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In recommender systems, human preferences are identified by a number of individual components with 

complicated interactions and properties. Recently, the dynamicity of preferences has been the focus of 

several studies. The changes in user preferences can originate from substantial reasons, like personal- 

ity shift, or transient and circumstantial ones, like seasonal changes in item popularities. Disregarding 

these temporal drifts in modelling user preferences can result in unhelpful recommendations. Moreover, 

different temporal patterns can be associated with various preference domains, and preference compo- 

nents and their combinations. These components comprise preferences over features, preferences over 

feature values, conditional dependencies between features, socially-influenced preferences, and bias. For 

example, in the movies domain, the user can change his rating behaviour (bias shift), her preference for 

genre over language (feature preference shift), or start favouring drama over comedy (feature value pref- 

erence shift). In this paper, we first propose a novel latent factor model to capture the domain-dependent 

component-specific temporal patterns in preferences. The component-based approach followed in mod- 

elling the aspects of preferences and their temporal effects enables us to arbitrarily switch components on 

and off. We evaluate the proposed method on three popular recommendation datasets and show that it 

significantly outperforms the most accurate state-of-the-art static models. The experiments also demon- 

strate the greater robustness and stability of the proposed dynamic model in comparison with the most 

successful models to date. We also analyse the temporal behaviour of different preference components 

and their combinations and show that the dynamic behaviour of preference components is highly de- 

pendent on the preference dataset and domain. Therefore, the results also highlight the importance of 

modelling temporal effects but also underline the advantages of a component-based architecture that is 

better suited to capture domain-specific balances in the contributions of the aspects. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Recommender systems suggest items (movies, books, music,

news, services, etc.) that appear most likely to interest a particular

user. Matching users with the most desirable items helps enhance

user satisfaction and loyalty. Therefore, many e-commerce leaders

such as Amazon and Netflix have made recommender systems a

salient part of their services ( Koren, Bell, & Volinsky, 2009 ). Cur-

rently, most recommendation techniques leverage user-provided

feedback data to infer user preferences ( Chen, Chen, & Wang,

2015 ). Typically, recommender systems are based on collaborative

filtering (CF) ( Aldrich, 2011; Koren & Bell, 2011 ), where the prefer-
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nces of a user are predicted by collecting rating information from

ther similar users or items ( Ma, Yang, Lyu, & King, 2008 ). Many

ecent studies have contributed extensions to the basic Probabilis-

ic Matrix Factorisation (PMF) by incorporating additional infor-

ation. Despite their popularity and good accuracy, recommender

ystems based on latent factor models encounter some important

roblems in practical applications ( Zafari & Moser, 2016 ). In these

odels, it is assumed that all values for item features are equally

referred by all users. 

Another major problem with latent factor models based on ma-

rix factorisation is that they do not usually take conditional pref-

rences into consideration ( Liu, Wu, Feng, & Liu, 2015 ). Further-

ore, in general, latent factor models do not consider the effect

f social relationships on user preferences, which encompasses

eer selection (homophily) and social influence ( Lewis, Gonzalez, &

aufman, 2012; Zafarani, Abbasi, & Liu, 2014 ). In previous work, we

ddressed the problem of modelling the socially-influenced con-
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itional feature value preferences, and proposed CondTrustFVSVD

 Zafari & Moser, 2017 ). 

Since data usually changes over time, the models should con-

inuously update to reflect the present state of data ( Koren, 2010 ).

 major problem with the most of the recent recommender sys-

ems is that they mostly ignore the drifting nature of preferences

 Zafari & Moser, 2017 ). Modelling the time drifting data is a central

roblem in data mining. Drifting preferences can be considered a

articular type of concept drift, which has received much attention

rom researchers in recent years ( Widmer & Kubat, 1996 ). However,

ery few recommendation models have considered the drifting na-

ure of preferences ( Chatzis, 2014 ). Changes in user preferences can

riginate from substantial reasons, or transient and circumstantial

nes. For example, the items can undergo seasonal changes or some

tems may experience periodic changes , for instance, become popu-

ar in the specific holidays. 

Apart from the short-term changes, user preferences are also

ubject to long term drifts. For example, a user may be a fan of

omantic or action movies at a younger age, while his/her pref-

rence may shift more towards drama movies as gets older. Also,

sers may change their rating scale over time. For example, a user

ay be very strict and give 3 out of 5 for the best movie. How-

ver, he/she might become less strict with age and be more willing

o elect the full rate when fully satisfied. A similar situation may

pply for movies. A movie may receive a generally high/low rate

t some time period, and lower/higher rates at some other period

 Koren, 2010 ). Therefore, a preference model should be able to dis-

inguish between different types of preference drifting, and model

hem individually in order to achieve the highest accuracy. 

In recommender systems research, six major aspects to the

references have been identified. These aspects include feature

references ( Salakhutdinov & Mnih, 2011; Zafari, Nassiri-Mofakham,

 Hamadani, 2015 ), feature value preferences ( Zafari & Nassiri-

ofakham, 2016; 2017; Zhang et al., 2014 ), socially-influenced pref-

rences ( Jamali & Ester, 2010; Ma et al., 2008; Ma, Zhou, Liu, Lyu, &

ing, 2011; Zafari & Moser, 2017; Zhao, Wang, Chen, & Cao, 2015 ),

emporal dynamics ( Koren, 2010 ), conditional preferences ( Liu et al.,

015 ), and user and item biases ( Koren & Bell, 2011 ). Feature value

references refer to the relative favourability of each one of the

tem feature values, social influence describes the influence of so-

ial relationships on the preferences of a user, temporal dynamics

eans the drift of the preferences over time, conditional prefer-

nces refer to the dependencies between item features and their

alues, and user and item biases pertain to the systematic tenden-

ies for some users to give higher ratings than others, and for some

tems to receive higher ratings than others ( Koren & Bell, 2011 ).

odelling the temporal properties of these preference aspects is

he central theme of this paper. 

In this paper, we extend our previous work ( Zafari &

oser, 2017 ), by considering the drifting nature of preferences and

heir constituting aspects. We assume that the socially-influenced

references over features and conditional preferences over feature

alues, as well as user and item rating scales can be subject to

emporal drift. Therefore, the two major research questions ad-

ressed in this paper are: 

• How can we efficiently model the drifting behaviour prefer-

ences, and how much improvement would incorporating such

information make? 

• Which aspects are more subject temporal changes, and how is

this related to the domain on which the model is trained? 

The current work proposes a novel latent factor model based

n matrix factorisation to address these two questions. This pa-

er has two major contributions for the field. In this paper, we

ake further improvements on the accuracy of, CondTrustFVSVD, a

odel that we proposed earlier. CondTrustFVSVD proved to be the
ost accurate model among a large set of state of the art mod-

ls. The additional improvements were achieved by incorporating

he temporal dynamics of preference aspects . We also draw conclu-

ions about the dynamicity of preference aspects, by analysing the

emporal aspects of the these aspects using a component-based

pproach, and show which aspects are more subject to drift over

ime. This research provides useful insights into the accurate mod-

lling of preferences and their temporal properties , and helps pave

he way for boosting the performance of recommender systems.

he findings suggest that the temporal aspects of user preferences

an vary from one domain to another. Therefore, modelling domain-

ependent temporal effects of preference aspects are critical in im-

roving the quality of recommendations. 

The rest of the paper is organised as follows: The related work

s introduced in Section 2 . In Section 3.1 , we first briefly intro-

uce probabilistic matrix factorisation, and CondTrustFVSVD. Then

n Section 3.2 we introduce Aspect-MF to overcome the challenge

f learning drifting conditional socially-influenced preferences over

eature values. In Section 4 , we first explain the experimental

etup, and then report on the results of Aspect-MF using two pop-

lar recommendation datasets. Finally we conclude the paper in

ection 5 , by summarising the main findings and giving the future

irections of this work. 

. Related work 

Collaborative Filtering models are broadly classified into

emory-based and model-based approaches. Memory- or 

nstance-based learning methods predict the user preferences

ased on the preferences of other users or the similarity of the

tems. Item-based approaches in memory-based CF ( D’Addio &

anzato, 2015 ) calculate the similarity between the items, and

ecommend the items similar to the items that the user has liked

n the past. User-based approaches recommend items that have

een liked by similar users ( Ma et al., 2008 ). The time-dependent

ollaborative filtering models are also classified into the memory-

ased time-aware recommenders and model-based time-aware

ecommenders ( Xiang & Yang, 2009 ). 

.1. Model-based time-aware recommenders 

The models in this category usually fall into four classes: (1)

odels based on Probabilistic Matrix Factorisation, (2) models

ased on Bayesian Probabilistic Matrix Factorisation, and (3) mod-

ls based on Probabilistic Tensor Factorisation, and (4) models

ased on Bayesian Probabilistic Tensor Factorisation. 

.1.1. Models based on probabilistic matrix factorisation 

Modelling the drifting preferences using a model-based ap-

roach based on PMF has first been considered by Koren (2010) in

imeSVD++. TimeSVD++ builds on the previous model called SVD++

 Koren et al., 2009 ), in which the user preferences are modelled

hrough a latent factor model that incorporates the user bias,

tem bias, and also the implicit feedback given by the users. For

ach one of these preference aspects, Koren (2010) used a time-

ependent factor to capture both transient and long-term shifts.

hey showed TrustSVD++ achieves significant improvements over

VD++ on a daily granularity ( Xiang & Yang, 2009 ). 

In TrustFVSVD ( Zafari & Moser, 2017 ), we extended TrustSVD by

dding the preferences over feature values and the conditional de-

endencies between the features. We did this by adding additional

atrices that captured the feature value discrepancies, where the

alues of these matrices were related to the values of the social

nfluence matrix. In TrustFVSVD, the explicit influence of the social

elationships on each one of the aspects of preferences were cap-

ured. Through comprehensive experiments on three benchmark
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datasets, we showed that TrustFVSVD significantly outperformed

TrustSVD and a large set of state of the art models. However, sim-

ilar to most of the state of the art models, in TrustFVSVD, we as-

sumed that the preferences are static. 

Another model-based time-aware recommendation model was

proposed by Koenigstein, Dror, and Koren (2011) . In this model,

the authors use session factors to model specific user behaviour

in music learning sessions. Unlike TimeSVD++ which is domain-

independent, was developed especially for the music domain. First,

it enhances the bias values in SVD++, by letting the item biases

share components for items linked by the taxonomy. For example,

the tracks in a good album may all be rated higher than the aver-

age, or a popular artist may receive higher ratings than the aver-

age for items. Therefore, shared bias parameters are added to dif-

ferent items with a common ancestor in the taxonomy hierarchy

of the items. Similarly, the users may also tend to rate artists or

genres higher than songs. Therefore, the user bias is also enhanced

by adding the type of the items. It is also assumed that unlike in

the movies domain, in music it is common for the users to listen

to many songs, and rate them consecutively. Such ratings might

be rated similarly due to many psychological phenomena. The ad-

vantage of the models proposed by Koenigstein et al. (2011) and

Koren (2010) that extend SVD++ is that they enable the captur-

ing of dynamicity of the preference aspects with a high granular-

ity for aspects that are assumed to be more subject to temporal

drift. Furthermore, as shown by Koenigstein et al. (2011) , domain-

dependent temporal aspects of the preferences and their individual

aspects can also be taken into consideration. 

Jahrer, Töscher, and Legenstein (2010) split the rating matrix

into several matrices, called bins, based on their time stamps. For

each bin, a separate time-unaware model is trained by produc-

ing an estimated rating value that is obtained using the ratings of

given for that bin. Each one of the bins is assigned a weight value,

and the final rating is obtained by combining the ratings that are

obtained through the models trained on each bin. Therefore, using

this approach, they combine multiple time-unaware models into a

single time-aware model. The disadvantage of this model is that

the ratings matrix is usually sparse as it is, and it even becomes

sparser, when the ratings are split into bins. 

A similar approach is followed in the model proposed by

Liu and Aberer (2013) . They systematically integrated contextual

information and social network information into a matrix factor-

ization model to improve the recommendations. To overcome the

sparsity problem of training separate models based on their time-

stamps, they applied a random decision trees algorithm, and cre-

ate a hierarchy of the time-stamps. For example, the ratings can

be split based on year in the first level, month in the second level,

day in the third level, and so on. They argue that the ratings that

are given at similar time intervals are better correlated with each

other, and therefore such clustering is justified. They also added

the influence of the social friends to the model, using a context-

aware similarity function. In this function users who give similar

ratings to those of their friends in similar contexts get higher sim-

ilarity values. Consequently, in this model, the role of time on the

social influence is also indirectly taken into consideration. 

Baltrunas, Ludwig, and Ricci (2011) argued that methods based

on tensor factorisation can improve the accuracy when the

datasets are large. Tensor factorisation requires the addition of a

large number of model parameters that must be learned. When the

datasets are small, simpler models with fewer parameters can per-

form equally well or better. In their method, a matrix is added to

capture the influence of contextual factors (e.g. time) on the user

preferences by modelling the interaction of contextual conditions

with the items. Although the model is quite simple and fast, it

does not include the effect of time on individual preference as-

pect. Unlike the models proposed by Koenigstein et al. (2011) and
oren (2010) , it can not capture fine-grained and domain-specific

ynamicities. 

Another recent model in this category is proposed by

afailidis (2018) . He proposes a multi-latent transition model,

n which the items’ meta-data are used to better capture the

ransitions of user preferences over an ongoing period of time.

uo, Zhang, and Yorke-Smith (2013) also propose a time-aware

odel based on matrix factorisation called PCCF to capture peri-

dic and continual temporal effects. Then they show the effective-

ess of capturing both effects on three benchmark datasets, and

uperiority of this model over some state of the art models. 

.1.2. Models based on Bayesian probabilistic matrix factorisation 

BPMF extends the basic matrix factorisation ( Salakhutdinov &

nih, 2008 ) by assuming Gaussian–Wishart priors on the user and

tem regularisation parameters and letting the hyper-parameters

e trained along with the model parameters. Dynamic BPMF

dBPMF) is a non-parametric Bayesian dynamic relational data

odelling approach based on the Bayesian probabilistic matrix

 Luo & Cai, 2016 ). This model imposes a dynamic hierarchical

irichlet process (dHDP) prior over the space of probabilistic ma-

rix factorisation models to capture the time-evolving statistical

roperties of modelled sequential relational datasets. The dHDP

as developed to model the time-evolving statistical properties of

equential datasets, by linking the statistical properties of data col-

ected at consecutive time points via a random parameter that con-

rols their probabilistic similarity. 

.1.3. Models based on probabilistic tensor factorisation 

In tensor factorisation methods, the context variables are mod-

lled in the same way as the users and items are modelled in

atrix factorisation techniques, by considering the interaction be-

ween users-items-context. In tensor factorisation methods, the

hree dimensional user-item-context ratings are factorised into

hree matrices, a user-specific matrix, an item-specific matrix, and

 context-specific matrix. A model in this category is proposed

y Karatzoglou, Amatriain, Baltrunas, and Oliver (2010) , who used

ensor Factorisation with CP-decomposition, and proposed multi-

erse recommendation, which combines the data pertaining to

ifferent contexts into a unified model. Therefore, similar to the

odel proposed by Baltrunas et al. (2011) , other contextual infor-

ation besides time (e.g. user mode, companionship) can also be

aken into consideration. However, unlike Baltrunas et al. (2011) ,

hey factorise the rating tensor into four matrices, a user-specific

atrix, an item-specific matrix, a context-specific matrix, and a

entral tensor, which captures the interactions between each user,

tem, and context value. Then the original ratings tensor, which in-

ludes the ratings given by users to items in different contexts (e.g.

ifferent times) can be reconstructed by combining the four ma-

rices back into the ratings tensor. Other models in this category

re the models proposed by Li, Li, Jin, Xue, and Zhu (2011) and

an, Ma, Pang, and Yuan (2013) . 

.1.4. Models based on Bayesian probabilistic tensor factorisation 

There is a class of dynamic models that are based on Bayesian

robabilistic Tensor Factorisation (BPTF) ( Xiong, Chen, Huang,

chneider, & Carbonell, 2010 ). BPTF generalises BPMF by adding

ensors to the matrix factorisation process. A tensor extends the

wo dimensions of the matrix factorisation model to three or

ore dimensions. Therefore, besides capturing the user-specific

nd item-specific latent matrices, this model also trains a time-

pecific latent matrix, which captures the latent feature values in

ifferent time periods. The models based on tensor factorisation

re similar in introduction of the time-specific matrices into the

actorisation process. However, they are different in the way they
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Table 1 

Summary of key notations and symbols used through the paper. 

Symbol Definition 

N number of users 

M number of items 

D number of latent factors 

u, v indexes to denote users u and v 

i, j indexes to denote items i and j 

f, f 
′ 

indexes to denote latent features f and f 
′ 

t uj the time at which user u rated item j 

P uf ( t ) dynamic preference of user u over latent feature f 

Q jf value of feature f for item j 

W uf ( t ) dynamic gradient value to capture the preference of user u over 

value of feature f 

Z uf ( t ) dynamic intercept value to capture the preference of user u over 

value of feature f 

y jf implicit feedback of the users regarding latent feature f of item j 

Y f f ′ feature-specific dependency matrix entry, to capture conditional 

preferences 

T uv trust value between user u and user v 
ˆ T t u v estimated influence of user u on user v ’s preferences over features 
ˆ S t u v , ˆ G t u v estimated influence of user u on user v ’s preferences over feature 

values 

| T u | number of users user u trusts 

| T + v | number of users trusted by user v 

I u the vector of ratings given by user u 

| I u | number of ratings given by user u 

| U i | number of ratings given to item i 

ω the social influence of user u on the other users according to the 

latent factor model 

μ the average ratings given by all users to all items 

bu u ( t ) user u ’s dynamic rating bias 

bi j ( t ) item j ’s dynamic rating bias 

R uj the real rating value given by user u on item j 

R 
′ 
u j 

(t) the predicted rating value given by user u on item j at time t 

f  

c  

B  

t

2
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t

actorise the ratings matrix into the user, item, and time matri-

es, and also the way they train the factorised matrices. Similar to

PMF, BPTF uses Markov Chain Monte Carlo with Gibbs sampling

o train the factorised matrices. 

.2. Memory-based time-aware recommenders 

Some simple time-dependent collaborative filtering models

ave been proposed by Lee, Park, and Park (2008) . The models

se item-based and user-based collaborative filtering, and exploit

 pseudo-rating matrix, instead of the real rating matrix. In the

seudo-rating matrix the entries are obtained using a rating func-

ion, which is defined as the rating value when an item with

aunch time l j was purchased at time p i . This function was in-

pired by two observations, that more recent purchases better re-

ected a user’s current preferences, and also recently launched

tems appealed more to the users. If the users are more sensitive

o the item’s launch time, the function gives more weight to new

tems, and if the user’s purchase time is more important in esti-

ating their current preference, the function assigns more weight

o recent purchases. After obtaining the pseudo-rating matrix, the

eighbours are obtained as in the traditional item-based or user-

ased approaches, and the items are recommended to the users.

hese models are less related to the proposed model in this paper,

o we are not going to review them further. 

. Modelling time-aware preference aspects in CondTrustFVSVD 

In this section, we explain how to integrate the time-awareness

n different aspects of preferences into CondTrustFVSVD ( Zafari &

oser, 2017 ). The main notations used throughout this paper are

ummarized in Table 1 . 
.1. Brief introduction of PMF and CondTrustFVSVD 

In rating-based recommender systems, the observed ratings are

epresented by the user-item ratings matrix R , in which the ele-

ent R uj is the rating given by the user u to the item j . Usually, R uj 

s a 5-point integer, 1 point means very bad, and 5 points means

xcellent. Let P ∈ R 

N×D and Q ∈ R 

M×D be latent user and item fea-

ure matrices, with vectors P u and Q j representing user-specific and

tem-specific latent feature vectors respectively ( N is the number

f users, M is the number of items, and D is the number of item

eatures). In PMF, R uj is estimated by the inner product of the la-

ent user feature vector P u and latent item feature vector Q j , that

s ˆ R u j = P u Q 

T 
j 

. 

PMF maximises the log-posterior over the user and item latent

eature matrices with rating matrix and fixed parameters given by

q. (1) . 

n p( P, Q| R, σ, σP , σQ ) = ln p( R | P, Q, σ ) + ln p( P | σP ) 

+ ln p( Q| σQ ) + C (1) 

here C is a constant that is not dependent on P and Q. σ P , σ Q ,

nd σ are standard deviations of matrix entries in P, Q , and R re-

pectively. Maximising the log-posterior probability in Eq. (1) is

quivalent to minimising the error function in Eq. (2) . 

rgmin U,V 

[ 

E = 

1 

2 

N ∑ 

u =1 

M ∑ 

j=1 

I u j ( R u j − ˆ R u j ) 
2 + 

λP 

2 

N ∑ 

u =1 

‖ P u ‖ 

2 
F rob 

+ 

λQ 

2 

M ∑ 

j=1 

‖ Q j ‖ 

2 
F rob 

] 

(2) 

here ‖ . ‖ Frob denotes the Frobenius norm, and λP = 

σ 2 

σ 2 
P 

and λQ =
σ 2 

σ 2 
Q 

(regularisation parameters). Stochastic Gradient Descent and Al-

ernating Least Squares are usually employed to solve the optimisa-

ion problem in Eq. (2) . Using these methods, the accuracy of the

ethod measured on the training set is improved iteratively. 

As mentioned in the introduction section, the disadvantage of

raditional matrix factorisation methods is that the discrepancies

etween users in preferring item feature values and conditional

ependencies between features are disregarded. CondTrustFVSVD 

 Zafari & Moser, 2017 ) addresses these problems by adding matri-

es W and Z to learn the preferences over item feature values. Sup-

ose that a social network is represented by a graph G = (V , E ) ,

here V includes a set of users (nodes) and E represents the trust

elationships among the users (edges). We denote the adjacency

atrix by T ∈ R 

N×N , where T uv shows the degree to which user u

rusts user v . Accordingly, | T u | denotes the number of users user u

rusts, and | T + v | is the number of users trusted by user v . Through-

ut this paper, we use the indices u and v for the users and in-

ices i and j for items, and indices f and f 
′ 

for item features. In

ondTrustFVSVD, all aspects of preferences are assumed to be sub-

ect to change by social interactions, and therefore the explicit in-

uence of social relationships on each of the aspects of the prefer-

nces are modelled. In this method, we assume that the user pref-

rences over an item feature can be formulated with a linear func-

ion. In this function, matrix W is used to capture the ”gradient”

alues and matrix Z is used to learn the ”intercept” values. These

atrices have the same dimensions as the user matrix P . According

o this figure, the probabilities of the matrices P, Q, W, Z, ω, y and

ectors bu and bi are dependent on the hyper-parameters σ P , σ Q ,

W 

, σ Z , σω , σ y , σ bu and σ bi respectively. Likewise, the probability

f obtaining the ratings in matrix R is conditional upon the matri-

es P, Q, W, Z, ω, y and vectors bu and bi . CondTrustFVSVD finds

he solution for the optimisation problem formulated by Eq. (3) . 
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Fig. 1. The preference aspects and their interplay in Aspect-MF. 
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argmin P,Q,W,Z,ω,y,bu,bi ⎡ 

⎣ E = 

λt 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 
I u v 

( 

T u v −
D ∑ 

f=1 

P u f ω v f 

) 2 

+ 

λt 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 

( 

T u v −
D ∑ 

f=1 

(1 − W u f ) ω v f 

) 2 

+ 

λt 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 

( 

T u v −
D ∑ 

f=1 

Z u f ω v f 

) 2 

+ 

1 

2 

N ∑ 

u =1 

M ∑ 

j=1 

( R u j − ˆ R u j ) 
2 

+ 

N ∑ 

u =1 

(
λP 

2 

| I u | − 1 
2 + 

λT 

2 

| T u | − 1 
2 

)
‖ P u ‖ 

2 
F rob + 

λQ 

2 

M ∑ 

j=1 

‖ Q j ‖ 

2 
F rob 

+ 

N ∑ 

u =1 

(
λW 

2 

| I u | − 1 
2 + 

λT 

2 

| T u | − 1 
2 

)
‖ W u ‖ 

2 
F rob 

+ 

N ∑ 

u =1 

(
λZ 

2 

| I u | − 1 
2 + 

λT 

2 

| T u | − 1 
2 

)
‖ Z u ‖ 

2 
F rob 

+ 

λ

2 

M ∑ 

i =1 

| U i | − 1 
2 ‖ y i ‖ 

2 
F rob + 

λω 

2 

N ∑ 

v =1 

| T + v | − 1 
2 ‖ ω v ‖ 

2 
F rob 

+ 

λbu 

2 

N ∑ 

u =1 

| I u | − 1 
2 bu 

2 
u + 

λbi 

2 

M ∑ 

j=1 

| U j | − 1 
2 bi 2 j + 

λY 

2 

D ∑ 

f=1 

D ∑ 

f ′ =1 

Y 2 
f f ′ 

] 

(3)

where λW 

= 

σ 2 

σ 2 
W 

, λZ = 

σ 2 

σ 2 
Z 

, λω = 

σ 2 

σ 2 
ω 

, λy = 

σ 2 

σ 2 
y 

, λbu = 

σ 2 

σ 2 
bu 

, λbi = 

σ 2 

σ 2 
bi 

,

λY = 

σ 2 

σ 2 
Y 

. μ denotes the global average of the observed ratings, and

bu i and bi j denote biases for user i and item j respectively. I u is

the set of items rated by user u and U j is the set of users who

have rated item j . The values of ˆ R u j in Eq. (3) are obtained using

Eq. (4) . 

ˆ R u j = μ + bu u + bi j + 

D ∑ 

f=1 

(P u f + | I u | − 1 
2 

∑ 

∀ i ∈ I u 
y i f 

+ | T u | − 1 
2 

∑ 

∀ v ∈ T u 
ω v f )(W u f Q j f + Z u f ) (4)

According to the Eq. (4) , the user u ’s preference value over

an item j is defined using different aspects. These aspects are

user bias, item bias, the socially-influenced preferences over fea-

tures , and the socially-influenced preferences over feature val-

ues . Therefore, preferences are defined using different aspects that

interact with each other by influencing the values of one another. 

3.2. Time-aware CondTrustFVSVD (Aspect-MF) 

In the following sections, we first provide a high-level view of

Aspect-MF by explaining the interactions between aspects that are

captured by the model, and then elaborating how the aspects are

trained from the users’ ratings and social relationships. 

3.2.1. Aspect interactions and high-level view of the model 

To address the problem of capturing drifting socially-influenced

conditional preferences over feature values, we extend the method

CondTrustFVSVD, by adding the dynamicity of each one of the

preference aspects that are assumed to be subject to concept drift.

The method proposed here is abbreviated to Aspect-MF. A high-

level overview of the preference aspects in Aspect-MF are pre-

sented in Fig. 1 . This figure shows how the preference aspects’ ef-

fects on each other are captured in Aspect-MF. For example, the so-

cial aspect influences feature preferences and feature value prefer-

ences, while conditional dependencies exist between feature value
references. Time aspect also causes changes in feature value pref-

rences and user and item biases. There is also interplay between

eature preference and feature value preference aspects. 

In Fig. 2 b, FP represents preferences over features, which is cap-

ured by matrix P in the basic matrix factorisation. F represents

tem features captured by matrix Q in the basic matrix factorisa-

ion. CP represents conditional dependencies, FVP represents pref-

rences over feature values, SI stands for social influence, and fi-

ally T is an abbreviation for time. Aspect-MF incorporates addi-

ional matrices and vectors into matrix factorisation to capture as

any aspects present in the data as possible. As Fig. 2 shows, the

odel starts by loading the time-stamped user ratings as well as

he social network data into the memory. The main loop accounts

or the learning iterations over the model. The first loop within the

ain loop iterates over the time-stamped user-item ratings ma-

rix, while the second loop iterates over the social network adja-

ency matrix, to train the socially influenced parts of the model. In

ach loop, one entry of the input matrix is read and used to up-

ate the matrices/vectors related to that input data. As can be seen,

he user and item bias values are only updated in loop 1, since

hey are only related to the user-item ratings. Both user-item rat-

ngs and users’ social relationships include information about the

sers’ preferences over features. Therefore, the new values for FP

re calculated in both loops and updated in the main loop, when

ll new values have been calculated. Similarly, the values for SI

nd FVP depend on both user-item ratings and social relationships.

onsequently, their new values are calculated inside both loops 1

nd 2, and are updated in the main loop. In contrast, the values

f F as well as CP only need the user-item ratings to be updated.

herefore, they are immediately updated inside loop 1. The time

spect includes parameters that account for the dynamics of user

nd item biases, feature value preferences, and preferences over

eatures. Since bias values do not depend on the user-item ratings

atrix, they are updated immediately in loop 1. However, the new

alues for the dynamics of feature value preferences, and prefer-

nces over features are updated in the main loop. In Aspect-MF,

very one of the preference aspects can be arbitrarily switched off

nd on by setting their respective learning rates and regularisation

arameters (hyper-parameters) to zero or a non-zero value respec-

ively. 

Although social relationships are likely to be time-dependent,

ost datasets do not contain this information. Conditional prefer-

nces are related to the feature value preferences, since they model
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Fig. 2. (a) The high-level representation of Aspect-MF and (b) its flow chart. 
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w  
he dependencies between the features and their values, and there-

ore, are applied to the matrices that account for the users’ pref-

rences over feature values. Social influence is applied to the as-

ects of preferences over features and preferences over feature val-

es. However, applying social influence to the user and item bi-

ses showed no observable benefits and user or item biases do not

eem to be influenced by social interactions. Therefore, we con-

luded that user and item biases are not much influenced by the

ocial interactions ( Zafari & Moser, 2017 ). Therefore, in the most

bstract view of the model as depicted in the high-level repre-

entation in Fig. 2 a, the model is comprised of four main mod-

les. Initialising the model parameters (Model Initialiser), learning

he intrinsic constituting aspects of preferences (i.e. preferences

ver features, preferences over feature values, conditional depen-

encies, and user and item bias values) and the drifting proper-

ies of preferences (Intrinsic Trainer), learning the social influence

f the friends over the drifting intrinsic preference aspects (So-

ial Trainer), and finally updating the model to reflect the new in-

ormation extracted from the data about user ratings, time, and

ocial connections (Model Updater). These modules will be dis-

ussed in more details later, when we introduce the algorithm in

ection 3.2.4 . 

v  
.2.2. Aspect-MF model formulation 

In this section, we provide the mathematical formulation of

he preferences captured in Aspect-MF. Basically, in Aspect-MF,

he user preferences are modelled as a Bayesian Network ( Korb &

icholson, 2010 ). Fig. 3 shows the topology or the structure of

he Bayesian Network for user preferences that are modelled by

spect-MF. 

As mentioned earlier, Aspect-MF extends CondTrustFVSVD, by

dding the time factor to the aspects of preferences as depicted

n Fig 1 . In CondTrustFVSVD, the user preferences were captured

sing the matrices P, Q, W, Z, Y, ω, y , with the hyper-parameters

P , σ Q , σ W 

, σ Z , σω , σ y , σ Y , σ bu and σ bi . 

In Aspect-MF, the drifting social influence of friends in the

ser’s social network are captured through Eq. (5) to (7) . 

ˆ 
 

t 
u v = 

1 
| I t u | 

∑ D 
∀ t u j ∈ I t u 

∑ D 
f=1 P u f ( t u j ) ω v f (5) 

ˆ 
 

t 
u v = 

1 
| I t u | 

∑ D 
∀ t u j ∈ I t u 

∑ D 
f=1 (1 − W u f ( t u j )) ω v f (6) 

ˆ 
 

t 
u v = 

1 
| I t u | 

∑ D 
∀ t u j ∈ I t u 

∑ D 
f=1 Z u f ( t u j ) ω v f (7) 

here ˆ T t u v , ˆ S t u v , ˆ G 

t 
u v model the time-dependent influence of user

 on the preferences of user u for the preferences over features
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Fig. 3. Bayesian network of Aspect-MF. 
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(captured by P uf ( t )) and preferences over feature values (captured

by W uf ( t ) and Z uf ( t )), and similar to CondTrustFVSVD, ω vf captures

the implicit influence of user v on other users over factor f and is

obtained using the matrix factorisation process. As can be seen

in Fig. 1 , the user preferences over features and feature values in

Aspect-MF are subject to social influence, and they also drift over

time. In Eqs. (5) to (7) , I t u is the set of timestamps for all the ratings

given by user u . Therefore, using these equations, the influence of

the user v on the preferences of user u is calculated for all the

time points, and then it is averaged. Intuitively, these equations are

telling us that the trust of user u in user v can be estimated by cal-

culating the average of the weighted averages of user v ’s influence

on user u ’s preferences for different features, in different times. In-

tuitively, if user u strongly trusts user v , his preferences would be

more strongly influenced by user v . Furthermore, depending on the

trust strength of user u in user v and the influence he gets from

user v and its direction (positive or negative), the user’s preference

can be positively or negatively affected. Therefore in Aspect-MF,

the user preferences are subject to social influence, and the social

influence depends on the strength of their trust in the friends. Ac-

cording to these equations, if there is no relationship between user

u and user v , user u ’s preferences will not be directly affected by

the social influence of user v . 
In Aspect-MF, the drifting preference value of the user u over

an item j at time t is obtained according to Eq. (8) . 

ˆ R u j (t u j ) 

= μ + bu u (t u j ) + bi j (t u j ) + 

D ∑ 

f=1 

(P u f ( t u j ) + | I u | − 1 
2 

∑ 

∀ i ∈ I u 
y i f 

+ | T u | − 1 
2 

∑ 

∀ v ∈ T u 
ω v f )(W u f ( t u j ) Q j f + Z u f ( t u j )) 

+ 

D ∑ 

f ′ =1 

( 

D ∑ 

f=1 

(W u f ( t u j ) Q j f +Z u f ( t u j )) Y f f ′ 

) 

(W u f ( t u j ) Q j f ′ +Z u f ( t u j )) (8)
According to Eq. (8) , in Aspect-MF, different aspects of prefer-

nces as well as user and item biases are subject to temporal drift.

s can be seen in Eqs. (5) –(8) , the user bias, item bias, preferences

ver features captured by the matrix P , and preferences over fea-

ure values captured by the matrices W and Z are subject to tem-

oral drift. In order to model the drifting properties of these as-

ects, we use Eqs. (9) –(13) . 

u u (t u j ) = bu u + αu de v u (t u j ) + but ut u j 
(9)

i j (t u j ) = (bi j + bi jBin (t u j ) )(C u + Ct u t u j 
) (10)

 u f ( t u j ) = P u f + αP 
u de v u (t u j ) + P t u f t u j 

(11)

 u f ( t u j ) = Z u f + αZ 
u de v u (t u j ) + Zt u f t u j 

(12)

 u f ( t u j ) = W u f + αW 

u de v u (t u j ) + W t u f t u j 
(13)

here P uf , W uf , and Z uf capture the static preferences of the user

 , while the variables P u f t u j 
, W u f t u j 

, Z u f t u j 
capture the day-specific

ariations in the user preferences (e.g. due to the mood of the

sers in a particular day), and αP 
u , α

W 

u , and αZ 
u model the users’

ong term preference shifts, and dev u ( t uj ) is obtained according to

q. (14) ( Koren, 2010 ). 

e v u (t u j ) = sign (t u u j 
− t u ) . | t u j − t u | β (14)

here t u is the mean of the dates for the ratings given by the user

 , and β is a constant value. In Eq. (10) , all the dates are placed

n a fixed number of bins, and the function Bin (.) returns the bin

umber for a particular date. For example, if the maximum period

f the ratings is 30 years and 30 bins are used, all the rates given

n a particular year are placed in a bin, and the function Bin (.) re-

urns the year number for that particular year. The reason why this

unction is only used for items is that items are not expected to

hange on a daily basis, and as opposed to users’ biases, longer

ime periods are expected to pass, before we see any changes in

he items’ popularity. In simple words, dev u ( t uj ) shows how much

he time of the rating given by user u to the item j deviates from

he average time of the ratings given by that user. Therefore, if a

ating is given at the same time as the average time of the ratings,

hen the according to these equations, there will be no long-term

reference shift for that aspect. However, for instance, if the aver-

ge time of the rates given by user u is 11/04/2006, the rating of

he same item by that user on 11/04/2016 would be different, and

his shift is captured by the coefficients of the function dev u ( t uj ) in

q. (9) and Eqs. (11) –(13) . The drifting preferences captured using

q. (9) and Eqs. (11) –(13) are depicted in Fig. 4 . In these figures,

he mean of the dates on which the user has given the ratings are

ssumed to be 50 (the fiftieth day in a year), and the variations

f the user preferences over a period of one year are captured for

ifferent values of α in Eq. (9) and Eqs. (11) –13 . The red lines in

hese figures represent the case in which the day-specific varia-

ions in the user preferences are not captured, while the blue lines

lso include the day-specific variations. Therefore, as can be seen,

n these figures there are two types of preference shifts, long term

rifts (captured by the values of α, αP , αW , and αZ ), and short-

erm or day-specific drifts (captured by the values of but, Pt, Wt ,

nd Zt ). Therefore, the preference drifts are comprised of small

ariations from one day to the other, mainly because of tempo-

ary factors such as the mood of the user, and the large variations

hich happen in the long term, as the user changes preferences

ecause of the shift in the his/her tastes. The blue lines show the

reference shift patterns that can be learnt by Aspect-MF. Further-

ore, the first three terms in Eq. (18) model the social influence

f the feature preferences and feature value preferences captured
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Fig. 4. An example of drifting preferences in Eq. (9) and Eqs. (11) –(13) for (a) positive α values and (b) negative α values. 
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y P, αP , Pt, W, αW , Wt, Z, αZ , Zt . Therefore, assuming that two

sers have established the social relationship from the very begin-

ing (which is not essentially true, but usually social relationships

o not contain time-stamps), using the Eqs. (5) –(7) , the social in-

uence is applied to the preferences of the user over the entire

eriod for which the rating data is record. Therefore, the formula-

ion of the estimated ratings in Aspect-MF (8) allows it to learn the

rifting conditional feature value preferences, and the formulation
f the optimisation in Aspect-MF ( Eq. (18) ) enables it to learn the

nfluence of social friends on the drifting preferences of a user. 

Eqs. (9) –(13) show how Aspect-MF can capture long-term and

hort-term drifts in each one of the preference aspects (user bias,

tem bias, feature preferences, and feature value preferences). The

dvantage of formulating the problem using Eq. (8) is that each

ne these aspects can be arbitrarily switched on/off. This results in

 component-based approach, in which the model aspects interact
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Algorithm 1 Model training. 

1: void ModelTrainer( λ, γ , maxIter ) a 

2: λ = { λT , λP , λPt , λαP , λQ , λW , λWt , λαW , λZ , λZt , λαZ , λω , λy , λbu , λα, λbut , λC , 

λCt , λbi , λbit , λY } 

3: γ = { γT , γP , γPt , γαP , γQ , γW , γWt , γαW , γZ , γZt , γαZ , γω , γy , γbu , γα, γbut , γC , γCt , 

γ bi , γ bit , γ Y } 

4: { 

5: // Creating matrices P, ω , W , and Z and temporary matrices P S , ω 

S , W 

S , and Z S : 

6: Matrix P, P S ; Matrix ω 

S ; Matrix W 

S ; Matrix Z S ;
7: // Creating vectors αP , αW , and αW , and temporary vectors βP , βW , and βW : 

8: Vector αP , βP ; Vector αW , βW ; Vector αZ , βZ ;
9: //Creating tables Pt , W t , and Zt , and temporary tables Pt S , W t S , and Zt S : 

10: Table P t, P t S ; Table W t, W t S ; Table Z t, Z t S ;
11: ModelInitialiser(); 

12: l ← 1 ; 

13: for l � maxIter do 

14: IntrinsicTrainer () ;
15: SocialTrainer () ;
16: ModelUpdater () ;
17: error ← error × 0 . 5 ;
18: l ← l + 1 ;
19: } 

a λ is the set of the model hyper-parameters as specified in Eqs. (17) and (18) and 

Fig. 1 . N, M , and D respectively denote number of users, number of items, and num- 

ber of features. γ denotes the set of learning rates, maxIter denotes the maximum 

number of learning iterations. 
with each other, with the purpose of extracting as much preference

patterns from the raw data as possible. 

3.2.3. Aspect-MF model training 
According to the Bayesian network of Aspect-MF in Fig. 3 , this

model minimises the log-posterior probability of matrices that de-
fine the user preferences, given the model hyper-parameters and
the training matrix. Formally, 

argmin 
P,Pt ,αP ,Q,W,Wt ,αW ,Z,Zt ,αZ ,Y,ω,y,bu,α,but ,C,Ct ,bi,bit 

{ lnp(P, Q, W, Z, ω, y, bu, bi, αu , bu t , bi Bin (t) , c, c t , α
P , αZ , αW , P t , Z t , W t 

| R, T t , S t , G t , σN } (15)

σ N = { σ, σT , σP , σPt , σαP , σQ , σW 

, σW t , σαW 

, σZ , σZt , σαZ , σω , σy , 

σbu , σα, σbut , σC , σCt , σbi , σbit , σY } denotes the set of all the hyper-
parameters. T t , S t , G 

t respectively denote the real values for the

estimated matrices ˆ T t , ˆ S t , and 

ˆ G 

t in Eqs. (5) –(7) . According to
the Bayesian network in Fig. 3 and by decomposing the full joint
distribution using chain rule of probability theory ( Korb & Nichol-
son, 2010 ) according to the conditional dependencies between
the variables defined in this figure, minimising the probability
above is equal to minimising the value given in Eq. (16) ( Korb &
Nicholson, 2010 ). 

argmin P,Pt ,αP ,Q,W,Wt ,αW ,Z,Zt ,αZ ,Y,ω,y,bu,α,but ,C,Ct ,bi,bit,Y 

{ lnp(R | P(t) , Q, W (t) , Z(t) , bu (t) , bi (t) , Y, σ ) + lnp(Q| σQ ) 

+ lnp(P(t) | σP ) + lnp(W (t) | σW 

) + lnp(Z(t) | σZ ) 

+ lnp(bu (t) | σbu ) + lnp(bi (t) | σbi ) + lnp(y | , σy ) + lnp(Y | , σ) 

+ lnp(T t u v | ω, P(t) , σT ) + lnp(S t u v | ω, W (t) , σT ) + lnp(G 

t 
u v | ω, Z(t) , σT ) 

+ lnp(P(t) | σT ) + lnp(W (t) | σT ) + lnp(Z(t) | σT ) + lnp(ω| , σT ) } (16)

Provided that all the probabilities above follow a normal distri-

bution, it can be shown that minimising the function in Eq. (16) is

equivalent to minimising the error value using Eqs. (17) to (19) . 

E R = 

1 

2 

N ∑ 

u =1 

M ∑ 

j=1 

( R u j − ˆ R u j ) 
2 + 

λQ 

2 

M ∑ 

j=1 

‖ Q j ‖ 

2 
F rob 

+ 

λy 

2 

M ∑ 

i =1 

| U i | − 1 
2 ‖ y i ‖ 

2 
F rob 

+ 

N ∑ 

u =1 

λP 

2 

| I u | − 1 
2 (‖ P u ‖ 

2 
F rob + ‖ P t ut ‖ 

2 
F rob + ‖ αP ‖ 

2 
F rob ) 

+ 

N ∑ 

u =1 

λW 

2 

| I u | − 1 
2 (‖ W u ‖ 

2 
F rob + ‖ W t ut ‖ 

2 
F rob + ‖ αW ‖ 

2 
F rob ) 

+ 

N ∑ 

u =1 

λZ 

2 

| I u | − 1 
2 (‖ Z u ‖ 

2 
F rob + ‖ Zt ut ‖ 

2 
F rob + ‖ αZ ‖ 

2 
F rob ) 

+ 

N ∑ 

u =1 

λZ 

2 

| I u | − 1 
2 (‖ Z u ‖ 

2 
F rob + ‖ Zt ut ‖ 

2 
F rob + ‖ αZ ‖ 

2 
F rob ) 

+ 

λbu 

2 

N ∑ 

u =1 

| I u | − 1 
2 (bu 

2 
u + α2 

u + C 2 u + ‖ bu u ‖ 

2 
F rob + ‖ Ct u ‖ 

2 
F rob ) 

+ 

λbi 

2 

M ∑ 

j=1 

| U j | − 1 
2 bi 2 j + 

λbi 

2 

M ∑ 

j=1 

∑ 

∀ t∈ I t 
j 

| U j | − 1 
2 bit 2 j,Bin (t) 

+ 

λY 

2 

D ∑ 

f=1 

D ∑ 

f ′ =1 

Y 2 
f f ′ (17)
 T = 

λt ηP 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 
( T u v − ˆ T u v ) 

2 + 

λt ηW 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 
( T u v − ˆ S u v ) 

2 

+ 

λt ηZ 

2 

N ∑ 

u =1 

∑ 

∀ v ∈ T u 
( T u v − ˆ G u v ) 

2 

+ 

N ∑ 

u =1 

λT 

2 

| T u | − 1 
2 (‖ P u ‖ 

2 
F rob + ‖ P t ut ‖ 

2 
F rob + ‖ αP ‖ 

2 
F rob ) 

+ 

N ∑ 

u =1 

λT 

2 

| T u | − 1 
2 (‖ W u ‖ 

2 
F rob + ‖ W t ut ‖ 

2 
F rob + ‖ αW ‖ 

2 
F rob ) 

+ 

N ∑ 

u =1 

λT 

2 

| T u | − 1 
2 (‖ Z u ‖ 

2 
F rob + ‖ Zt ut ‖ 

2 
F rob + ‖ αZ ‖ 

2 
F rob ) 

+ 

λω 

2 

N ∑ 

v =1 

| T + v | − 1 
2 ‖ ω v ‖ 

2 
F rob (18)

rgmin P,Pt ,αP ,Q,W,W t ,αW ,Z,Zt ,αZ ,Y,ω,y,bu,α,but ,C,Ct ,bi,bit [ E = E R + E T ] (19)

here I t 
j 

is the set of timestamps, for all the ratings given to item

 , and ηP , ηW 

, and ηZ are constants added to control the weights of

he components related to the social aspect in this equation. The

etails of the model training can be found in Appendix A . 

.2.4. Aspect-MF algorithm 

Algorithm 1 describes the details of the gradient descent

ethod Aspect-MF uses to train the model parameters ( P, Pt, αP ,

, W, Wt, αW , Z, Zt, αZ , Y, ω, y, bu, α, but, C, Ct, bi, bit ) as expressed

n Eq. (19) . 

The algorithm receives the set of model hyper-parameters

and the set of learning rates γ as input, and trains the

odel parameters according to the Bayesian approach described in

ection 3.2.2 . As we showed in the high-level representation of the

lgorithm in Fig. 2 a, the model is comprised of four basic compo-

ents. A model initialiser, which initialises the model parameters

fter the input data is loaded into memory, an intrinsic trainer,

hich trains the model parameters using the user-item ratings, a

ocial trainer which trains the model parameters using the social

elationship data, and finally, a model updater, which updates the

odel based on the trained parameters for a particular iteration. 
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Algorithm 2 Model initialising. 

1: void ModelInitialiser( λ, γ ) 

2: { 

3: initMean ← 0 ; initStd ← 1 ;
4: P.init ( initMean , initStd ) ;αP . initConst (0) ; Pt.initConst (0) ;
5: P S . init ( initMean , initStd ) ;βP . initConst (0) ; Pt S . initConst (0) ;W 

6: W. initConst (0) ;αW . initConst (0) ;W t. initConst (0) ;
7: W 

S . init ( initMean , initStd ) ;βW . initConst (0) ;W t S . initConst (0) ;
8: Z. initConst (0) ;αZ . initConst (0) ; Zt. initConst (0) ;
9: Z S . init ( initMean , initStd ) ;βZ . initConst (0) ; Zt S . initConst (0) ;
10: ω . init ( initMean , initStd ) ;ω 

S . init ( initMean , initStd ) ;
11: bu. init ( initMean , initStd ) ;α. init (0) ; but . init (0) ;C. init (0) ;Ct. init (0) ;
12: bi. init ( initMean , initStd ) ;β. initConst (0) ; bit . initConst (0) ;
13: Q . init ( initMean , initStd ) ; y. init ( initMean , initStd ) ;b 

14: } 

b initMean and initStd are the mean and standard deviation values that 

are used to initialise the model parameters. init(initMean, initStd) is a 

function that initialises a bias vector (e.g. bu and bi ) and a matrix (e.g. 

P , and Q ) using Gaussian distribution with mean value of initMean and 

standard deviation of initStd . initConst(initMean, initStd) initialises a ma- 

trix (e.g. W and Z ) with a constant value. 
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Algorithm 3 Intrinsic training. 

1: void IntrinsicTrainer( λ, γ ) 

2: { 
3: u ← 1 ;
4: for u � N do 

5: j ← 1 ;
6: for j � M do 

7: if R u j 	 = 0 then 

8: Calculate ˆ R u j according to Eq. 8. 

9: Get the time t that the rating R u j has been given. 

10: Update bu u , but ut , and αu according to Eqs. A .1–A .3 

using γα , γbu , γbut ; 

11: Update bi j and bit jt according to Eqs. A .4–A .5 using 

γbi and γbit ; 

12: Update C u and Ct ut according to Eqs. A .6–A .7 using γC 

and γCt ; 

13: f ← 1 ;
14: for f � D do 

15: Update P S 
u f 

, P t S 
u f t 

, and βP 
u according to Eqs. A.9, 

A.12, and A.15 using γP , γPt , and γαP ; 

16: Update Q j f according to Eq. A. 40 using γQ ; 

17: Update W 

S 
u f 

, W t S 
u f t 

, and βW 

u according to Eqs. A.18, 

A.21, and A.24 using γW 

, γW t , and γαW 

; 

18: Update Z S 
u f 

, Zt S 
u f t 

, and βZ 
u according to Eqs. A.27, 

A.30, and A.33 using γZ , γZt , and γαZ ; 

19: ∀ v ∈ T u : Update ω 

S 
v f according to Eq. A.35 using 

γω ; 

20: ∀ i ∈ I u : Update y i f according to Eq. A.33 using γy ; 

21: f 
′ ← f + 1 ;

22: for f 
′ � D do 

23: Update Y 
f f 

′ and Y 
f 
′ 

f 
according to Eq. A.39 us- 

ing γY ; 

24: f 
′ ← f 

′ + 1 ;
25: f ← f + 1 ;
26: j ← j + 1 ;
27: u ← u + 1 ;
28: } 

Algorithm 4 Social training. 

1: void SocialTrainer( λ, γ ) 

2: { 
3: u ← 1 ;
4: for u � N do 

5: v ← 1 ;
6: for v � N do 

7: if v ∈ T u then 

8: for f � D do 

9: Update P S 
u f 

, W 

S 
u f 

, and Z S 
u f 

according to Eqs. A.10, 

A .19, A .28 using γP , γW 

, and γZ ; 

10: ∀ t ∈ I t u : Update P t S 
u f t 

, W t S 
u f t 

, and Zt S 
u f t 

according to 

Eqs. A.13, A.16, A.19 using γPt , γW t , and γZt ; 

11: Update βP 
u f 

, βW 

u f 
, and βZ 

u f 
according to Eqs. A.16, 

A .19, A .22 using γαP , γαW 

, and γαZ ; 

12: ∀ t ∈ I t u : Update ω 

t 
v f according to Eq. A.26 using 

γω ; 

13: f ← f + 1 ;
14: v ← v + 1 ;
15: u ← u + 1 ;
16: } 
As can be seen in line 11 in Algorithm 1 , the training starts with

nitialising the model parameters. The matrices P, Q, y , and ω and

ser and item bias vectors ( bu and bi ) are randomly initialised us-

ng a Gaussian distribution with a mean of zero and the standard

eviation of one. The new matrices Pt, W, Wt, Z, Zt, Ct, but, bit , and

 and the vectors α, αP , αW , αZ , C are initialised with constant

alues. By using constant values to initialise the matrices and vec-

ors, the algorithm starts the search process at the same starting

oint as CTFVSVD, and explores the modified search space to find

ore promising solutions, by considering the possible conditional

ependencies between the features and the differences between

sers in preferring item feature values, as well as dynamic prop-

rties of the preferences, and the influence of social friends in the

references of a user. 

The main algorithm consists of a main loop, which implements

he learning iterations of the model. Each iteration is comprised

f one model intrinsic training operation ( Algorithm 3 ), one model

ocial training operation ( Algorithm 4 ), and one model updating

peration ( Algorithm 5 ). In the model intrinsic trainer, the model

arameters are updated using the gradient values in Eqs. (A.1) –

A.41) , using a rating value that is read from the user-item ratings

atrix. First in line 8, the estimated rating is calculated accord-

ng to Eq. (8) . Then the basic parameters of the model, P, Q, W,

, Y, bu , and bi , and the temporal parameters but, bit, α, C, Ct, αP ,
W , αZ , Pt, Wt , and Zt are updated using the rating-related gradient

alues ( 
∂E R 
∂(. ) 

) in the Eqs. (A .1) –(A .41) . Since this trainer only learns

he intrinsic user preferences, only the error value in Eq. (17) will

e used to update the model parameters. After learning the intrin-

ic preferences, the function in Algorithm 4 is invoked to train the

ocial aspects of the preferences. Similar to IntrinsicTrainer, Social-

rainer is also comprised of a main loop, which iterates over the

ocial relationship data in the social matrix. In each iteration, one

ntry from the social matrix is read, and the socially-influenced

arameters of the model are updated though the gradient values

hat are obtained using the error in Eq. (18) . Finally, the ModelUp-

ater in Algorithm 5 is invoked, and the calculated model updates

re applied to the model parameters. This process is repeated for a

xed number of iterations, or until a specific condition is met. At

he end of this process, the model parameters ( P, Pt, αP , Q, W, Wt,
W , Z, Zt, αZ , Y, ω, y, bu, α, but, C, Ct, bi, bit ) are trained using the

nput data, and can be used to estimate the rating value given by

 user u to an item j according to Eq. (8) . 
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Algorithm 5 Model updating. 

1: void ModelUpdater( λ, γ ) 

2: { 
3: ∀ u, f : P u f ← −γU × P S 

u f 
;

4: ∀ u : αP 
u ← −γαP × βP 

u ;
5: ∀ u, f : W u f ← −γW 

× W 

S 
u f 

;
6: ∀ u : αW 

u ← −γαW 

× βW 

u ;
7: ∀ u, f : Z u f ← −γZ × Z S 

u f 
;

8: ∀ u : αZ 
u ← −γαZ × βZ 

u ;
9: ∀ u, f : ω u f ← −γω × ω 

S 
u f 

;
10: } 
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3.2.5. Computational complexity analysis 

The model training in Algorithm 1 is comprised of one main

loop that iterates for a fixed number of iterations (maxIter). There-

fore, the computation time of the model trainer is expressed in

Eq. (20) . 

(ModelT rainer) = C(Intr insicT rainer ) + C(SocialT rainer) 

+ C(Mod elU pd ater) (20)

First, we examine the computational complexity of Intrinsic

Training in Algorithm 3 . On the highest level, this algorithm is

comprised of two loops that iterate over the non-zero ratings in

the rating matrix R . In the following, | R | and | T | denote the num-

ber of non-zero entries in the rating matrix R and adjacency matrix

T respectively. In Intrinsic Trainer: 

• The number of repetitions to calculate the estimated ratings

( ̂  R ) in line 8 is (D 

2 × | R | ) + (D × ∑ N 
u =1 | I u | 2 ) + (D × ∑ N 

u =1 | I u | ×| T u | ) . 
• The number of repetitions to update parameters related to user

and item biases in lines 10, 11, and 12 is 7 × | R |. 

• The number of repetitions needed to update the parameters P,

Q, W , and Z in lines 15, 16, 17, and 18 is 10 × D × | R |. 

• The number of repetitions needed to update the parameters ω
in line 19 is D × ∑ N 

u =1 (| I u | × | T u | ) . 
• The number of repetitions needed to update the parameters y

in line 20 is D × ∑ N 
u =1 | I u | 2 . 

• The number of repetitions needed to update the dependency

matrix Y in line 23 is D 

2 × | R |. 

Therefore, the overall number of repetitions for the Intrinsic

Trainer is obtained according to Eq. (21) . 

N(Intr insicT rainer ) = D 

2 × | R | + D ×
N ∑ 

u =1 

| I u | × | T u | 

+ 7 × | R | + 10 × D × | R | 
+ D ×

N ∑ 

u =1 

(| I u | × | T u | ) + D ×
N ∑ 

u =1 

| I u | 2 

+ D 

2 × | R | (21)

Assuming that on average, each user rates c items, and trusts k

users, the computation time can be obtained as Eq. (22) . 

(Intr insicT rainer ) = O (D 

2 ×| R | ) + O (D ×c×| R | ) + O (D ×k ×| T | ) 
(22)

Assuming that c, k �N , we can ignore the values of c and k .

Therefore, the computational time of the Intrinsic Trainer would

be obtained according to Eq. (23) . 

(Intr insicT rainer ) = O (D 

2 × | R | ) + O (D × | R | ) + O (D × | T | ) 
= O (D 

2 × | R | ) + O (D × | T | ) (23)
Consequently, the overall computation time is linear with re-

pect to the number of observed ratings as well as observed trust

tatements. Social Trainer consists of two loops that iterate over

he non-zero trust relations in the adjacency matrix T . The num-

er of repetitions needed to update the parameters P, W, Z , and
P , βW , and βZ is 6 × D × | T |. The number of repetitions to up-

ate the values of Pt, Wt, Zt , and ω is equal to 4 × ( 
∑ N 

u =1 | I u | ×
 T u | × D ) . Therefore, the computation time of Social Trainer is

qual to: 

(Intr insicT rainer ) = O (D × | R | ) + O (D × | T | ) (24)

In the Model Updater, the values of matrices P, W, Z , and vec-

ors ω, αP , αW , and αZ need to be updated. The computation time

eeded to update these parameters is O ( N × D ). Assuming that each

ser has rated at least one item, it is safe to say that | R | is greater

han the number of users N . Therefore, the computation time of

odel Updater does not exceed the maximum computation time of

ntrinsic Trainer and Social Trainer. Finally, the computation time

f the Model trainer is obtained as Eq. (25) . 

(ModelT rainer) = O (D 

2 × | R | ) + O (D × | T | ) (25)

The number of latent factors D is fixed, hence the computation

ime is only a function of | R | and | T |. Since both ratings matrix and

ocial network matrix are sparse, the algorithm is scalable to the

roblems with millions of users and items. 

. Experiments 

.1. Datasets 

We tested Aspect-MF on three popular datasets, Ciao, Epinions,

nd Flixster. Ciao is a dataset crawled from the ciao.co.uk web-

ite. This dataset includes 35,835 ratings given by 2248 users over

6,861 movies. Ciao also includes the trust relationships between

sers. The number of trust relationships in Ciao is 57,544. There-

ore the dataset density of ratings and trust relationships are 0.09%

nd 1.14% respectively. The ratings are integer values between 1

nd 6. The Epinions dataset consists of 664,824 ratings from 40,163

sers on 139,738 items of different types (software, music, televi-

ion show, hardware, office appliances, ...). Ratings are integer val-

es between 1 and 5, and data density is 0.011%. Epinions also en-

bles the users to issue explicit trust statements about other users.

his dataset includes 487,183 trust ratings. The density of the trust

etwork is 0.03%. Flixster is a social movie site which allows users

o rate movies and share the ratings with each other, and become

riends with others with similar movie taste. The Flixster dataset

hich is collected from the Flixster website includes 8,196,077 rat-

ngs issued by 147,612 users on 48,794 movies. The social net-

ork also includes 7,058,819 friendship links. The density of the

atings matrix and social network matrix are 0.11% and 0.001%

espectively. The item popularity shift depicted for the Epinions,

iao, and Flixster datasets in Fig. 5 shows that the ratings drift

ver time. In particular, it can be observed that an abrupt shift

f items rating scale has happened at year 20 05, and 20 06 for

pinions and Flixster datasets respectively. We can also see that

ver time, generally items have grown in popularity in the Ciao

ataset. 

In all the experiments in Sections 4.3 –4.5 , 80% of the datasets

re used for training and the remaining 20% are used for eval-

ation. In order to achieve statistical significance, each model

raining is repeated for 30 times and the average values are

sed. In Section 4.6 , we analyse the behaviour of the models

n other cases, where 60% and 40% of the ratings are used for

raining. 
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Fig. 5. The drift of average item ratings in the (a) Ciao, (b) Epinions, and (c) Flixster 

datasets. 
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1 fv denotes feature value preferences, f denotes feature preferences, and b de- 

notes bias. Therefore, bffv denotes a model with all the three aspects. 
.2. Comparisons 

In order to show the effectiveness of Aspect-MF, we compared

he results against the recommendation quality of some of the

ost popular state of the art models that have reported the high-

st accuracies in the literature. The following models are compared

cross the experiments in this section: 

• TrustSVD ( Guo, Zhang, & Yorke-Smith, 2015 ), which builds on

SVD++ ( Koren & Bell, 2011 ). The missing ratings are calculated

based on explicit and implicit feedback from user ratings and

user’s trust relations. 

• CondTrustFVSVD ( Zafari & Moser, 2017 ), this method extends

TrustSVD by adding the conditional preferences over feature

values to TrustSVD. Experimental results show that this method

is significantly superior to TrustSVD in terms of accuracy. This

model is denoted CTFVSVD in the experiments section. 

• Aspect-MF , which is the model proposed in this paper. The

component-based approach that we took in designing this

model enabled us to arbitrarily switch on/off the dynamicity

over different preference aspects. Therefore, in the experiments

we try all the combinations of dynamic preference aspects. This
results in 7 combinations denoted by b, bf, bffv, bfv, f, ffv , and

fv 1 

Guo, Zhang, and Yorke-Smith (2016) carried out comprehen-

ive experiments, and showed that their model, TrustSVD out-

erformed all the state of the art models. Recently, Zafari and

oser (2017) showed that their model CondTrustFVSVD signifi-

antly outperforms TrustSVD. Therefore, in this section, we lim-

ted our comparisons to these two models from the state of the

rt since they outperform a comprehensive set of state of the art

ecommendation models ( Guo et al., 2016; Zafari & Moser, 2017 ). 

The optimal experimental settings for each method are deter-

ined either by our experiments or suggested by previous works

 Guo et al., 2015; 2016; Zafari, Moser, & Rahmani, 2017 ). Since the

odel was designed using a component-based approach, we could

witch off an aspect easily by setting the hyper-parameters and

earning rates to zero. To find the appropriate values for each as-

ect, we performed grid search. We first set the values to zero and

ecorded the accuracy. Then we increased the values and moni-

ored the accuracy. The accuracy kept improving before it dropped.

fter finding a set of sub-optimal values by this trial and error ap-

roach, we used the same values through our experiments for TCT-

VSVD. 

Due to the over-fitting problem, the accuracy of iterative mod-

ls improves for a number of iterations, after which it starts to de-

rade. Therefore, we recorded the best accuracy values achieved

y each model during the iterations, and compared the models

ased on the recorded values. We believe that this approach re-

ults in a fairer comparison of the models than setting the num-

er of iterations to a fixed value, because the models over-fit at

ifferent iterations, and using a fixed number of iterations actu-

lly prevents us from fairly comparing the models based on their

eal capacity in uncovering hidden patterns from data. Therefore,

he reported results for iterative models here are the best results

hat they could achieve using the aforementioned parameters. MAE

nd RMSE measures are used to evaluate and compare the accu-

acy of the models. MAE and RMSE are two standard and popular

easures that are used to measure and compare the performance

f preference modelling methods in recommender systems. In the

ollowing sections, we consider the performances separately for All

sers and Cold-start Users. Cold-start Users are the users who have

ated less than 5 items, and All Users include all the users regard-

ess of the number of items they have rated. 

.3. Discussion 

All latent factor approaches have been evaluated with 5 factors,

ecause no clear ideal value could be established. In Section 4.3.1 ,

rst we analyse the performance of the models from different per-

pectives. Since the results are subject to randomness, we also per-

ormed a t test to guarantee that the out-performances achieved

o not happen by chance. The results are discussed in Section 4.4 .

s we mentioned in Section 1 , one of the research questions we

re interested in, in this paper is related to the interplay between

he dynamicity of preference aspects and the preference domain.

n Section 4.5 , we consider the performance of combinations of

spect-MF, in order to pinpoint the aspects that are more subject

o temporal drift in each dataset. In Section 4.6 , we also consider

he effect of the amount of training data that is fed to the model

s input, and analyse the robustness of the models to the shortage

f training data. 
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Fig. 6. Box plots of the Aspect-MF’s combinations (b, bf, bffv, f, ffv, fv) and CTFVSVD versus TrustSVD in Ciao dataset in terms of MAE and RMSE measures for cold-start 

users (CS) and all users (ALL). 
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4.3.1. Model performances 

We can consider the performance of the models from different

perspectives. A preference model’s performance can be considered

with respect to the dataset on which it is trained, the accuracy

measure that is used to evaluate the model’s performance, and the

performance of the model on cold-start users vs the performance

on all users. 

Datasets. The error values in Fig. 6 show that the Aspect-MF

results in substantial improvements over TrustSVD in all three

datasets for both measures and for all users and cold-start users.

As we can see in this figure, the box plots of Aspect-MF’s combi-

nations do not have much overlap with the box plot of TrustSVD,

which means that the differences are definitely statistically signif-

icant. In this figure, we can also see that the box plot widths for

Aspect-MF’s combinations are usually much smaller than that for

TrustSVD. This suggests that Aspect-MF’s combinations are more

stable than TrustSVD, meaning that they find roughly the same

solutions across different model executions. This is a favourable

property of the model, since it makes the model performance less

subject to randomness. Clearly, a model that performs well some-

times and worse at other times is less reliable. The model’s su-
erior performance is likely due to its taking multiple preference

spects into account, therefore, it has more clues as to where the

ptimal solutions might reside in the solution space. 

In particular, we can see that the model is more stable in the

ase of the Ciao and Epinions datasets than the Flixster dataset.

n the Epinions dataset, each typical user and cold-start user rates

1.61 items and 4.08 items on average. These numbers respectively

re 15.94 and 2.94 for the Ciao dataset, and 11.12 and 1.94 for the

lixster dataset. This could explain why the variations are larger on

lixster dataset than Epinions and Ciao datasets. Since more ratings

er user are available in the Ciao and Epinions dataset, different

xecutions lead the model to more similar solutions than the solu-

ions that are found on the Flixster dataset across different model

xecutions. We can also see from Table 2 , that on the Ciao and

lixster datasets, the improvements are more significant for RMSE,

hile more significant improvements are achieved for RMSE. We

an also clearly observe that the model variations are smaller for

ll users in the Epinions dataset, and for cold-start users in the

lixster dataset. 

ccuracy measures. As the statistical analysis of the models in

able 2 show, the differences are generally more significant when
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Table 2 

The t values and p values for Aspect-MF’s combinations vs TrustSVD in Ciao, Epinions, and Flixster datasets for MAE and RMSE measures 

on all users (ALL) and cold-start users (CS). 

Dynamic model Measure Ciao Epinions Flixster 

t value p value Sig. t value p value Sig. t value p value Sig. 

Aspect-MF(b) MAE-ALL −19.9867 9.44E −20 yes −144.389 3.57E −49 yes −18.3981 2.33E −21 yes 

Aspect-MF(b) RMSE-ALL −48.7869 2.09E −33 yes −138.903 6.05E −49 yes −11.0414 8.14E −14 yes 

Aspect-MF(b) MAE-CS −24.9813 9.60E −29 yes −60.0446 2.75E −40 yes −37.612 1.36E −34 yes 

Aspect-MF(b) RMSE-CS −61.0847 1.94E −40 yes −35.8673 7.73E −32 yes −27.6887 9.62E −29 yes 

Aspect-MF(bf) MAE-ALL −20.2987 1.75E −20 yes −144.517 2.80E −49 yes −17.6976 1.66E −21 yes 

Aspect-MF(bf) RMSE-ALL −48.3137 8.60E −35 yes −137.679 3.67E −50 yes −11.3137 6.28E −14 yes 

Aspect-MF(bf) MAE-CS −24.2062 5.78E −30 yes −57.2661 2.06E −44 yes −37.6646 2.67E −34 yes 

Aspect-MF(bf) RMSE-CS −58.0125 2.90E −44 yes −35.1151 7.69E −34 yes −28.4271 2.65E −28 yes 

Aspect-MF(bffv) MAE-ALL −20.1253 1.36E −19 yes −144.792 1.23E −48 yes −18.9756 1.21E −21 yes 

Aspect-MF(bffv) RMSE-ALL −48.7184 2.40E −32 yes −138.854 1.08E −48 yes −11.9005 1.72E −14 yes 

Aspect-MF(bffv) MAE-CS −26.7303 1.60E −26 yes −57.8678 1.57E −42 yes −37.5037 4.99E −35 yes 

Aspect-MF(bffv) RMSE-CS −62.6826 2.88E −37 yes −35.6445 1.44E −31 yes −27.5707 1.45E −29 yes 

Aspect-MF(bfv) MAE-ALL −20.0161 5.51E −20 yes −140.994 5.74E −52 yes −18.304 9.83E −23 yes 

Aspect-MF(bfv) RMSE-ALL −48.7855 2.22E −32 yes −135.65 1.02E −51 yes −11.7557 1.50E −14 yes 

Aspect-MF(bfv) MAE-CS −25.0275 4.47E −30 yes −57.4134 9.13E −44 yes −39.183 1.14E −31 yes 

Aspect-MF(bfv) RMSE-CS −61.8785 4.54E −39 yes −35.8765 9.44E −33 yes −28.9199 9.04E −27 yes 

Aspect-MF(f) MAE-ALL −16.021 1.28E −17 yes −126.805 1.94E −50 yes −15.2094 8.52E −20 yes 

Aspect-MF(f) RMSE-ALL −40.3613 2.93E −33 yes −120.674 2.03E −50 yes −9.14701 2.32E −11 yes 

Aspect-MF(f) MAE-CS −31.3473 9.40E −33 yes −59.4225 5.52E −42 yes −34.6759 2.87E −36 yes 

Aspect-MF(f) RMSE-CS −62.008 1.76E −40 yes −36.5189 3.76E −31 yes −27.0282 2.79E −28 yes 

Aspect-MF(ffv) MAE-ALL −16.4344 1.37E −17 yes −131.061 1.17E −46 yes −15.2416 1.30E −18 yes 

Aspect-MF(ffv) RMSE-ALL −41.942 1.31E −30 yes −124.216 4.87E −47 yes −9.28969 4.00E −11 yes 

Aspect-MF(ffv) MAE-CS −30.1691 9.47E −34 yes −60.2686 2.61E −40 yes −36.8921 3.11E −34 yes 

Aspect-MF(ffv) RMSE-CS −60.9112 2.12E −41 yes −34.5646 1.19E −32 yes −27.7828 1.94E −28 yes 

Aspect-MF(fv) MAE-ALL −16.8998 1.42E −17 yes −127.613 1.55E −49 yes −16.0515 2.37E −19 yes 

Aspect-MF(fv) RMSE-ALL −42.4293 1.93E −31 yes −121.779 2.10E −49 yes −9.22016 4.64E −11 yes 

Aspect-MF(fv) MAE-CS −30.0768 2.88E −32 yes −57.1987 4.54E −43 yes −38.164 6.52E −33 yes 

Aspect-MF(fv) RMSE-CS −61.5278 2.68E −40 yes −33.735 7.11E −33 yes −27.2901 2.64E −28 yes 
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s  
he accuracies are measured in terms of the RMSE. This can be

xplained by the formulation of these models as an optimisation

roblem. These models focus on maximising accuracy using RMSE

nd achieving better MAE values is a secondary goal that is only

ursued through minimising RMSE. 

old-start vs all users. By taking a close look at the statistical anal-

sis results in Table 2 and also the box plots of CTFVSVD vs Aspect-

F’s combinations in Fig. 6 , we can see that in all three datasets,

he improvements of the Aspect-MF are more significant over all

sers than cold-start users. This can be explained by the amount of

ynamic information that the models receive for each one of these

roups of users. For all users, the model is trained using all ratings

nd also all associated time stamps for those ratings. Therefore the

odel can more successfully discern the temporal patterns in the

references, and the accuracy improvements are larger. However,

or the cold-start users, the model does not have access to much

emporal information about these users, since they do not have

any ratings. As a result, the model cannot identify the shift in

he preferences of these users, and the improvements are smaller.

rom this, we conclude that temporal models are more successful

n all users, because for them, temporal information is available. 

.4. Statistical analysis 

The statistical analysis of the performances provided in

able 2 shows that all Aspect-MF’s combinations achieve signifi-

antly better results than TrustSVD, which does not include the

emporal information. The values in Table 3 also show that Aspect-

F’s combinations also result in improvements over CTFVSVD that

re statistically significant, which means that in all three datasets,

spect-MF has been successful in extracting the temporal patterns

n the users’ preferences. We can also see that the all the p values

n Table 2 are 0.0 0 0 0, which means that with almost 100% proba-

ility, the two model executions (Aspect-MF and TrustSVD) do not
ome from distributions with equal mean performances. Therefore,

e are almost 100% sure that the observed differences in perfor-

ance are due to the superiority of Aspect-MF over TrustSVD, and

ot the result of chance. Similarly, the p values in Table 3 are al-

ost zero, which means that we are certain that Aspect-MF is bet-

er than CTFVSVD, in cases where the t test shows a statistically

ignificant improvement. 

.5. Dynamic aspects 

The close comparison of the error values achieved by Aspect-

F in Figs. 6 and 7 show that in terms of MAE for all users,

spect-MF achieves the best performance on the Ciao and Epin-

ons datasets, for the models including dynamic b and f aspects.

owever, on the Flixster dataset, the model combination with dy-

amic b and fv aspects performs best. Interestingly, for cold-start

sers, different models perform the best. In particular, on the Ciao

ataset, the model including dynamic f performs best, whereas on

he Epinions and Flixster datasets, the model including dynamic b,

 , and fv aspects, and the model with drifting f aspect achieve the

est results respectively. 

As shown in Fig. 1 , the social aspect does not directly help cap-

ure the temporal drifts, but interacts with the other aspects that

re subject to social influence, such as feature preferences and fea-

ure value preferences. Figs. 6 through 8 show that addition of

ime aspect to CTFVSVD significantly improves the accuracy. This

s because the feature preferences and feature value preferences

re subject to change over time, and capturing the temporal prop-

rties of these aspects helps improve the recommendation qual-

ty. Modelling the social aspect is also critical, since it helps better

odel feature value preferences and feature preferences. In fact,

he improvements achieved by CTFVSVD ( Zafari & Moser, 2017 )

ver TrustSVD ( Guo et al., 2016 ) are the result of modelling feature

alue preferences and feature preferences, and their interplay with

ocial aspect, and the improvements achieved over CTFVSVD by
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Table 3 

The t values and p values for Aspect-MF’s combinations vs CTFVSVD in Ciao, Epinions, and Flixster datasets for MAE and RMSE 

measures on all users (ALL) and cold-start users (CS). 

Dynamic model Measure Ciao Epinions Flixster 

t value p value Sig. t value p value Sig. t value p value Sig. 

Aspect-MF(b) MAE-ALL −7.9254 0.0 0 0 0 yes −40.0588 0.0 0 0 0 yes −3.51234 8.76E −04 yes 

Aspect-MF(b) RMSE-ALL −17.5792 0.0 0 0 0 yes −34.3869 0.0 0 0 0 yes −3.76619 3.90E −04 yes 

Aspect-MF(b) MAE-CS 8.9344 0.0 0 0 0 yes 0.8529 0.3973 no −0.85677 0.39517 no 

Aspect-MF(b) RMSE-CS 0.5979 0.5522 no 1.4063 0.1650 no −1.70069 0.094359 no 

Aspect-MF(bf) MAE-ALL −8.6722 0.0 0 0 0 yes −40.4729 0.0 0 0 0 yes −2.88722 0.005453 yes 

Aspect-MF(bf) RMSE-ALL −16.9178 0.0 0 0 0 yes −32.7924 0.0 0 0 0 yes −4.13771 1.16E −04 yes 

Aspect-MF(bf) MAE-CS 7.6174 0.0 0 0 0 yes 0.0021 0.9983 no −0.65626 0.514293 no 

Aspect-MF(bf) RMSE-CS 0.4274 0.6709 no 0.4595 0.6476 no −2.23892 0.029057 yes 

Aspect-MF(bffv) MAE-ALL −8.2488 0.0 0 0 0 yes −40.8591 0.0 0 0 0 yes −4.31919 6.39E −05 yes 

Aspect-MF(bffv) RMSE-ALL −17.2079 0.0 0 0 0 yes −34.0360 0.0 0 0 0 yes −5.11012 3.90E −06 yes 

Aspect-MF(bffv) MAE-CS 10.1601 0.0 0 0 0 yes 1.2975 0.1996 no −1.11763 0.26 84 8 no 

Aspect-MF(bffv) RMSE-CS 2.0086 0.0495 yes 1.9330 0.0582 no −2.18501 0.032959 yes 

Aspect-MF(bfv) MAE-ALL −8.0096 0.0 0 0 0 yes −33.8218 0.0 0 0 0 yes −4.19593 9.50E −05 yes 

Aspect-MF(bfv) RMSE-ALL −17.3742 0.0 0 0 0 yes −30.0663 0.0 0 0 0 yes −4.92428 7.44E −06 yes 

Aspect-MF(bfv) MAE-CS 7.3472 0.0 0 0 0 yes 0.5237 0.6025 no −0.31262 0.755723 no 

Aspect-MF(bfv) RMSE-CS 1.0133 0.3151 no 0.5666 0.5732 no −1.76305 0.083675 no 

Aspect-MF(f) MAE-ALL 0.6250 0.5345 no 0.6578 0.5139 no 0.169793 0.865773 no 

Aspect-MF(f) RMSE-ALL −1.1529 0.2539 no 1.7569 0.0846 no −0.53474 0.594882 no 

Aspect-MF(f) MAE-CS 1.0076 0.3179 no −0.0942 0.9253 no 0.644178 0.522319 no 

Aspect-MF(f) RMSE-CS −0.8901 0.3771 no 1.2122 0.2306 no −0.62142 0.536762 no 

Aspect-MF(ffv) MAE-ALL 0.1020 0.9191 no −0.0859 0.9318 no 1.302566 0.197918 no 

Aspect-MF(ffv) RMSE-ALL −1.1275 0.2643 no 1.7583 0.0840 no −0.32867 0.743682 no 

Aspect-MF(ffv) MAE-CS 1.0049 0.3191 no 0.5245 0.6019 no 0.350768 0.727059 no 

Aspect-MF(ffv) RMSE-CS −0.2707 0.7876 no 2.1764 0.0336 yes −1.57954 0.119666 no 

Aspect-MF(fv) MAE-ALL −0.5989 0.5520 no 0.9751 0.3343 no 0.086061 0.931718 no 

Aspect-MF(fv) RMSE-ALL −2.9847 0.0042 yes 1.6778 0.0990 no −0.22597 0.822071 no 

Aspect-MF(fv) MAE-CS 2.3939 0.0200 yes 1.5299 0.1315 no −0.03512 0.972102 no 

Aspect-MF(fv) RMSE-CS 0.0763 0.9394 no 2.8533 0.0060 yes −0.92614 0.358215 no 
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TCTFVSVD are the result of modelling the temporal properties of

feature value preferences and feature preferences that were made

subject to social aspect in CTFVSVD. 

As we reviewed in Section 2 , Guo, Zhu, Qu, and Wang (2018) re-

cently proposed a temporal-based latent factor model, and com-

pared it with some of the state of the art temporal-based models.

They used both 80%-20% ratio train-test splitting and 5-fold cross

validation, and empirically found that both approaches produced

similar performances. The results reported by them show that TCT-

FVSVD beats BPTF and PCCF by a large margin. The MAE and RMSE

values achieved by BPTF on the Ciao dataset are 0.76 and 1.05,

while TCTFVSVD achieves 0.59 and 0.88 on the same dataset. This

result is even better than PCCF which achieved 0.69 and 0.92 re-

spectively. This is expected, since TCTFVSVD also includes social as-

pect which potentially includes a large fraction of preference pat-

terns in data. Therefore, TCTFVSVD easily beats other methods in-

cluding BPTF which do not include the social aspect. TCTFVSVD

shows how all the preference aspects can be captured in a model

and that is one main contribution of the current work. To the best

of our knowledge, TCTFVSVD is the first to model all these aspects

together. 

From Figs. 6 through 8 , we can make several conclusions.

The first conclusion is that the dynamic patterns are dataset-

dependent. Therefore, users and the items in different dataset can

have preferences with aspects with different levels of dynamicity.

This finding supports our component-based approach in modelling

the dynamic properties of the preference aspects. 

The second conclusion is that the prediction of the ratings for

the cold-start users is less dependent on the drifting bias than that

of all users. As we see in this Figs. 9 and 10 , for all users, the com-

binations that include dynamic b aspects are strictly better than

the other combinations, whilst this is less consistent for cold-start

users, where sometimes the models with only dynamic f aspects

perform best. This suggests that the preferences of cold-start users

are not much affected by the shifts in the popularity of the items,
hile other users’ preferences are more influenced by such shifts.

herefore, the accurate modelling of such temporal effects is of

reater importance in the case of all users than cold-start users.

s previous studies have shown ( Koenigstein et al., 2011 ), bias is

 very important aspect in human preferences. Since the cold-start

sers do not have enough ratings, there is also not enough tem-

oral data to train the preferences for these models. Therefore, the

rained temporal aspects of these users are probably not very ac-

urate, and therefore, the combinations that include bias perform

oorly on these users, due to imprecise predictions. 

The third conclusion is that both measures reveal roughly the

ame preference patterns. This seems justifiable, since the shift in

ser preferences should naturally be independent of how the dif-

erences in estimated preferences and real preferences are mea-

ured. 

To summarise, it is very advantageous to have a component-

ased model in which the temporal aspects of preferences can be

rbitrarily captured in different conditions. This enables us to cap-

ure the patterns only when they are actually helpful, and conse-

uently, build the most accurate preference models, tailored to dif-

erent datasets and domains with disparate temporal patterns. 

.6. Effect of the size of the training dataset 

The main purpose of this section is to evaluate the robustness

f the models against shortage of training data. In the experiments

n Sections 4.3 through 4.5 , 80% of the ratings matrix was used for

raining the models and the remaining data was used for evalua-

ion. The question that arises here is how the models would per-

orm if less amount of data was fed to the models for training. 

In order to analyse the behaviour of the models with respect

o the amount of training data, we can reduce the amount of the

raining data, and consider how much the accuracy drops as the

raining data is decreased. Therefore, we also evaluate the models

n two additional cases. The first case includes 60% of the data for
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Fig. 7. Box plots of the Aspect-MF’s combinations (b, bf, bffv, f, ffv, fv) and CTFVSVD versus TrustSVD in Epinions dataset in terms of MAE and RMSE measures for cold-start 

users (CS) and all users (ALL). 
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raining, and the remaining 40% for testing, and the second case

ses 40% of ratings data for training and the rest for evaluation.

he results for the Flixster and Ciao datasets are demonstrated in

igs. 11 and 12 respectively. These figures show the percentage of

rror increase as the amount of training data is decreased. 

ll users. As can be seen in Fig. 11 , on the Flixster dataset, in the

ase of all users, all combinations of Aspect-MF result in a smaller

ncrease in the error when the training data is decreased from 80%

o 60% (denoted by 80-60 in these diagrams), and from 60% to 40%

denoted by 60–40 in these diagrams). Furthermore, we can ob-

erve that in terms of MAE, the combination that includes f and

v resulted the smallest error increase when the training data de-

reased from 80% to 60%, and the model that included fv resulted

n the smallest error increase when the training data decreased

rom 60% to 40%. This suggests that the dynamic model is more

obust to the shortage of training data, when the error is measured

n terms of MAE for all users. In terms of RMSE, the least accuracy

eterioration happened for the model combination with the f as-

ect, both when the training data amount drops to 60%, and when

t drops to 40%. 
old-start users. For cold-start users however, a different pattern is

vident. Interestingly, we can see that for cold-start users, the er-

or increases more when the training data is decreased from 80%

o 60%, compared to when it is decreased from 60% to 40%. This

eans that the accuracy degrades more when the training data

rops to 60%. Judging by the higher error increase for cold-start

sers in comparison with all users, cold-start users seem to be

ore sensitive to the decrease in the amount of training data. This

eems understandable, since the cold-start users do not have many

atings. Therefore, when evaluating the model accuracy for cold-

tart users, less accurate predictions for each rating have a larger

ffect on the overall accuracy. 

TrustSVD seems to be more robust to the shortage of training

ata for cold-start users, when the training data drops from 60%

o 40%. This can be attributed to the fact that the dynamic model

ontains time information, and this information can be mislead-

ng if we substantially decrease the amount of training data, and

valuate the accuracy for cold-start users who do not have much

atings. A similar observation was made in Figs. 9 and 10 , where

he dynamic model including the b aspect performed poorly on the

old-start users. 
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Fig. 8. Box plots of the Aspect-MF’s combinations (b, bf, bffv, f, ffv, fv) and CTFVSVD versus TrustSVD in Flixster dataset in terms of MAE and RMSE measures for cold-start 

users (CS) and all users (ALL). 
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All users vs cold-start users. A similar trend to the one observed in

Flixster dataset can also be seen in the Ciao dataset in Fig. 12 . As

this figure shows, the accuracy deterioration for cold-start users is

much larger compared with that for all users. Again, we attribute

this to the high sensitivity of cold-start users to inaccurate pre-

dictions. For the case where the training data amount drops from

80% to 60%, the model combination with all the dynamic aspects

( bffv ) results in the lowest increase in MAE for all users. For cold-

start users, the model combination with b and f aspects achieve

the smallest deterioration of accuracy. 

However, in terms of RMSE for all users, TrustSVD incurs the

lowest increase in the error, while for cold-start users, the model

with the dynamic fv aspect is the most robust. In the second case

where the training data amount is decreased from 60% to 40%,

at least one of the model combinations performs best (incurs the

lowest accuracy deterioration) for each measure, among the mod-

els tested. We can also see that when the training data amount is

decreased from 80% to 60%, the error increase is much lower than

when the training data amount drops from 60% to 40%. This means

that the models are still quite robust with 60% of the ratings data

as training data, but their accuracy considerably drops when the

training data decreases to 40%. 
lixster vs Ciao. One of the key differences between the behaviour

f the models on the Flixster and Ciao datasets, as can be seen

n Figs. 11 and 12 , is the threshold at which the accuracy sharply

rops for cold-start users. For the Flixster dataset, the accuracy of

old-start users sharply worsens when the training data amount is

ecreased from 80% to 60%, while for the Ciao dataset, the sharp

ecrease in accuracy happens when the training data amount de-

reases from 60% to 40%. This can be easily justified by look-

ng at the statistics of these two datasets for cold-start users. On

he Flixster dataset as we mentioned before, each cold-start user

ates 1.94 items on average, while this number is 2.94 in the Ciao

ataset. Therefore, the accuracy of cold-start users on the Flixster

ataset is more sensitive to inaccurate predictions than that on the

iao dataset. 

Considering all four measures on the two datasets, in general,

e can observe that Aspect-MF’s combinations are more robust to

he decrease in the amount of training information than TrustSVD

nd CTFVSVD. The combinations in this paper are particularly more

elpful in cases where enough time related data is fed into the

odel as input. 
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Fig. 9. Comparisons of the MAE values of Aspect-MF’s combinations in (a,b) Ciao, (c,d) Epinions, and (e,f) Flixster datasets for all users (MAE-ALL) and cold-start users 

(MAE-CS). 
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Fig. 10. Comparisons of the MAE values of Aspect-MF’s combinations in (a,b) Ciao, (c,d) Epinions, and (e,f) Flixster datasets for all users (RMSE-ALL) and cold-start users 

(RMSE-CS). 
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Fig. 11. Effect of the training amount on Flixster dataset for (a) MAE for all users, (b) MAE for cold-start users, (c) RMSE for all users, (d) RMSE for cold-start users. 
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nsights. From the observations for cold-start users, we can con-

lude that in order for the time information to be helpful, we

eed to provide the model with enough time-related data as in-

ut, so that the accuracy can be improved, and the importance of

uch data is more pronounced for the cold-start users, whose pre-

ictions are more sensitive to the inaccuracies. Otherwise, if the

mount of training data is insufficient, the model can learn un-

ealistic temporal patterns that directly result from a shortage of

raining information. 

We also saw that the degree of deterioration of the accuracy is

omewhat dependent on the dataset. On the Flixster, the accuracy

egrades somewhere between just under 1% to just under 5%. On

iao, however, the accuracy deteriorates much more (roughly be-

ween 6.5% and 19.5%). Therefore, it is up to the system users to

ecide whether they would like to use smaller datasets and sac-

ifice the accuracy, or spend more time on training more accurate

odels using more information. We did not observe any tangible

ifferences between the execution times of these cases (80%–60%–

0%), and the computational complexity analysis of the model in

ection 3.2.5 showed that the model time is of linear order. There-

ore, it is probably advisable for the system owners to use as much

ata as available to achieve the highest accuracies, as long as their

omputational limitations allow. 

. Conclusion and future work 

In this paper, we addressed the problem of modelling the tem-

oral properties of human preferences in recommender systems.

n order to tackle this problem, we proposed a novel latent factor

odel called Aspect-MF. Aspect-MF built on the basis of CTFVSVD,
 model that we proposed earlier, in order to capture socially-

nfluenced conditional preferences over feature values. In Aspect-

F, three major preference aspects were assumed to be subject to

emporal drift. These aspects included user and item biases, prefer-

nces over features, and preferences over feature values. Moreover,

e also analysed the temporal behaviour of each of these prefer-

nce aspects and their combinations. We also considered the ro-

ustness of Aspect-MF’s combinations with respect to the shortage

f training data. 

In order to evaluate the model, we carried out extensive ex-

eriments on three popular datasets in the area of recommender

ystems. We considered the model errors in terms of MAE and

MSE measures on all users and cold-start users. We also per-

ormed statistical analyses on the performances observed, to make

ure that the differences in accuracies are significant, and hence

o not happen by chance. The experiments revealed that in all

hree datasets, all combinations of Aspect-MF for both measures on

ll users and cold-start users significantly outperformed TrustSVD,

hich had proven to be the most accurate static social recommen-

ation model before CTFVSVD. The experiments also proved that

ost of the Aspect-MF’s combinations were significantly more ac-

urate than CTFVSVD. In particular, we found that Aspect-MF with

ll dynamic aspects outperformed CTFVSVD in all three datasets on

ll users. 

The analysis of the temporal behaviour of preference aspects

nd their combinations on the three datasets showed that differ-

nt datasets included different temporal patterns, and therefore,

equired models with different dynamic aspects. This supported

ur component-based approach in modelling the basic preference
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Fig. 12. Effect of the training amount on Ciao dataset for (a) MAE for all users, (b) MAE for cold-start users, (c) RMSE for all users, (d) RMSE for cold-start users. 
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aspects and their temporal properties. We also concluded that the

dynamic models are more helpful in cases there is enough train-

ing data to discern the temporal properties. In particular, we con-

cluded that the models proposed in this paper are more success-

ful in modelling all users, because more time-related data is avail-

able for all users than cold-start users, and therefore the tempo-

ral characteristics were extracted more accurately. The analysis of

the robustness of the models with respect to the shortage of train-

ing data also revealed that Aspect-MF was in general more robust

than CTFVSVD and TrustSVD. The models were also more robust

for all users than cold-start users, because cold-start users were

more sensitive to the inaccurate predictions. 

A direction that we would like to pursue in the future is related

to explaining the resulting recommendations to the users. Explain-

ing the recommendations to the users is believed to improve trans-

parency and to instill trust in the users. So far we have pursued

our main goal in improving the accuracy of the recommendations,

and in this paper we showed how we could achieve significant im-

provements by taking the temporal aspects into consideration. As

the next step, in particular we are interested in how we can ex-

plain the temporal properties of the trained models to the users.

Furthermore, the component-based structure followed in designing

Aspect-MF is generally beneficial in extracting explanations. 
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ppendix A. Aspect-MF training equations 

In Aspect-MF, we use gradient descent to optimise Eq. (19) .

he gradients for the model parameters are obtained using

qs. (A.20) to A.41 . 

∂E 
∂bu u 

= 

∂E R 
∂bu u 

= e u j + λbu | I u | − 1 
2 bu u (A.1)

 t u j ∈ I t u : 
∂E 

∂but ut 
= 

∂E R 
∂but ut 

= e u j + λbu | I u | − 1 
2 but ut (A.2)

∂E 
∂αu 

= 

∂E R 
∂αu 

= e u j de v u (t u j ) + λbu | I u | − 1 
2 αu (A.3)

∂E 
∂bi j 

= 

∂E R 
∂bi j 

= e u j (C u + C ut ) + λbi | J j | − 1 
2 bi j (A.4)

∂E 
∂bit jBin (t u j ) 

= 

∂E R 
∂bit jBin (t u j ) 

= e u j (C u + C ut ) + λbi | J j | − 1 
2 bit jBin (t u j ) (A.5)

∂E 
∂C u 

= 

∂E R 
∂C u 

= e u j (bi j + bit jBin (t u j ) ) + λbi | J j | − 1 
2 C u (A.6)

∂E 
∂Ct u 

= 

∂E R 
∂Ct u 

= e u j (bi j + bit jBin (t u j ) ) + λbi | J j | − 1 
2 Ct u (A.7)

∂E 
∂P u f 

= 

∂E R 
∂P u f 

+ 

∂E T 
∂P u f 

(A.8)

https://doi.org/10.13039/501100003246
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∀

∀

∀

∀

∀

∂E R 
∂P u f 

= e u j (W u f (t u j) Q j f (t u j) + Z u f (t u j)) + λP | I u | − 1 
2 P u f (A.9) 

∂E T 
∂P u f 

= λT | T u | − 1 
2 P u f + λt ηP 

∑ 

∀ v ∈ T u e 
(1) 
u v ω v f (A.10) 

 t u j ∈ I t u : 
∂E 

∂Pt u f t 
= 

∂E R 
∂Pt u f t 

+ 

∂E T 
∂Pt u f t 

(A.11) 

∂E R 
∂Pt u f t 

= e u j (W u f (t u j) Q j f (t u j ) + Z u f (t u j)) + λPt | I u | − 1 
2 P t u f t (A.12) 

∂E T 
∂Pt u f t 

= λT | T u | − 1 
2 P t u f t + 

λt ηP 

| I t u | 
∑ 

∀ v ∈ T u e 
(1) 
u v ω v f (A.13) 

∂E 
∂αP 

u f 

= 

∂E R 
∂αP 

u f 

+ 

∂E T 
∂αP 

u f 
(A.14) 

∂E R 
∂αP 

u f 

= e u j de v u (t u j )(W u f (t u j) Q j f (t u j) + Z u f (t u j)) + λαP | I u | − 1 
2 αP 

u f 

(A.15) 

∂E T 
∂αP 

u f 

= λT | T u | − 1 
2 αP 

u f 
+ 

λt ηP 

| I t u | 
∑ 

∀ v ∈ T u 
∑ 

∀ t u j ∈ I t u e 
(1) 
u v ω v f de v u (t u j ) (A.16) 

∂E 
∂W u f 

= 

∂E R 
∂W u f 

+ 

∂E T 
∂W u f 

(A.17) 

∂E R 
∂W u f 

= e u j Q j f (t u j)(W u f (t u j) Q j f (t u j) + Z u f (t u j)) 

+ 2 Q j f (t u j) 
D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λW 

| I u | − 1 
2 W u f (A.18) 

∂E T 
∂W u f 

= λT | T u | − 1 
2 W u f + λt ηW 

∑ 

∀ v ∈ T u e 
(2) 
u v ω v f (A.19) 

 t u j ∈ I t u : 
∂E 

∂W t u f t 
= 

∂E R 
∂W t u f t 

+ 

∂E T 
∂W t u f t 

(A.20) 

∂E R 
∂W t u f t 

= e u j Q j f (t u j)(W u f (t u j) Q j f (t u j ) + Z u f (t u j)) 

+ 2 Q j f (t u j) 
D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λW t | I u | − 1 
2 W u f (A.21) 

∂E T 
∂W t u f t 

= λT | T u | − 1 
2 W u f + 

λt ηW 

| I t u | 
∑ 

∀ v ∈ T u e 
(2) 
u v ω v f (A.22) 

∂E 
∂αW 

u f 

= 

∂E R 
∂αW 

u f 

+ 

∂E T 
∂αW 

u f 
(A.23) 

∂E R 

∂αW 

u f 

= e u j de v u (t u j )(W u f (t u j) Q j f (t u j) + Z u f (t u j)) 

+ 2 Q j f (t u j) 
D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λαW | I u | − 1 
2 αW 

u f (A.24) 

∂E T 
∂αW 

u f 

= λT | T u | − 1 
2 αW 

u f 
+ 

λt ηW 

| I t u | 
∑ 

∀ v ∈ T u 
∑ 

∀ t u j ∈ I t u e 
(2) 
u v ω v f de v u (t u j ) (A.25) 

∂E 
∂Z u f 

= 

∂E R 
∂Z u f 

+ 

∂E T 
∂Z u f 

(A.26) 
∂E R 
∂Z u f 

= e u j (W u f (t u j) Q j f (t u j) + Z u f (t u j)) 

+ 2 

D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λZ | I u | − 1 
2 Z u f (A.27) 

∂E T 
∂Z u f 

= λT | T u | − 1 
2 Z u f + λt ηZ 

∑ 

∀ v ∈ T u e 
(3) 
u v ω v f (A.28) 

 t u j ∈ I t u : 
∂E 

∂Zt u f t 
= 

∂E R 
∂Zt u f t 

+ 

∂E T 
∂Zt u f t 

(A.29) 

∂E R 
∂Zt u f t 

= e u j (W u f (t u j) Q j f (t u j ) + Z u f (t u j)) 

+ 2 

D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λZ | I u | − 1 
2 Zt u f t (A.30) 

∂E T 
∂Zt u f t 

= λT | T u | − 1 
2 Zt u f t + 

λt ηZ 

| I t u | 
∑ 

∀ v ∈ T u e 
(3) 
u v ω v f (A.31) 

∂E 
∂αZ 

u f 

= 

∂E R 
∂αZ 

u f 

+ 

∂E T 
∂αZ 

u f 
(A.32) 

∂E R 

∂αZ 
u f 

= e u j de v u (t u j )(W u f (t u j) Q j f (t u j) + Z u f (t u j)) 

+ 2 

D ∑ 

f ′ =1 

(W u f (t u j) Q j f ′ (t u j) + Z u f ′ (t u j)) 

+ λαZ | I u | − 1 
2 αZ 

u f (A.33) 

∂E T 
∂αZ 

u f 

= λT | T u | − 1 
2 αZ 

u f 
+ 

λt ηZ 

| I t u | 
∑ 

∀ v ∈ T u 
∑ 

∀ t u j ∈ I t u e 
(3) 
u v ω v f de v u (t u j ) (A.34) 

 i ∈ I u : 
∂E 
∂y i f 

= 

∂E R 
∂y i f 

= e u j | I u | − 1 
2 (W u f V j f + Z u f ) + (λy | J j | − 1 

2 y i f ) 

(A.35) 

 v ∈ T u : 
∂E 

∂ω v f 
= 

∂E R 
∂ω v f 

+ 

∂E T 
∂ω v f 

(A.36) 

∂E R 
∂ω v f 

= e u j | T u | − 1 
2 (W (t) u f Q j f + Z(t) u f ) (A.37) 

∂E T 
∂ω v f 

= (λT | T + v | − 1 
2 ) ω v f + 

λt ηP 

| I t u | 
∑ 

∀ t u j ∈ I t u 
e (1) 

u v P (t u j ) u f 

+ 

λt ηW 

| I t u | 
∑ 

∀ t u j ∈ I t u 
e (2) 

u v (1 − W (t u j ) u f ) 

+ 

λt ηZ 

| I t u | 
∑ 

∀ t u j ∈ I t u 
e (3) 

u v Z(t u j ) u f (A.38) 

∂E 
∂Y 

f f 
′ = 

∂E R 
∂Y 

f f 
′ = e u j (W i f V j f + Z i f )(W i f ′ V j f ′ + Z i f ′ ) − λY Y f f ′ (A.39) 

∂E 

∂Q j f 

= 

∂E R 
∂Q j f 

= e u j [ W u f (P u f + | I u | − 1 
2 

∑ 

∀ i ∈ I u 
y i 
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+ | T u | − 1 
2 

∑ 

∀ v ∈ T u 
ω v ) + 2 W u f 

D ∑ 

f ′ =1 

(W i f ′ V j f ′ + Z i f ′ ) Y f f ′ ] 

+ λQ | U j | − 1 
2 Q j f (A.40)

where: 

e u j = R u j − ˆ R u j (A.41)

Therefore, the gradients in Eqs. (A .20) –(A .41) will be used to

update the values matrices used to capture socially-influenced

drifting conditional feature value preferences using an incremen-

tal gradient descent method. 
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