
Detection and evaluation of events in EEG dynamics in post-surgery
patients with physiological-based mathematical models*

Eva Dulf1, Maria Ghita2,3 and Clara M. Ionescu 1,2,3

Abstract— As part of the new directions for vision and
mission of Europe, patient well-being and healthcare become
core features of a modern and prosperous society. That is,
healthcare costs are optimized towards patient benefit and
sideways effects such as cost-related reduction in medication,
in frequency of post-operatory interventions, in recovery times
and in comorbidity risk. In this paper, we address the incidence
of events related to stroke, epileptic seizures and tools to
possibly predict their presence from Electroencephalography
(EEG) signal acquired in post-surgery patients. Wavelet analysis
and spectrogram indicate graphically changes in the energy
content of the EEG signal. Physiologically based neuronal
dynamic pathway is used to derive fractional order impedance
models. Nonlinear least squares identification technique is
used to identify model parameters, with results suggesting
parameter redundancy. There is a significant difference in
model parameter values between EEG signal with/-out events.

I. INTRODUCTION
Patient well-being and healthcare can be best described

as bringing longer life and an improved quality of life for
patients. The value of the treatment is determined by the
amount of clinical benefit it can achieve balanced against its
cost, beside its effects. Next to chronic pain and rehabilitation
management, epilepsy, stroke and aneurysm are significant
phenomena with long tails in the socio-economic impact on
total costs for healthcare.

A brain aneurysm is a bulge in an artery in the brain that
has the potential to burst or rupture. A ruptured aneurysm
can cause a type of stroke called a subarachnoid hemorrhage.
An estimated 3% of United States of America population
may have or develop a brain aneurysm each year, according
to the Mayfield Clinic [1]. Not all aneurysms cause stroke,
and vice-versa. However, if a person is at risk for a burst
aneurysm, treatment is often required to prevent this po-
tentially life-threatening occurrence. Medical specialists do
not pre-detect an estimated 85% of aneurysms (only after
they burst). A stroke may occur due to either the blood
supply to the brain being blocked or a blood vessel in the
brain rupturing. Two stroke types exists: hemorrhagic and
ischemic. Hemorrhagic strokes are usually the result of one
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of two causes: an aneurysm or a collection of abnormal blood
vessels in the brain that can rupture. Ischemic strokes are
those that result from a blockage in an artery in the brain.
When a blood clot breaks free from its place in an artery, it
can lodge in a portion of the brain. This keeps blood from
flowing freely to the brain. Without the oxygen and nutrients
that the blood brings to the brain tissue, the tissue dies.
The result can be impaired body functioning or death, while
some of impairment is indirectly related to other dysfunctions
such as multiple sclerosis, semi-paralysis, speech/mobility
impairment etc.

In practice, the decision of whether to treat incidental
intracranial saccular aneurysms is complicated by limitations
in current knowledge of their natural history. A systematic
review and pooled analysis of individual patient data from
8.382 participants in six prospective cohort studies with
subarachnoid haemorrhage as outcome was reported in [2].
Rupture occurred in 230 patients during 29.166 person-years
of follow-up. The mean observed 1-year risk of aneurysm
rupture was 1.4% (with 95% confidence interval 1.1 − 1.6)
and the 5-year risk was 3.4% (with 95% confidence interval
2.9−4.0). Prediction factors were age, hypertension, history
of subarachnoid haemorrhage, aneurysm size, aneurysm lo-
cation, and geographical region. In study populations from
North America and European countries other than Finland,
the estimated 5-year absolute risk of aneurysm rupture
ranged from 0.25% in individuals younger than 70 years
without vascular risk factors with a small-sized (< 7 mm)
internal carotid artery aneurysm, to more than 15% in
patients aged 70 years or older with hypertension, a history
of subarachnoid haemorrhage, and a giant-sized (> 20
mm) posterior circulation aneurysm. By comparison with
populations from North America and European countries
other than Finland, Finnish people had a 3.6-times increased
risk of aneurysm rupture and Japanese people a 2.8-times
increased risk.

SAFE (Stroke Alliance For Europe) commissioned the
Burden of Stroke study to show each EU country where
it stands compared to others in terms of the stroke bur-
den and how well it is meeting the need for acute
and follow-up care, including examples of good practice
(https://strokeeurope.eu/).

The Burden of Stroke in Europe research shows in 2017
shocking disparities between and within countries along the
entire stroke care pathway. Europe-wide comparisons of
stroke and stroke care are vital to help each country prevent
stroke and provide better care and support for everyone af-
fected by it. To make accurate comparisons between different
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countries, populations and health systems, we need coor-
dinated Europe-wide data collection. Therefore, European
policy-makers, in particular the European Commission and
the Joint Research Centre, should support and promote the
use of a robust Europe-wide stroke register to assess quality
of care along the whole stroke pathway.

In Romania, the majority of population is covered through
contributions to social insurance system; free at point of
use for all [3]. For stroke epidemiology, on the population
of 19.043.767, the incidence estimate (Global Burden of
Disease - GBD 2015) is 61.552 strokes/year, 191 strokes per
100.000 inhabitants annually, the prevalence estimate (GBD
2015) is 252.774 strokes, 833 per 100.000 inhabitants and
mortality (GBD 2015) is 54.272 deaths due to stroke/year,
156 deaths per 100.000 inhabitants annually, all numbers
age- and sex-adjusted [4]. The information is based on
registries from Targu Mures Registry (local, only hospitalized
patients) [5] and the healthcare cost of stroke: total 163.1
million EUR, i.e. 8 EUR per capita [6].

In Belgium, for a total population of 11.007.020, we have
an incidence estimate of (GBD 2015): 10.397 strokes/year,
50 strokes per 100.000 inhabitants annually, a prevalence
estimate of (GBD 2015): 63.535 strokes, 348 per 100.000
inhabitants age- and sex-adjusted [4]. The case fatality of
ischemic stroke is: 9.2 per 100 discharges, adults aged 45 or
older, age- and sex-adjusted, and a mortality rate of 9.501
deaths due to stroke/year, 38.7 deaths per 100.000 inhabitants
annually age- and sex-adjusted [7]. The information is based
on mandatory hospitalization data, Belgian Sentinel Network
of General Practitioners, Institute of Health population sur-
veys and the healthcare cost of stroke in Belgium: total 393.7
million EUR, i.e. 35 EUR per capita [6].

Several major risk factors of aneurysm growth and rupture
have been identified. There exist recommendations on diag-
nostic work up, monitoring and general management (blood
pressure, blood glucose, temperature, thromboprophylaxis,
anti-epileptic treatment, use of steroids). Apart from the
above, leading risks for ischemic stroke are i) hypertension
and ii) surgery and anesthesia [8].

In today’s EU vision and mission for health and well-
being, an important role is played by decision support
systems. It has been long acknowledged that medicine and
engineering must go hand-in-hand for better results [9].
There is evidence to maintain the claim that decision support
systems related to computer based (and implicitly mathemat-
ical patient model based) systems for titrating drugs during
anesthesia have positive effect on reducing post-surgery
secondary effects (time to recovery, post-surgery depression,
etc.) [10]. One of the most debilitating complications in the
perioperative period with serious clinical sequelae is cerebral
ischemia [11].

In this paper, we propose a first hand solution and prelim-
inary results for detecting ’out of the ordinary’ events in the
EEG signal which may indicate a prevalence for stroke in
post-surgery anesthetized patients. The paper is organized as
follows. The next section provides background information
on the set of data used in this work. Third section gives a

summary of the methods used to extract information from
the signals followed by a section on results and discussion
on further use of the tools proposed. A conclusion section
summarizes the main outcome of this work and points to
further steps.

II. ON EEG SIGNAL

The study protocol was approved by the local Ethics
Committee of Ghent University Hospital (Belgium), and was
performed in accordance with the Declaration of Helsinki
and the Good Clinical Practice Guideline of the European
Commission. Patients were routinely regarded eligible for
inclusion according to the following criteria:
• patients in the immediate post-operative phase after a

coronary artery bypass graft (CABG) surgery,
• age ≥ 18 years,
• informed consent obtained before the surgery.

Exclusion criteria were patients with:
• renal failure defined by the RIFLE Classification levels:

Risk, Failure and End-stage Kidney Failure,
• hepatic failure defined by a bilirubin level of ≥ 3 mg/dl

and/or a prothrombin level of < 50% before the surgery,
• low ejection fraction defined as < 40%,
• age < 18 years,
• postoperative bleeding necessitating surgical revision,
• history of cerebrovascular accident (CVA),
• history of chronic obstructive pulmonary disease

(COPD),
• age > 75 years,
• postoperative cardiac index < 2.2 for more than 2 hours,
• mixed venous oxygen saturation (SvO2) < 60% for

more than 2 hours,
• hypo-tension with a mean arterial pressure < 60 mmHg

for more than 2 hours.
The EEG signal was acquired in Ghent University Hospital

in post-surgery patients during intensive care recovery unit.
The EEG signal is recorded from 4 channels located on the
front and occipital area of the patient’s brain and processed
in epochs of overlapping 15 seconds interval windows. When
signal quality index is below a threshold of 30%, the window
is discarded and the value from previous instant interval
is used. In this way, possible delays are introduced in the
signal via the processing algorithm. Further on, the signal is
calibrated to a scale from 0 (no activity) to 100 (activity).
The measurement part of the process involves solely standard
equipment.

III. PROPOSED METHODOLOGY

It is possible to characterize a signal in time or frequency
domain. However none of these two can cover the main
features of the signal completely. Some characteristics are
better shown in frequency domain while the other features
may be determined more effectively in time domain [12]. In
other word, we may not be able to capture some important
information in time domain; while, they are clearly appar-
ent in frequency domain and vice versa. Time-Frequency
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analysis is one of the approaches that gives a wider view
towards the signal, because it has the advantages of both
time- and frequency- analysis. A useful approach to evaluate
a signal by Time-Frequency analysis is to make use of
spectrograms, wavelet analysis, short time Fourier transform
etc. According to Fourier theorem, it is assumed that the
signal y = (y0, y1, ...yN−1), with N the number of samples
in the signal, is defined by a sum of sinusoids. The aim of
a time-frequency transform generally is to discover which
sinusoid components are present in the signal, and which
are not.

The Short Time Fourier Transform (STFT) is essentially
based on the Discrete Cosine Transform (DCT):

Y DCTm = cm

N−1∑
n=0

yn cos

(
(2n+ 1)mπ

2N

)
, (1)

for m = 0, 1, ...N −1. The scaling factor is defined as cm =√
1/N for m = 0 and cm =

√
2/N for m > 0. Applying a

smoothing window to the data modifies the DCT to the form
of:

Y DCTm = cm

∞∑
n=0

ynwk−nN cos

(
(2n+ 1)mπ

2N

)
, (2)

with wk−nN the window that covers the discrete time domain
from nNTs to (n+ 1)NTs, with Ts the sampling period of
the signal and smoothness the sequence in the interval of
data points between

[
ynNTs

, · · · , y(n+1)NTs

)
.

Creating a spectrogram using the STFT is a digital pro-
cess. The sampled data, in the time domain, is divided
into windows wk−nN , which usually overlap, and Fourier
transformed to calculate the magnitude of the frequency
spectrum for each window. Each window then corresponds
to a vertical line in the image; a measurement of magni-
tude versus frequency for a specific moment in time. The
spectrums or time plots are then ’put side by side’ to form
the (Jet-colored) image or a three-dimensional surface. The
spectrogram returns the Power Spectral Density (PSD) of
each window in dB. In this study, an overlap between
windows was 50%, with Kaiser windows of length 512
samples and β = 5.

The spectrogram is an interesting tool for non-stationary
signals, such as those encountered in intra-patient variability.
A spectrogram is a plot of these frequency components
against time; in other words, it shows how the spectral den-
sity of a signal varies in time. For plotting the spectrogram
results, a ’Jet’ color-map was used in this study: the more
reddish the patch, the greater the magnitude of a certain
frequency component over a certain period of time and the
less the amplitude, the more deep the blue color in that period
of time. In this study, linear axes were used to represent time
and frequency. It is expected that when an artefact occurs,
the energy of EEG spectrogram in that time period increases.

IV. MODELING BLOOD FLOWS

To understand the physiological effect of a stroke is
necessary to provide models for blood flow - which could

be correlated later on with Magnetic Resonance Imaging
(MRI) data or similar tools for evaluating blood flow in
brain areas affected by stroke and/or aneurysm [13]. Classical
constitutive relationship for shear stress in terms of the
velocity gradient can be expressed as [14]:

τ = µ
du

dy
(3)

with τ the viscous shear stress, µ (kg/m s) the dynamic
viscosity, u the flow velocity (m/s) and y (-) the radial
direction in normalized form, i.e. y = r/R with R (m) the
radius of the pipeline and r (m) the radial coordinate. This
relation no longer holds for non-Newtonian fluids as blood,
detergent, gel, plasma etc.

Our previous work on fictionalizing compartmental models
for drug concentration gradients in blood and tissue has
indicated that each gradient can be expressed in terms of its
kernel and integral form of mass transfer [15], [16]. Consider
the pipeline with our fluid divided in compartments of equal
infinitesimal distance. The gradient is given by:

u(1)− u(0) = k

∫ 1

0

M(τ)dτ (4)

where the M denotes mass or molar amounts of material in
the respective compartment, k (1/s) are rate constants. Each
of the mass transfer integral includes a kernel, i.e.:

u(1)− u(0) = k

∫ 1

0

K · M̃(τ)dτ (5)

In the classic theory case, the kernel is simply equal to one.
By choosing the kernel in an appropriate form of power-law,
we can then use Riemann-Liouville fractional integrals or
others. This power-law kernel has been formerly introduced
in earlier studies of non-Newtonian materials and fluids [17],
[18], [19]. For instance, using the kernel:

K(t, τ) =
(t− τ)α−1

Γ(α)
(6)

with 0 < α < 1, we have for α = 1 the classical case since
K = 1. Keeping in mind the Riemann-Liouville fractional
integral is:

0D
−α
t M(t) =

∫ 1

0

(t− τ)α−1

Γ(α)
M̃(τ)dτ (7)

with D standing for an integral when the order is negative
and for a derivative when the order is positive. Finally, we
can write (5) as:

u(1)− u(0) = k0D
−α
t M(t) (8)

The zero initial values are common in compartmental mod-
els, but if it is not zero, we can use the Caputo derivative,
in the form:

0D
1−α
t M(t) =C

0 D1−α
t M(t) +

M(0)tα−1

Γ(α)
(9)

where the superscript C on the left denotes a Caputo
fractional derivative. Note the units of the rate constant are
no longer time−1 but time−α. This implies existence of
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a memory in the tissue, i.e. the memory of the viscoelastic
material perceived as deformation and other related non-zero
initial conditions.

In [20] has been proposed a model to describe time-
dependent flow in non-Newtonian fluids:

τ(t) = τ0 + a · λβ
dβ−1ε̇

dtβ−1
(10)

with 0 ≤ β ≤ 1, a and λ are material constants, and ε
(m) denotes strain. This is a generalization of (3) following
the fictionalization rationale. This has been used (in various
forms) to model Maxwell elements in mechanical models
of viscoelasticity [17], [18]. Further on, these mechanical
models are then the basis for electrical model analogous [19],
[21].

To address the non-locality problem of properties in non-
Newtonian fluids, one may use (10), for 0 < α = β−1 < 2.
The physical basis for this non-uniform velocity gradient can
be the non-uniformity of fluid particles (e.g. mixtures of solid
and liquid particles), molecular interaction, biological and
chemical effects. Using the fractional derivative definition
from [20],

dαu(y)

dyα
=

1

Γ(n− α)

∫ y

0

unτ

(y − τ)α−n+1
dτ (11)

with n− 1 < α ≤ n, and n the smallest integer greater than
the order α, the relationship between velocity gradient and
viscous shear stress is given by:

τ =


τ0 + µI1−α dudy , 0 < α < 1

τ0 + µdudy , α = 1

τ0 + µI2−α d
dy

du
dy , 1 < α < 2

 (12)

where I1−α and I2−α represent the fractional integral

Iγf(y) =
1

Γ(γ)

∫ y

0

(y − τ)γ−1f(τ)dτ, γ > 0 (13)

This solution for flow plug profiles can be lumped into
a parametric model preserving the non-integer order. For
this, geometry of the brain surface and volume is used, as
proposed in [22].

V. DISTRIBUTED PARAMETER TO LADDER
NETWORK MODEL

By analogy to electrical networks, one can consider volt-
age as equivalent for pressure P and current as equivalent
for flow Q. Electrical resistances R represent molecular
friction resistance, electrical capacitors C represent volume
compliance in a relative local geometry, electrical inductors
L represent inertia of the moving molecular mass or object
and electrical conductances G represent the viscous head
losses (as the brain matter has viscoelastic properties).

Based on our previous works on electrical analogues of
biological systems with morphology and geometry [23], one
obtains a generalization via recurrence the form of the total

admittance with m = N cells, for N →∞:

YN (s) =
1/Zl1(s)

1 +
Zt1(s)/Zl1(s)

1 +
Zt1(s)/Zl2(s)

1 +
Zt2(s)/Zl2(s)

. . .
. . .

1 +
ZtN−1(s)/ZlN (s)

1 + ZtN (s)/ZlN (s)
(14)

which is, in fact, a continued fraction expansion. A full
analysis of various type of ladders under various conditions
and denoting different applications have been introduced and
discussed in [24]. It follows that generically, such systems
converge as cell number goes in the limit N → ∞, to a
lumped parameter impedance model of the form:

ZN (s) =
1

YN (s)
∼=
K(λ, χ) ·A
(Re1Ce1s)

n (15)

with the fractional order n given by:

n =
log(λ)

log(λ) + log(χ)
(16)

with λ, χ recurrent values for the dominant properties (e.g.
resistance and capacitance) along the ladder network and
K a generic gain value dependent on the intrinsic relations
between the cells (i.e. recurrent or equal), A being a param-
eter dependent on the cell elements in the transversal and
longitudinal impedance values. Hence, relation (15) shows
the link between the ladder network and the appearance of
a fractional order term in the form of total input impedance.
In the frequency domain, the fractional order will lead to a
constant-phase behavior, i.e. a phase-locking in the frequency
range given by the convergence conditions [22], [23], [24].
Depending on the number of cells in the ladder (N ), the
constant-phase behavior will emerge over a wider range of
frequencies. This result is applicable to any kind of ladder
network (airways, arteries etc). However, the fractional order
value and coefficients will change according to the properties
(morphology, geometry) of the system.

Notice the lumped impedance models are linear parameter-
varying (LPV) type models, since their values are an ap-
proximated capture of the local properties. As the features
of the blood flow in the brain-environment are changing,
their parameter values will also change and identification
can be recursively performed to mark the current position
and time instant. In this way, both EEG signal data and
image based MRI can provide insight into blood flow in
brain based on time and location. The methodology enables
technology advance for a patient monitoring system in a
wearable context or in hospital-based monitoring periods.

An analytical model of neuronal pathway has been pro-
posed in [22], based on distributed parameter system ap-
proach and lumped fractional order model parameters. In
short, we generalize the differential and integral operators
into one fundamental operator Dα(t) (with non-integer order
of the operation) [22], [23], [25], [26]. As mentioned above,
this is a fundamental operator, a generalization of integral
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and differential operators (differ-integration operator), and
can be introduced as Laplace operator in the form:

LDα(t)f(t) = sαF (s) (17)

where F (s) = Lf(t) and s the Laplace complex variable.
The Fourier transform is obtained by replacing s −→ jω and
the equivalent frequency-domain expression is given by:

sα −→ (jω)α = ωα(cosπ/2 + j sinπ/2) (18)

These tools have been employed to develop the physiological
pathway and electrical analogue given in Figure 1. The
cumulative terms in the complete nociceptor model is then
given by:

ZFOIM (s) =
T

sα1
+D +

M

sα2
+ Psα3 (19)

where 0 < α1,2,3 < 1 and T denotes transmission, D
denotes transduction, M denotes modulation and P denotes
perception, all real numbers.

Fig. 1. Summarizing the neuronal pathway in stroke incidence.

Iterative nonlinear least squares identification was applied
to the EEG signal to identify the model parameters.

VI. RESULTS AND DISCUSSION

This section presents some of the initial results for the
monitoring of EEG signal and afferent model in post-
operatory patients. Figure 2 depicts a sequence with lack
of events in the EEG signal represented as time based and
wavelet spectrogram based graphics. The color jet indicates
projections of energy of the signal from lower (blue-green)
to higher (orange-red) values.

Figure 3 depicts a sequence with an event in the EEG
signal represented as time based and wavelet spectrogram
based graphics. The color jet indicates higher values than in
the nominal case.

The identification of the model from (19) delivered an
initial set of parameters for the two cases of nominal and
eventful cases of EEG dynamics. Only two parameters were
significantly changing with the data, i.e. the transmission and
perception terms. The results are given in figures 4 and 5,
respectively.

Although these are preliminary first hand results, they
suggest that the proposed methodology and tools may be
suitable for the objective of stroke detection and later on
prevention (by detecting pre-stroke events in the EEG signal).
The proposed model structure seems over-parameterized, but
investigation into other events related to stroke visible in
EEG signal may require the extra parameters - this study is
ongoing.

Fig. 2. Spectrogram and processed EEG signal for nominal neuronal
dynamics.

Fig. 3. Spectrogram and processed EEG signal for event-related neuronal
dynamics.

Fig. 4. Identified model parameters values for the transmission term T
(left) and α1 (right).
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Fig. 5. Identified model parameters values for the perception term P (left)
and α3 (right).

VII. CONCLUSIONS

This paper introduced emerging tools from fractional
calculus and afferent models for EEG signal processing and
identification. We provided a physiological background as
to the use of fractional order models and motivated the
appearance of the fractional order terms from electrical
analogy to neuronal dynamic pathways. The preliminary
results indicate redundancy in model parameters, but further
analysis of this study is ongoing.
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