (GE) datasets. We use two datasets as features, and predict values for new
samples in the third dataset. The best results are highlighted in bold.

Method GM, PM to GE GE, GM to PM GE, PM to GM

Gene average 1.009 1.008 1.009
LR 2.847 2.036 1.478
RF 0.811 0.799 0.714
SVR 0.767 0.749 0.657
HMF D-MF 0.788 0.735 0.602
HMF D-MTF 0.850 0.798 0.640
HMF S-MF 0.820 0.794 0.672
HMF CP 1.006 0.972 0.968

5.5.3 Out-of-matrix predictions

Finally, we performed three out-of-matrix prediction experiments on the methylation
and gene expression data. We measured the predictive performances in ten-fold cross-
validation, splitting the 254 samples into ten folds. Given the gene expression values
of the other samples and both of the methylation datasets, we predicted the gene
expression values for new samples (PM, GM to GE). We also did this for the other
two combinations (GE, GM to PM; GE, PM to GM). Methylation data is known to be
correlated with gene expression values (Kundaje et al. [2015]), although this correlation
is generally weak. We therefore expected a weak predictive performance, but it is
interesting to see which methods perform best.

We used the HMF D-MF and HMF D-MTF models described earlier, sharing the
sample factors for HMF D-MF. We also considered the similarity dataset part of our
model (Cm) by using the similarity kernels of each dataset. We give the model the
dataset we are trying to predict (e.g. GE), decomposing it using matrix factorisation,
and also give it the similarity kernels for the other two (e.g. GM and PM). We call this
approach HMF S-MF. We could have also used matrix tri-factorisation, but since the
third matrix is not shared this is effectively the same model, and it gives no difference
in predictive performance.

For the HMF D-MF models we used Kt = 40, 0.5 as the importance value for the
dataset we are trying to predict, and 1.5 for the other two. For HMF D-MTF we used
Kt = 40, and 0.5 as importance for all three datasets. Finally, for HMF CP and HMF

5.6 Model choices 111

S-MF we used Kt = 30, and 1.0 as importance for all three datasets. For all four, we
used nonnegative factors for shared matrices (K-means initialisation), and real-valued
ones for private matrices (least squares initialisation).

We compared with the LR, RF, and SVR algorithms, giving two datasets as features,
and the third as regression values. We additionally used the average value per gene as
a baseline. Since the datasets are real-valued, we cannot compare with any nonnegative
matrix factorisation models.

The results for this out-of-matrix cross-validation are given in Table 5.3. The HMF
D-MF model outperforms all state-of-the-art machine learning methods on two of
the three datasets, and is only beaten by SVR on the first one. Our model performs
especially well on the third case (GE, PM to GM), implying our method works best
when the predictivity of values is high (in other words, when the MSE of predictions is
low). The HMF D-MTF and HMF S-MF methods perform slightly worse, but are still
competitive with the other machine learning methods. Finally, the HMF CP model
does not give good predictions in the out-of-matrix setting, barely outperforming the
gene average baseline.

5.6 Model choices

We performed several additional experiments on the drug sensitivity and methylation
datasets, to explore the advantages and limits of our models. In particular, we
looked at the best initialisation approach; the effectiveness of the automatic relevance
determination prior; the best values to use for the dataset importances α; and the
effects of factorisation types on predictive performance. At the end of each section, we
give our usage recommendations for the model.

5.6.1 Initialisation

As discussed in Section 5.3.4, there are several ways to initialise the Gibbs sampling
parameter values. Here, we measure the convergence of the HMF D-MF and HMF
D-MTF models (nonnegative shared factors, real-valued private factors) on the drug
sensitivity datasets. We compare the following initialisation approaches (we always
initialise ARD using the expectation):

1. Exp: All parameters initialised using expectation.

112 Bayesian hybrid matrix factorisation for data integration

2. Random: All parameters initialised using random draws.

3. K-means, exp: Entity type factor matrices F t initialised using K-means, other
parameters using expectation.

4. K-means, random: Entity type factor matrices F t initialised using K-means,
other factor matrices using random draws.

5. Exp, least squares: Entity type factor matrices F t initialised using expectation,
other factor matrices using least squares.

6. Random, least squares: Entity type factor matrices F t initialised using ran-
dom draws, other factor matrices using least squares.

7. K-means, least squares: Entity type factor matrices F t initialised using
K-means, other factor matrices using least squares.

The plots of convergence for HMF D-MF and HMF D-MTF are given in Figure 5.9,
averaging the training errors across ten repeats. We can see that the K-means with
least squares initialisation strategy (dark blue) provides the fastest convergence on
half of the datasets, often significantly faster. Random and least squares (yellow) also
performs well. Other strategies sometimes provide faster convergence, but none of
them do so consistently.

Recommendation: The fastest convergence is generally provided by combining K-
means initialisation for F t with least squares for the other factor matrices. Random
initialisation for F t with least squares also works well.

5.6.2 Model selection

In this section we measured how effective the automatic relevance determination is at
performing automatic model selection. We performed a similar experiment in Chapter 3
on a single dataset—here we show that it is similarly very effective on multiple datasets.
We repeat the in-matrix cross-validation experiments on the four drug sensitivity
experiments, for the HMF D-MF (multiple matrix factorisation) and HMF D-MTF
(multiple matrix tri-factorisation) models, and vary the values for Kt. Results are
given in Figure 5.10, where we clearly see that adding ARD to the model consistently
reduces overfitting on all four drug sensitivity datasets. ARD is not perfect, and we
can still see that the curve goes up as the values for Kt increase, but this overfitting is
significantly less severe than the models without ARD.

5.6 Model choices 113

(a) HMF D-MF, GDSC IC50 (b) HMF D-MTF, GDSC IC50

(c) HMF D-MF, CCLE IC50 (d) HMF D-MTF, CCLE IC50

(e) HMF D-MF, CTRP EC50 (f) HMF D-MTF, CTRP EC50

(g) HMF D-MF, CCLE EC50 (h) HMF D-MTF, CCLE EC50

Figure 5.9 Graphs showing the convergence of the HMF D-MF (top two rows) and
HMF D-MTF (bottom two rows) models on the four drug sensitivity datasets, for the
seven different initialisation approaches.

114 Bayesian hybrid matrix factorisation for data integration

(a) GDSC IC50 (b) CTRP EC50

(c) CCLE IC50 (d) CCLE EC50

Figure 5.10 Graphs showing the cross-validation performance of in-matrix predictions
on the drug sensitivity datasets, where we vary the dimensionality Kt for our HMF
models (HMF D-MF in red, HMF D-MTF in blue), both for HMF with ARD (o), and
without (x). Adding ARD clearly reduces overfitting as Kt increases.

Recommendation: Always use ARD to reduce overfitting in the model. Even though
ARD does not always entirely eliminate the need for model selection (there is still some
overfitting as Kt becomes very large), it generally makes it much less critical to try a
large range of dimensionalities to find the best one. Instead, trying one or a couple
will prove just as effective.

5.6.3 Importance value

We experimented with different values for the importance values α, for the out-of-matrix
prediction setting. Specifically, we consider the case where we predict one dataset
(either gene expression, promoter-region methylation, or gene body methylation) using

5.6 Model choices 115

the other two datasets as additional datasets. We vary the value of α for the dataset
we are trying to predict (α0) as well as for the two other datasets we are learning from
(α1, α2). We use Kt = 10 for all experiments, nonnegative factors for the shared factor
matrices, and real-valued for the private ones. For initialisation we use K-means and
least squares. We perform 10-fold cross-validation, taking out 10% of the samples each
time for the dataset we are trying to predict, and then measuring the mean squared
error (MSE) of predictions. The average performances can be found in Table 5.4, for
both HMF D-MF (multiple matrix factorisation) and HMF D-MTF (multiple matrix
tri-factorisation).

For the HMF D-MF model (left column) we see that datasets with low predictivity
(such as GE and PM—note the high MSE) have the best parameter values when the
importance of the dataset to be predicted (α0) is low, and the importance of the
datasets to learn from (α1, α2) is high. This is presumably because higher importance
values lead to a better fit to the data, and if there is low predictivity, we should not fit
to the data too much (otherwise we might overfit). In contrast, when the predictivity is
high (such as GM, bottom row), the importance value for all datasets should not be too
low, because this results in a poor fit to the data and hence poor predictions. For the
HMF D-MTF model (right column) we see a similar effect, in that if the predictivity
is better, the best values for the importance increase. However, for this approach all
of the importance values should generally be set low if the datasets are different. For
the approach based on similarity kernels (HMF S-MF) we found that the importance
value had much less of an impact (results omitted), as long as it is not lower than 1.0.

Recommendation: If the datasets are more similar, use normal importance values
(1.0) for all datasets. If the datasets are very dissimilar and have low predictivity, use
a low importance value for the main dataset for which we are trying to predict values
(like 0.5). For the other datasets use a higher importance value when using HMF D-MF
(like 1.5), but for HMF D-MTF use a low one (like 0.5). Finally, when using similarity
kernels (HMF S-MF), use the normal importance value for the kernels (1.0).

5.6.4 Factorisation types

Finally, we experimented with the choice of factorisation types. Recall that each dataset
can be factorised either using matrix factorisation (Dl) or matrix tri-factorisation (Rn).
For the drug sensitivity dataset, there are therefore a number of hybrid factorisation
possibilities: using matrix factorisation for all (as used in the main paper; HMF D-MF),

116 Bayesian hybrid matrix factorisation for data integration

Table 5.4 Performances of out-of-matrix cross-validation results for HMF D-MF (left
column) and D-MTF (right column), where we vary the importance value for the
dataset we are trying to predict (α0), and for the other two datasets we are learning
from (α1, α2). We have three different datasets (gene expression, GE; gene body
methylation, GM; and promoter region methylation, PM). We therefore have three
different prediction settings. We have highlighted the most promising parameter value
areas in green, and the least promising in red.

HMF D-MF, GM + PM → GE

GM (α1), PM (α2)

GE (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.878 0.843 0.835 0.831 0.832
0.5 0.845 0.849 0.829 0.832 0.829
1.0 0.848 0.916 1.195 1.322 0.831
1.5 0.871 0.948 1.288 1.407 1.470
2.0 0.896 0.966 1.392 1.711 1.782

HMF D-MTF, GM + PM → GE

GM (α1), PM (α2)

GE (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.866 0.906 0.941 0.950 0.954
0.5 0.874 0.870 0.914 0.941 0.945
1.0 0.933 0.985 0.940 0.942 0.961
1.5 0.959 0.958 1.065 1.026 1.000
2.0 0.957 1.080 1.211 1.145 1.147

HMF D-MF, GE + GM → PM

GE (α1), GM (α2)

PM (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.859 0.799 0.795 0.799 0.798
0.5 0.811 0.812 0.783 0.783 0.784
1.0 0.789 0.814 0.987 0.788 0.783
1.5 0.784 0.809 1.070 1.247 0.870
2.0 0.798 0.835 1.111 1.280 1.255

HMF D-MTF, GE + GM → PM

GE (α1), GM (α2)

PM (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.862 0.893 0.943 0.946 0.947
0.5 0.841 0.885 0.898 0.943 0.944
1.0 0.852 0.848 1.012 0.885 0.904
1.5 0.876 0.866 0.900 1.080 0.904
2.0 0.884 0.881 0.900 1.096 1.099

HMF D-MF, GE + PM → GM

GE (α1), PM (α2)

GM (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.790 0.708 0.703 0.697 0.701
0.5 0.724 0.670 0.687 0.688 0.685
1.0 0.698 0.657 0.659 0.670 0.685
1.5 0.698 0.655 0.667 0.657 0.666
2.0 0.689 0.668 0.671 0.676 0.665

HMF D-MTF, GE + PM → GM

GE (α1), PM (α2)

GM (α0) 0.25 0.5 1.0 1.5 2.0

0.25 0.773 0.775 0.851 0.854 0.861
0.5 0.761 0.746 0.774 0.818 0.850
1.0 0.782 0.757 0.754 0.786 0.779
1.5 0.832 0.752 0.745 0.783 0.795
2.0 0.836 0.811 0.802 0.791 0.805

5.6 Model choices 117

Table 5.5 Spearman correlation between values of each of the drug sensitivity (top)
and methylation (bottom) dataset pairs.

Drug sensitivity GDSC IC50 CTRP EC50 CCLE IC50 CCLE EC50

GDSC IC50 - 0.47 0.59 0.39
CTRP EC50 0.47 - 0.44 0.45
CCLE IC50 0.59 0.44 - 0.65
CCLE EC50 0.39 0.45 0.65 -

Methylation GE GM PM

GE - -0.07 -0.12
GM -0.07 - 0.14
PM -0.12 0.14 -

using matrix tri-factorisation for all (HMF D-MTF), using matrix factorisation on one
dataset and tri-factorisation for the other three, or using matrix factorisation on two
datasets and tri-factorisation on two as well. Note that applying matrix tri-factorisation
on only one dataset is equivalent to using matrix factorisation on all four (since the
second factor matrix is not shared with any other dataset). In this section we explore
some of these choices.

We computed the Spearman correlation of values in each of the pairs of the drug
sensitivity datasets (taking only the overlapping entries per pair), and similarly for
the gene expression and methylation datasets. These are given in Table 5.5, where
we see that the former are very highly correlated, whereas the latter have little to no
correlation. As a result, we are expecting that for the drug sensitivity data, multiple
matrix tri-factorisation should often do best, and for the methylation data multiple
matrix factorisation. However, sometimes a hybrid approach might do better.

To investigate this, we measured the 10-fold cross-validation performance, similar to
Section 5.5.1. We tried all variations of combinations between matrix factorisation
and tri-factorisation, and for simplicity used Kt = 10, K-means initialisation for the
shared factor matrices (Ft) and least squares for the private ones (Gl,Sn). For the
drug sensitivity data we used α = 1.0, and for the methylation α = 0.5. Whenever we
used matrix factorisation we shared the row factors (corresponding to drugs).

The results for the drug sensitivity data are given in Table 5.6. The multiple ma-
trix tri-factorisation approach oftentimes achieves the best performance, as expected.

118 Bayesian hybrid matrix factorisation for data integration

Table 5.6 Performances of in- and out-of-matrix cross-validation results on the drug
sensitivity (top table) and methylation (bottom) datasets, where we vary the fac-
torisation types on each of the datasets. The best performances are highlighted in
bold.

Drug sensitivity – Factorisation type Performance

GDSC CTRP CCLE IC50 CCLE EC50 GDSC CTRP CCLE IC50 CCLE EC50

R R R R 0.0767 0.0889 0.0537 0.1071
D R R R 0.0765 0.0901 0.0546 0.1098
R D R R 0.0758 0.0909 0.0543 0.1079
R R D R 0.0765 0.0890 0.0584 0.1055
R R R D 0.0768 0.0893 0.0537 0.1078
D D R R 0.0763 0.0899 0.0569 0.1079
D R D R 0.0766 0.0901 0.0553 0.1090
D R R D 0.0769 0.0898 0.0554 0.1064
R D D R 0.0765 0.0901 0.0566 0.1060
R D R D 0.0772 0.0906 0.0543 0.1082
R R D D 0.0771 0.0892 0.0542 0.1076
D D D D 0.0776 0.0910 0.0562 0.1064

Methylation – Factorisation type Performance

GE GM PM GE GM PM

R R R 0.876 0.744 0.864
D R R 0.877 0.717 0.949
R D R 1.128 0.698 0.960
R R D 0.860 0.692 0.834
D D D 0.869 0.663 0.799

Sometimes a hybrid combination of factorisation can lead to improvements, although
we could not determine a rule of thumb for this (for example based on the overlap or
correlation between datasets). By trying out multiple candidates a suitable hybridity
can be found. For the methylation data the results are also given in Table 5.6. As
can be seen, using multiple matrix factorisation (D for all matrices) gives the best
performance most of the time, which is unsurprising since the three datasets are so
weakly correlated.

Recommendation: For dissimilar datasets, with low correlation (like the methylation
data), it is best to use multiple matrix factorisation. When the datasets are very
similar, with high correlation (like the drug sensitivity data), matrix tri-factorisation
can give better results. These two models will generally give very good performance
already. One of the hybrid combinations of matrix factorisation and tri-factorisation

5.7 Conclusion 119

can sometimes lead to even better results. Nested cross-validation can be used to find
the best hybrid combination.

5.7 Conclusion

In this chapter we studied how matrix factorisation can be used for jointly decomposing
multiple datasets. We have presented a fully Bayesian model for data integration, based
on a hybrid of nonnegative, semi-nonnegative, and real-valued matrix factorisation and
tri-factorisation models. The general nature of this model allows it to easily integrate
many datasets across different entity types, including repeated experiments, similarity
matrices, and very sparse datasets.

We demonstrated the model on two biological applications. On four drug sensitivity
datasets we obtained significant in-matrix prediction improvements compared to state-
of-the-art matrix factorisation and machine learning methods. Our data fusion approach
based on multiple matrix tri-factorisation (HMF D-MTF) is particularly powerful,
achieving the best performance on three of the four datasets. We also showed that our
proposed model can provide consistently better predictions on very sparse datasets,
outperforming all other matrix factorisation models. Additionally, we integrated
methylation and gene expression data in an out-of-matrix prediction setting. Here
the approach based on multiple matrix factorisation (HMF D-MF) proved to be very
powerful, beating all state-of-the-art machine learning methods on two of the three
datasets. The approaches using multiple matrix tri-factorisation and similarity datasets
are also promising. Furthermore, we explored the best initialisation approach, the
effectiveness of the automatic relevance determination in the data integration setting,
the best importance value settings, and explored the trade-offs between the different
factorisation type choices.

The experiments show that Bayesian matrix factorisation is a very powerful paradigm
for predicting missing values in both the in- and out-of-matrix settings. The multiple
matrix tri-factorisation approach has not been explored much in the literature, but for
integrating similar datasets this is a very promising area. More research is necessary to
exactly determine what factorisation type is appropriate when, and in particular which
hybrid combination of multiple matrix factorisation and tri-factorisation to use. This
will be particularly interesting when integrating a large number of datasets, which will
be increasingly more common in this age of big data.

Chapter 6

Conclusion

The aim of this thesis is to demonstrate the power of Bayesian matrix factorisation
models for predicting missing values in real-world datasets, as well as exploring the
trade-offs between the different modelling choices: the inference approach, prior and
likelihood choices, and factorisation types. We have achieved the above goals through
the development of new models and algorithms, as well as carefully reviewing the
literature and providing new comparisons on real-world datasets. We provide three
main contributions:

(a) Trade-offs between inference approaches. Starting with a Bayesian non-
negative matrix factorisation model, we reviewed three inference approaches
based on (non-probabilistic) multiplicative updates, Gibbs sampling, and iter-
ated conditional modes. We added another fully Bayesian approach that uses
variational Bayesian inference, which was new for this model. We also extended
the model to Bayesian nonnegative matrix tri-factorisation, deriving the four
inference algorithms, and added the automatic relevance determination prior for
both of these models to help with model selection. We then extensively compared
the inference approaches for both models on synthetic and four drug sensitivity
datasets, comparing their convergence and runtime speeds, cross-validation per-
formances, robustness to noise and sparsity, and how effective they are at model
selection.

These experiments demonstrated that the fully Bayesian approaches are more
robust to noise and sparsity and provide better cross-validation performances,

122 Conclusion

but at the cost of inference speed. Furthermore, the automatic relevance determi-
nation prior helps with model selection, but does not provide more robustness to
noise and sparsity. The models and experiments were implemented in Python and
are publicly available at https://github.com/ThomasBrouwer/BNMTF_ARD.

(b) Trade-offs between prior and likelihood choices. Next we considered the
Bayesian prior and likelihood distribution choices. We reviewed a total of sixteen
models from the literature with different likelihoods, priors, and hierarchical
priors; and grouped them into four categories: real-valued, nonnegative, semi-
nonnegative, and Poisson models. Considering three different applications (drug
sensitivity, movie rating predictions, and methylation profiles) we compared the
four groups of methods on the same areas as we did for the inference approaches.

We discovered that on the small datasets considered, Poisson-likelihood ap-
proaches are not competitive with the other three groups, which goes against
claims in the literature where they are much better on larger datasets. We also
found that the nonnegative models are more constrained than the real-valued
ones, which can help at high sparsity levels—although this difference can be
bridged by using the right hierarchical prior. The semi-nonnegative models were
simply equivalent to the real-valued ones. Finally, some hierarchical models
made no difference at all. The Python code and experiments can be found at
https://github.com/ThomasBrouwer/BMF_Priors.

(c) Data integration using multiple matrix factorisation. Finally, we intro-
duced a new Bayesian hybrid matrix factorisation model, which can be used for
integrating multiple datasets by jointly factorising them. In particular, our model
hybridly combines matrix factorisation and tri-factorisations by allowing the user
to specify which factor matrices should be shared between the factorisations, as
well as specifying for each matrix whether the factor values should be real-valued
or nonnegative—hence combining the first three model groups from the priors
and likelihood chapter.

We then compared the predictive performance of this new model with that of
other non-probabilistic and Bayesian matrix factorisation models, as well as state-
of-the-art machine learning approaches—linear regression, random forests, and
support vector machines. In both in- and out-of-matrix prediction experiments
we showcased improvements and outperformed competing methods. The multiple
matrix tri-factorisation approach is especially interesting for datasets that are

https://github.com/ThomasBrouwer/BNMTF_ARD
https://github.com/ThomasBrouwer/BMF_Priors

6.1 Future work 123

very similar, such as repeated experiments. As before, all code, experiments, and
datasets are available at https://github.com/ThomasBrouwer/HMF.

6.1 Future work

The work undertaken in this thesis can be extended in several interesting ways.

(a) Priors and likelihood choices for bigger datasets. As discussed before,
Poisson-likelihood methods are generally claimed to be a more efficient and
accurate approach for factorising very large datasets. In the experiments of
Chapter 4 we only considered relatively small datasets, where we found the
opposite to be true. It would be interesting to see how the four groups of methods
perform on datasets of varying sizes, and whether we can draw general lessons
about when one approach might be better than the others.

(b) Factor analysis. Matrix factorisation models are typically used either to predict
missing values, or to find patterns in the datasets by looking at the factor matrices.
In this thesis we decided to largely focus only on the former, because this is
already a huge research area. However, it would be interesting to see how the
inference, prior, and likelihood choices affect our ability to find clusters and other
patterns in the data. We briefly considered the effect of the prior and likelihood
choice on the distribution of factor values in Chapter 4, and saw that some priors
cause the factor values to be more similar, but there is a lot of room for further
experimentation in this direction.

(c) Best hybrid multiple matrix factorisations. In Chapter 5 we explored
whether a hybrid combination of matrix factorisations and tri-factorisations could
give better predictions than using the same type for all datasets. As the number
of datasets increase, this choice can become more important. We were not able
to determine a rule of thumb based on the overlap and correlation between the
datasets that could help with this choice, but we hope that future research will
shed light on this problem.

(d) Bicluster analysis using multiple matrix factorisation. The hybrid matrix
factorisation model introduced in Chapter 5 could also be very useful at finding
biclusters in datasets. Multiple matrix factorisation approaches only share one
factor matrix at a time, but for similar datasets it makes sense to share more of

https://github.com/ThomasBrouwer/HMF

124 Conclusion

the factor values, and multiple matrix tri-factorisation allows us to do this. We
already saw that this can lead to predictive improvements; we believe that it can
also help us better identify biclusters in the datasets. For example for the gene
expression and methylation datasets, it could help us identify a subset of patients
for which only a subset of genes are differentially expressed. To better identify
these clusters, the model would need to be modified with more sparsity-inducing
priors for the middle (biclustering) matrix.

References

Adams, C. P. and Brantner, V. V. (2006). Estimating the cost of new drug development:
is it really 802 million dollars? Health affairs (Project Hope), 25(2):420–8.

Ammad-ud din, M., Georgii, E., Gönen, M., Laitinen, T., Kallioniemi, O., Wennerberg,
K., Poso, A., and Kaski, S. (2014). Integrative and personalized QSAR analysis in
cancer by kernelized Bayesian matrix factorization. Journal of chemical information
and modeling, 54(8):2347–59.

An, S., Yoo, J., and Choi, S. (2010). Manifold-respecting probabilistic matrix tri-
factorization. In Proceedings of the 2010 IEEE International Workshop on Machine
Learning for Signal Processing, MLSP 2010, pages 24–28. IEEE.

Arngren, M., Schmidt, M. N., and Larsen, J. (2011). Unmixing of Hyperspectral images
using bayesian non-negative matrix factorization with volume prior. In Journal of
Signal Processing Systems, volume 65, pages 479–496. IEEE.

Asuncion, A., Welling, M., Smyth, P., and Teh, Y. W. (2009). On smoothing and infer-
ence for topic models. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence.

Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S.,
Wilson, C. J., et al. (2012). The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity. Nature, 483(7391):603–7.

Beal, M. and Ghahramani, Z. (2003). The Variational Bayesian EM Algorithm for
Incomplete Data: with Application to Scoring Graphical Model Structures. Bayesian
Statistics 7, Oxford University Press.

Bennett, J. and Lanning, S. (2007). The netflix prize. In Proceedings of the KDD Cup
Workshop 2007, pages 3–6. ACM.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2012). Latent Dirichlet Allocation. Journal
of Machine Learning Research, 3(4-5):993–1022.

Booth, B. and Zemmel, R. (2004). Prospects for productivity. Nature reviews. Drug
discovery, 3(5):451–6.

Bouchard, G., Yin, D., and Guo, S. (2013). Convex collective matrix factorization.
In Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 31, pages 144–152.

126 References

Brunet, J. P., Golub, T. R., Tamayo, P., and Mesirov, J. P. (2004). Metagenes and
molecular pattern discovery using matrix factorization. Proceedings of the National
Academy of Sciences, 101(12):4164–4169.

Chatzis, S. P. (2014). Dynamic Bayesian Probabilistic Matrix Factorization. In
Proceedings of the 28th AAAI Conference on Artificial Intelligence, pages 1731–1737.

Chu, W. and Ghahramani, Z. (2009). Probabilistic models for incomplete multi-
dimensional arrays. In Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics (AISTATS).

Costello, J. C., Heiser, L. M., Georgii, E., Gönen, M., Menden, M. P., Wang, N. J.,
Bansal, M., Ammad-ud din, M., Hintsanen, P., Khan, S. A., et al. (2014). A
community effort to assess and improve drug sensitivity prediction algorithms.
Nature Biotechnology, 32(12):1202–1212.

De Niz, C., Rahman, R., Zhao, X., and Pal, R. (2016). Algorithms for Drug Sensitivity
Prediction. Algorithms, 9(4):77.

Dimasi, J. A. (2001). New drug development in the United States from 1963 to 1999.
Clinical pharmacology and therapeutics, 69(5):286–96.

Ding, C., He, X., and Simon, H. D. (2005a). On the equivalence of nonnegative matrix
factorization and spectral clustering. In SIAM International Conference on Data
Mining.

Ding, C., He, X., and Simon, H. D. (2005b). On the Equivalence of Nonnegative Matrix
Factorization and Spectral Clustering. In Proceedings of the fifth SIAM International
Conference on Data Mining (SDM), pages 606–610.

Ding, C., Li, T., and Jordan, M. I. (2010). Convex and semi-nonnegative matrix
factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
32:45–55.

Ding, C., Li, T., and Peng, W. (2008). On the equivalence between Non-negative
Matrix Factorization and Probabilistic Latent Semantic Indexing. Computational
Statistics and Data Analysis, 52(8):3913–3927.

Ding, C., Li, T., Peng, W., and Park, H. (2006). Orthogonal nonnegative matrix
t-factorizations for clustering. In Proceedings of the 12th ACM SIGKDD.

Dong, Z., Zhang, N., Li, C., Wang, H., Fang, Y., Wang, J., and Zheng, X. (2015).
Anticancer drug sensitivity prediction in cell lines from baseline gene expression
through recursive feature selection. BMC Cancer, 15(1):489.

Eicher, T. S., Papageorgiou, C., and Raftery, A. E. (2011). Default priors and predictive
performance in Bayesian model averaging, with application to growth determinants.
Journal of Applied Econometrics, 26(1):30–55.

Figueiredo, M. and Jain, A. (2002). Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396.

References 127

Gligorijević, V. and Pržulj, N. (2015). Methods for biological data integration: per-
spectives and challenges. Journal of the Royal Society, Interface, 12(112).

Golub, G. H. and Reinsch, C. (1970). Singular value decomposition and least squares
solutions. Numerische Mathematik, 14(5):403–420.

Gönen, M. (2012). Predicting drug-target interactions from chemical and genomic
kernels using Bayesian matrix factorization. Bioinformatics, 28(18).

Gönen, M. and Kaski, S. (2014). Kernelized Bayesian Matrix Factorization. IEEE
transactions on pattern analysis and machine intelligence, 36(10):2047–60.

Gonzalez-Perez, A., Perez-Llamas, C., Deu-Pons, J., Tamborero, D., Schroeder, M. P.,
Jene-Sanz, A., Santos, A., and Lopez-Bigas, N. (2013). IntOGen-mutations identifies
cancer drivers across tumor types. Nature Methods, 10(11):1081–1082.

Gopalan, P. and Blei, D. M. (2014). Bayesian Nonparametric Poisson Factorization
for Recommendation Systems. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS), volume 33, pages
2–4.

Gopalan, P., Hofman, J. M., and Blei, D. M. (2015). Scalable recommendation with
hierarchical Poisson factorization. In Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence, pages 326–335. AUAI Press.

Harper, F. M. and Konstan, J. A. (2015). The MovieLens Datasets: History and
Context. ACM Transactions on Interactive Intelligent Systems, 5(4):1–19.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers
in Phonetics, 16(10):1– 84.

Harshman, R. A. (1972). PARAFAC2: Mathematical and technical notes. UCLA
working papers in phonetics, 22(10):30–44.

Hayashi, K., Hirayama, J.-i., and Ishii, S. (2009). Dynamic Exponential Family Matrix
Factorization. pages 452–462.

Hoff, P. D. (2013). Equivariant and scale-free Tucker decomposition models. arXiv
preprint at arXiv:1312.6397.

Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the
22nd annual international ACM SIGIR conference on research and development in
information retrieval, pages 50–57, New York, New York, USA. ACM Press.

Hu, C., Rai, P., and Carin, L. (2015). Zero-Truncated Poisson Tensor Factorization for
Massive Binary Tensors. In Uncertainty in Artificial Intelligence (UAI).

Hwang, T., Atluri, G., Xie, M., Dey, S., Hong, C., Kumar, V., and Kuang, R. (2012). Co-
clustering phenome-genome for phenotype classification and disease gene discovery.
Nucleic Acids Research, 40(19):e146.

128 References

Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H., and Margolin, A. A. (2014).
Systematic assessment of analytical methods for drug sensitivity prediction from
cancer cell line data. Pacific Symposium on Biocomputing. Pacific Symposium on
Biocomputing, pages 63–74.

Jing, L., Wang, P., and Yang, L. (2015). Sparse Probabilistic Matrix Factorization by
Laplace Distribution for Collaborative Filtering. In Proceedings of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI).

Kaufman, G. M. and Press, S. J. (1973). Bayesian factor analysis.

Khan, S. A., Leppäaho, E., and Kaski, S. (2016). Bayesian multi-tensor factorization.
Machine Learning, 105(2):233–253.

Kim, Y.-D. and Choi, S. (2007). Nonnegative Tucker Decomposition. In 2007 IEEE
Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE.

Kim, Y.-d. and Choi, S. (2014). Scalable Variational Bayesian Matrix Factorization
with Side Information. In Proceedings of the 17th International Conference on
Artificial Intelligence and Statistics (AISTATS), volume 33.

Klami, A., Bouchard, G., and Tripathi, A. (2014). Group-sparse Embeddings in
Collective Matrix Factorization. In Proceedings of the 2nd International Conference
on Learning Representations.

Klami, A., Virtanen, S., and Kaski, S. (2010). Bayesian exponential family projec-
tions for coupled data sources. In Proceedings of the Twenty-Sixth Conference on
Uncertainty in Artificial Intelligence.

Koboldt, D. C., Fulton, R. S., McLellan, M. D., Schmidt, H., Kalicki-Veizer, J.,
McMichael, J. F., Fulton, L. L., et al. (2012). Comprehensive molecular portraits of
human breast tumours. Nature, 490(7418):61–70.

Kong, D., Ding, C., and Huang, H. (2011). Robust nonnegative matrix factorization
using l21-norm. In Proceedings of the 20th ACM international conference on Infor-
mation and knowledge management (CIKM), pages 673–682, New York, New York,
USA. ACM Press.

Kuang, D., Ding, C., and Park, H. (2012). Symmetric Nonnegative Matrix Factorization
for Graph Clustering. In SIAM International Conference on Data Mining (SDM),
pages 494–505.

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A.,
Kheradpour, P., et al. (2015). Integrative analysis of 111 reference human epigenomes.
Nature, 518(7539):317–330.

Lakshminarayanan, B., Bouchard, G., and Archambeau, C. (2011). Robust bayesian
matrix factorisation. In International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 15, pages 425–433.

Lawson, C. L. and Hanson, R. J. (1995). Solving least squares problems, volume 15.

References 129

Lee, C. M., Mudaliar, M. a. V., Haggart, D. R., Wolf, C. R., Miele, G., Vass, J. K.,
Higham, D. J., and Crowther, D. (2012). Simultaneous non-negative matrix fac-
torization for multiple large scale gene expression datasets in toxicology. PloS one,
7(12):e48238.

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791.

Lee, D. D. and Seung, H. S. (2000). Algorithms for Non-negative Matrix Factorization.
NIPS, MIT Press, pages 556–562.

Ley, E. and Steel, M. F. (2009). On the effect of prior assumptions in Bayesian model
averaging with applications to growth regression. Journal of Applied Econometrics,
24(4):651–674.

Li, S., Hou, X. W., Zhang, H. J., and Cheng, Q. S. (2001). Learning spatially localized,
parts-based representation. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 1–6. IEEE
Comput. Soc.

Li, T. (2010). Bridging Domains with Words : Opinion Analysis with Matrix. In
Proceedings of the 10th SIAM International Conference on Data Mining, pages
293–302.

Li, T., Zhang, Y., and Sindhwani, V. (2009). A non-negative matrix tri-factorization
approach to sentiment classification with lexical prior knowledge. Proceeding of the
47th Annual Meeting of the Association for Computational Linguistics.

Lippert, C., Weber, S., and Huang, Y. (2008). Relation prediction in multi-relational
domains using matrix factorization. In NIPS workshop on structured input, structured
output.

Liu, Y., Gu, Q., Hou, J. P., Han, J., and Ma, J. (2014). A network-assisted co-clustering
algorithm to discover cancer subtypes based on gene expression. BMC bioinformatics,
15(1):37.

Masood, A., Pan, W., and Doshi-Velez, F. (2016). An Empirical Comparison of Sam-
pling Quality Metrics: A Case Study for Bayesian Nonnegative Matrix Factorization.
arXiv preprint at arXiv:1606.6250.

Mayekawa, S. (1985). Bayesian factor analysis. Technical report, IOWA UNIV IOWA
CITY.

Menden, M. P., Iorio, F., Garnett, M., McDermott, U., Benes, C. H., Ballester,
P. J., and Saez-Rodriguez, J. (2013). Machine Learning Prediction of Cancer Cell
Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS ONE,
8(4):e61318.

Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis.
Chemometrics and Intelligent Laboratory Systems, 37(1):23–35.

130 References

Paatero, P. and Tapper, U. (1994). Positive Matrix Factorization - A Nonnegative Factor
Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics,
5(2):111–126.

Pal, R., Berlow, N., and Haider, S. (2012). Anticancer drug sensitivity analysis: An
integrated approach applied to Erlotinib sensitivity prediction in the CCLE database.
In Proceedings 2012 IEEE International Workshop on Genomic Signal Processing
and Statistics (GENSIPS), pages 9–12. IEEE.

Paquet, U., Thomson, B., and Winther, O. (2012). A hierarchical model for ordinal
matrix factorization. Statistics and Computing, 22(4):945–957.

Pauca, V., Shahnaz, F., Berry, M., and Plemmons, R. (2004). Text mining using
non-negative matrix factorizations. In Proceedings SIAM International Conference
on Data Mining (SDM), pages 452–456.

Pauca, V. P., Piper, J., and Plemmons, R. J. (2006). Nonnegative matrix factorization
for spectral data analysis. Linear Algebra and Its Applications, 416(1):29–47.

Remes, S., Mononen, T., and Kaski, S. (2015). Classification of weak multi-view signals
by sharing factors in a mixture of Bayesian group factor analyzers. NIPS Workshop
on Machine Learning and Interpretation in Neuroimaging (MLINI).

Salakhutdinov, R. and Mnih, A. (2008). Bayesian Probabilistic Matrix Factorization
using Markov Chain Monte Carlo. In International Conference on Machine Learning
(ICML), pages 880–887, New York, New York, USA. ACM Press.

Salimans, T., Kingma, D. P., and Welling, M. (2015). Markov Chain Monte Carlo and
Variational Inference: Bridging the Gap. In Proceedings of the 32nd International
Conference on Machine Learning.

Schmidt, M. N. and Mohamed, S. (2009). Probabilistic non-negative tensor factorization
using Markov chain Monte Carlo. In 17th European Signal Processing Conference.

Schmidt, M. N., Winther, O., and Hansen, L. K. (2009). Bayesian non-negative matrix
factorization. In International Conference on Independent Component Analysis and
Signal Separation, Springer Lecture Notes in Computer Science, Vol. 5441.

Seashore-Ludlow, B., Rees, M. G., Cheah, J. H., Cokol, M., Price, E. V., Coletti, M. E.,
Jones, V., et al. (2015). Harnessing Connectivity in a Large-Scale Small-Molecule
Sensitivity Dataset. Cancer discovery, 5(11):1210–23.

Seichepine, N., Essid, S., Févotte, C., and Cappé, O. (2013). Soft nonnegative
matrix co-factorization with application to multimodal speaker diarization. In
IEEE International Conference on Acoustics, Speech and Signal Processing, pages
3537–3541. IEEE.

Shen, B. and Si, L. (2010). Nonnegative Matrix Factorization Clustering on Multiple
Manifolds. In AAAI Conference on Artificial Intelligence, pages 575–580.

References 131

Singh, A. P. and Gordon, G. J. (2008). Relational learning via collective matrix
factorization. In Proceeding of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, page 650, New York, New York, USA. ACM
Press.

Tan, V. Y. F. and Févotte, C. (2013). Automatic relevance determination in nonnegative
matrix factorization with the (β)-divergence. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(7):1592–1605.

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psy-
chometrika, 31(3):279–311.

Virtanen, S., Klami, A., and Kaski, S. (2011). Bayesian CCA via Group Sparsity. In
Proceedings of the 28th International Conference on Machine Learning.

Virtanen, S., Klami, A., Khan, S., and Kaski, S. (2012). Bayesian group factor analysis.
In Proceedings of the 15th International Conference on Artificial Intelligence and
Statistics (AISTATS).

Žitnik, M. and Zupan, B. (2015). Data Fusion by Matrix Factorization. IEEE
transactions on pattern analysis and machine intelligence, 37(1):41–53.

Wang, F., Li, T., and Zhang, C. (2008). Semi-supervised clustering via matrix
factorization. In Proceedings of the 2008 SIAM International Conference on Data
Mining.

Wang, H., Huang, H., Ding, C., and Nie, F. (2013). Predicting Protein–Protein
Interactions from Multimodal Biological Data Sources via Nonnegative Matrix Tri-
Factorization. Journal of Computational Biology, 20(4):344–358.

Wang, H.-Q., Zheng, C.-H., and Zhao, X.-M. (2015a). jNMFMA: a joint non-negative
matrix factorization meta-analysis of transcriptomics data. Bioinformatics, 31(4):572–
80.

Wang, L., Li, X., Zhang, L., and Gao, Q. (2017). Improved anticancer drug response
prediction in cell lines using matrix factorization with similarity regularization. BMC
Cancer, 17(1):513.

Wang, Z., Yuan, W., and Montana, G. (2015b). Sparse multi-view matrix factorization:
a multivariate approach to multiple tissue comparisons. Bioinformatics, 31(19):3163–
71.

Welling, M. and Weber, M. (2001). Positive tensor factorization. Pattern Recognition
Letters, 22(12):1255–1261.

Xu, Z., Yan, F., Yuan, and Qi (2012). Infinite Tucker Decomposition: Nonparamet-
ric Bayesian Models for Multiway Data Analysis. In In Proceedings of the 29th
International Conference on Machine Learning (ICML).

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., Bindal,
N., et al. (2013). Genomics of Drug Sensitivity in Cancer (GDSC): a resource for
therapeutic biomarker discovery in cancer cells. Nucleic acids research, 41(Database
issue):D955–61.

132 References

Yang, Y. and Dunson, D. B. (2015). Bayesian Conditional Tensor Factorizations for
High-Dimensional Classification. Journal of the American Statistical Association.

Yoo, J. and Choi, S. (2009). Probabilistic matrix tri-factorization. In IEEE International
Conference on Acoustics, Speech, and Signal Processing.

Yılmaz, Y. K. and Cemgil, A. T. (2010). Probabilistic Latent Tensor Factorization.
In Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., and Vincent, E., editors,
LVA/ICA 2010, Lecture Notes in Computer Science, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Zhang, D. Q., Chen, S. C., and Zhou, Z. H. (2005). Two-dimensional non-negative
matrix factorization for face representation and recognition. In Analysis and Modelling
of Faces and Gestures, volume 3723, pages 350–363.

Zhang, X., Zhao, L., Zong, L., Liu, X., and Yu, H. (2014). Multi-view Clustering via
Multi-manifold Regularized Nonnegative Matrix Factorization. In IEEE International
Conference on Data Mining, pages 1103–1108. IEEE.

Zhang, Y. and Yeung, D.-Y. (2012). Overlapping community detection via bounded
nonnegative matrix tri-factorization. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, page 606, New
York, New York, USA. ACM Press.

Zhao, Q., Zhang, L., and Cichocki, A. (2015). Bayesian Sparse Tucker Models for
Dimension Reduction and Tensor Completion. arXiv preprint at arXiv:1505.02343.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015). Scalable nonparametric multiway
data analysis. In Proceedings of the 18th International Conference on Artificial
Intelligence and Statistics (AISTATS).

Zhu, S., Yu, K., Chi, Y., and Gong, Y. (2007). Combining content and link for classifi-
cation using matrix factorization. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), page 487, New York, New York, USA. ACM Press.

	Table of contents
	List of figures
	List of tables
	Summary of notation
	1 Introduction
	1.1 Research questions
	1.2 Thesis overview
	1.3 Related publications

	2 Background
	2.1 Probabilistic latent variable models
	2.2 Approximate Bayesian posterior inference
	2.2.1 Gibbs sampling
	2.2.2 Variational Bayesian inference

	2.3 Matrix factorisation
	2.3.1 Nonnegative matrix factorisation
	2.3.2 Bayesian matrix factorisation
	2.3.3 Bayesian nonnegative matrix factorisation
	2.3.4 Matrix tri-factorisation
	2.3.5 Symmetric matrix factorisation
	2.3.6 Multiple matrix factorisation
	2.3.7 Canonical correlation analysis
	2.3.8 Tensor decomposition

	2.4 Collaborative filtering
	2.4.1 Drug sensitivity
	2.4.2 Gene expression and methylation
	2.4.3 Movie ratings

	3 Effects of inference methods in Bayesian nonnegative matrix factorisation
	3.1 Models
	3.1.1 Nonnegative matrix factorisation
	3.1.2 Nonnegative matrix tri-factorisation
	3.1.3 Automatic relevance determination

	3.2 Inference approaches
	3.2.1 Non-probabilistic inference
	3.2.2 Gibbs sampling
	3.2.3 Iterated conditional modes
	3.2.4 Variational Bayesian inference

	3.3 Implementation details
	3.3.1 Software implementation
	3.3.2 Computational complexity
	3.3.3 Initialisation

	3.4 Data preprocessing
	3.5 Experiments
	3.5.1 Convergence and runtime speed
	3.5.2 Cross-validation performance
	3.5.3 Noise test
	3.5.4 Sparse predictions
	3.5.5 Model selection
	3.5.6 Hyperparameter values

	3.6 Conclusion

	4 Prior and likelihood choices for Bayesian matrix factorisation
	4.1 Models and inference
	4.1.1 Real-valued matrix factorisation
	4.1.2 Nonnegative matrix factorisation
	4.1.3 Semi-nonnegative matrix factorisation
	4.1.4 Poisson-likelihood matrix factorisation

	4.2 Implementation details
	4.2.1 Software implementation
	4.2.2 Computational complexity
	4.2.3 Hyperparameters

	4.3 Priors and norms
	4.4 Data preprocessing
	4.5 Experiments
	4.5.1 Convergence and runtime speed
	4.5.2 Cross-validation performance
	4.5.3 Noise test
	4.5.4 Sparse predictions
	4.5.5 Model selection
	4.5.6 Factor usage

	4.6 Conclusion

	5 Bayesian hybrid matrix factorisation for data integration
	5.1 Hybrid matrix factorisation
	5.1.1 Model definition
	5.1.2 Relation to tensor decomposition

	5.2 Gibbs sampling algorithm
	5.3 Implementation details
	5.3.1 Software implementation
	5.3.2 Computational complexity
	5.3.3 Missing values and predictions
	5.3.4 Initialisation strategies

	5.4 Data preprocessing
	5.4.1 Drug sensitivity
	5.4.2 Methylation and gene expression data

	5.5 Experiments
	5.5.1 In-matrix predictions
	5.5.2 Sparse predictions
	5.5.3 Out-of-matrix predictions

	5.6 Model choices
	5.6.1 Initialisation
	5.6.2 Model selection
	5.6.3 Importance value
	5.6.4 Factorisation types

	5.7 Conclusion

	6 Conclusion
	6.1 Future work

	References

