248 research outputs found

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Finite-time stabilization for fractional-order inertial neural networks with time varying delays

    Get PDF
    This paper deals with the finite-time stabilization of fractional-order inertial neural network with varying time-delays (FOINNs). Firstly, by correctly selected variable substitution, the system is transformed into a first-order fractional differential equation. Secondly, by building Lyapunov functionalities and using analytical techniques, as well as new control algorithms (which include the delay-dependent and delay-free controller), novel and effective criteria are established to attain the finite-time stabilization of the addressed system. Finally, two examples are used to illustrate the effectiveness and feasibility of the obtained results

    State Estimation for Fractional-Order Complex Dynamical Networks with Linear Fractional Parametric Uncertainty

    Get PDF
    This paper deals with state estimation problem for a class of fractional-order complex dynamical networks with parametric uncertainty. The parametric uncertainty is assumed to be of linear fractional form. Firstly, based on the properties of Kronecker product and the stability of fractional-order system, a sufficient condition is derived for robust asymptotic stability of linear fractional-order augmented system. Secondly, state estimation problem is then studied for the same fractional-order complex networks, where the purpose is to design a state estimator to estimate the network state through available output measurement, the existence conditions of designing state estimator are derived using matrix's singular value decomposition and LMI techniques. These conditions are in the form of linear matrix inequalities which can be readily solved by applying the LMI toolbox. Finally, two numerical examples are provided to demonstrate the validity of our approach

    Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique

    Get PDF
    A class of semilinear fractional difference equations is introduced in this paper. The fixed point theorem is adopted to find stability conditions for fractional difference equations. The complete solution space is constructed and the contraction mapping is established by use of new equivalent sum equations in form of a discrete Mittag-Leffler function of two parameters. As one of the application, finite-time stability is discussed and compared. Attractivity of fractional difference equations is proved, and Mittag-Leffler stability conditions are provided. Finally, the stability results are applied to fractional discrete-time neural networks with and without delay, which show the fixed point technique’s efficiency and convenience

    Synchronization of a class of fractional-order neural networks with multiple time delays by comparison principles

    Get PDF
    This paper studies the synchronization of fractional-order neural networks with multiple time delays. Based on an inequality of fractional-order and comparison principles of linear fractional equation with multiple time delays, some sufficient conditions for synchronization of master-slave systems are obtained. Example and related simulations are given to demonstrate the feasibility of the theoretical results

    Detection and evaluation of events in EEG dynamics in post-surgery patients with physiological-based mathematical models

    Get PDF
    As part of the new directions for vision and mission of Europe, patient well-being and healthcare become core features of a modern and prosperous society. That is, healthcare costs are optimized towards patient benefit and sideways effects such as cost-related reduction in medication, in frequency of post-operatory interventions, in recovery times and in comorbidity risk. In this paper, we address the incidence of events related to stroke, epileptic seizures and tools to possibly predict their presence from Electroencephalography (EEG) signal acquired in post-surgery patients. Wavelet analysis and spectrogram indicate graphically changes in the energy content of the EEG signal. Physiologically based neuronal dynamic pathway is used to derive fractional order impedance models. Nonlinear least squares identification technique is used to identify model parameters, with results suggesting parameter redundancy. There is a significant difference in model parameter values between EEG signal with/-out events
    • …
    corecore