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Abstract. A class of semilinear fractional difference equations is introduced in this paper. The
fixed point theorem is adopted to find stability conditions for fractional difference equations. The
complete solution space is constructed and the contraction mapping is established by use of new
equivalent sum equations in form of a discrete Mittag-Leffler function of two parameters. As one of
the application, finite-time stability is discussed and compared. Attractivity of fractional difference
equations is proved, and Mittag-Leffler stability conditions are provided. Finally, the stability re-
sults are applied to fractional discrete-time neural networks with and without delay, which show the
fixed point technique’s efficiency and convenience.
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1 Introduction

Recurrent neural networks of discrete time (RNN) are described by the following differ-
ence equation:

x(k + 1) = −Ax(k) +Bf
(
x(k)

)
+ I, (1)

where x ∈ Rn is the state vector, the diagonal matrix A = diag(a1, a2, . . . , an) with
0 < ai is the state feedback coefficients, B = (bij)n×n is the network’s interconnection
matrix, f(x) is the activation function, and I denotes the constant external input.

Equation (1) can be considered as a discrete analog of the recurrent neural network

ẋi(t) = −aixi(t) +

n∑
j=1

bijfj
(
xj(t)

)
+ Ii, i = 1, 2, . . . , n.

In order to use the past information, two classes of memory models are suggested.
One is the neural network with delay. The time delay τ is introduced into Eq. (1) as

ẋi(t) = −aixi(t) +

n∑
j=1

bijfj
(
xj(t− τ)

)
+ Ii, i = 1, 2, . . . , n,

or a neural active function g(t) with delay is suggested:

ẋi(t) = −aixi(t) +

n∑
j=1

bijfj
(
xj(t)

)
+

n∑
j=1

cijgj
(
xj(t− τ)

)
+ Ii,

which is a recurrent neural network. Both of them belong to short-time memory models.
The fractional derivative also holds the memory effects, and the fractional order α

depicts the history dependence on the past states. The fractional neural network (FNN)
was proposed:

C
t0D

α
t xi(t) = −aixi(t) +

n∑
j=1

bijfj
(
xj(t)

)
+ Ii, i = 1, 2, . . . , n, (2)

where C
t0D

α
t denotes the Caputo derivative [32]. One can see that the fractional neural

network has a long memory from the starting point t = t0. This feature can fully use all
of the past information for better control or predictions. The FNN has been extensively
investigated in [8, 19, 22, 23, 28, 31, 33–37, 41, 42]. Naturally, one question may arise
whether there is a discrete analog of the fractional neural network (2). This is not only
of theoretical value, but also of great interests in developing discrete-time neural network
with long-memory effects. This is the main purpose of this study. Generally, two methods
can be applied to derive fractional discrete-time systems. One is numerical discretization
of (2), for example, by finite difference methods [21, 27]. Unfortunately, it is well known
that the numerical discretization will readily result in cumulate errors even in short-
term domains. It becomes difficult in the real-world applications for long-term issues
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in the practical view. This paper aims to address this problem and propose a new kind
of discrete-time neural network by use of discrete fractional calculus on an isolated time
scale [1–6, 9, 24].

Many efforts have been made to the stability theory of fractional differential equations.
Lyapunov direct method was proposed by Li et al. [30]. The method was given based
on the comparison theorem and Mittag-Leffler function’s asymptotic. The main idea is
to construct Lyapunov function whose fractional derivative is negative definite, and this
implies the fractional systems’ asymptotic stability. The method has gained much suc-
cess in stability analysis, and we consider the method for fractional difference equations
in [7, 38–40]. However, for fractional delay equations, it is still an open problem to
construct Lyapunov function due to the complicated structures of fractional operators, or
the existing technique is suitable for some special fractional delay differential equations.

Frequency analysis is another often used method. Cermak et al. investigated stability
of linear fractional delay equations as well as difference equations [15,16]. In fact, asymp-
totic stability can be analyzed by the corresponding Jacobian linearization equation. The
characteristic root equation is established by Laplace or Z-transform. Negative real part
areas of characteristic roots are derived on critical surfaces. This method is useful for
constant coefficient differential equations. Some applications of stability results have been
considered in chaos synchronization and image encryption.

Burton et al. introduced fixed point technique for stability analysis of differential equa-
tions [11, 12] and fractional ones [10, 13, 14]. By use of the technique, Chen et al. inves-
tigated asymptotic stability results of fractional difference equations in [17, 18]. Particu-
larly, the method is very successful for semilinear differential equations where a resolvent
equation is used. The solution space is constructed according to the stability conditions.
Various fixed point theorems are adopted for different existence results. Mittag-Leffler
stability is an important concept, which often used in fractional neural network with delay.
However, there is less effort contributed to this topic within fixed point theorems.

This paper is structured as follows: In Section 2, some preliminaries of fractional
differences and sum are revisited. Section 3 introduces an equivalent fractional sum equa-
tion, which constructs a mapping for stability analysis. Finite-time stability is compared
by use of two fractional sum equations. The new sum equation containing the Mittag-
Leffler kernel function shows the efficiency. Furthermore, in Section 4, the applications to
discrete-time neural network are considered, and some numerical examples are illustrated.
Finally, we give some perspective of this study and arrive at the conclusion.

2 Preliminaries

We use the following definitions in this paper.

Definition 1. (See [6, 9, 24].) Let Na := {a, a+ 1, a+ 2, . . . }. u : Na → R and 0 < ν
be given. The νth-order sum is given by

∆−νa u(t) :=
1

Γ(ν)

t−ν∑
s=a

(
t− σ(s)

)(ν−1)
u(s), t ∈ Na+ν ,

Nonlinear Anal. Model. Control, 24(6):919–936
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where σ(s) = s+ 1, a ∈ R, and t(ν) is the falling factorial functional defined by

t(ν) =
Γ(t+ 1)

Γ(t+ 1− ν)
.

Definition 2. (See [6, 9, 24].) Let u : Na → R and 0 < ν be given. The νth-order
Riemann–Liouville difference is given by

∆ν
au(t) :=

1

Γ(−ν)

t+ν∑
s=a

(
t− σ(s)

)(−ν−1)
u(s), t ∈ Na+m−ν ,

σ(s) = s+ 1, a ∈ R, m = [ν] + 1.

Definition 3. (See [1, 5, 24].) For u(t) defined on Na and 0 < ν, ν /∈ N, the Caputo
difference is defined by

C∆ν
au(t) := ∆−(m−ν)

a ∆mu(t), t ∈ Na+m−ν ,

m = [ν] + 1, where ∆u(t) = u(t+ 1)− u(t). For ν = m, C∆ν
au(t) := ∆mu(t).

For more details of discrete fractional calculus, readers are suggested to read the
monograph [24]. We consider discrete fractional calculus and introduce generalized neu-
ral network with memory

C∆ν
ax(t) = −Ax(t+ ν) +Bf

(
x(t+ ν)

)
, t ∈ Na+1−ν , (3)

where A = diag[a1, . . . , an], and f is a continuous function with respect to x. It is
equivalent to

x(a+ k) = x(a) +
1

Γ(ν)

k∑
j=0

Γ(k − j + ν)

Γ(k − j + 1)

(
−Ax(a+ j) +Bf

(
x(a+ j)

))
,

where k ∈ N1. We revisit some basics in stability theory in the discrete fractional calculus.
Assume that Eq. (3) has a zero solution. Let |·| be the norm l1 of Rn. Considering
the matrix C = (cij)n×n, the matrix norm is used as |C| = max16j6n

∑n
i=1 |cij |,

accordingly. Denote by `∞a the set of all real sequences x = {x(t)}∞t=a from the starting
point t = a. The space is endowed with the supremum norm ‖x‖ = supt∈Na |x(t)|. `∞a
is a Banach space (for more details, see [20]).

Definition 4. The zero solution of Eq. (3) is said to be

(i) stable if for any ε > 0 and t0 = a ∈ R, there exists δ = δ(t0, ε) > 0 such that∣∣x(t, x0, t0)
∣∣ < ε, t > t0,

for |x0| 6 δ(t0, ε);
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(ii) attractive if there exists η(t0) > 0 such that |x0| 6 η implies

lim
t→∞

x(t, x0, t0) = 0;

(iii) asymptotically stable if it is stable and attractive.

Lemma 1. (See [7].) The equation
C∆ν

au(t) = λu(t+ ν), t ∈ Na+1−ν ,

u(a) = 1,
(4)

has a unique solution
u(t) = eν(λ, t− a),

where eν(λ, t− a) :=
∑∞
k=0 λ

k(t− a− 1 + kν)(kν)/Γ(kν + 1).

Remark 1. We assume |λ| < 1 for the convergence of the discrete Mittag-Leffler function
eν(λ, t− a). For t, t1, t2 ∈ Na, some other properties hold:

(i) the Mittag-Leffler function is positive [7]:

eν(λ, t− a) > 0, t > a;

(ii) the Mittag-Leffler function is asymptotically stable [7]:

eν(λ, t− a)→ 0, t→ +∞,

where −1 < λ < 0;
(iii) the discrete Mittag-Leffler function of two parameter is defined by

eν,ν(λ, t− a) =

∞∑
k=0

λk
(t− a+ kν)(kν+ν−1)

Γ(kν + ν)
.

Remark 2. Besides, we note the following results hold:

t−ν∑
s=a+1−ν

eν,ν
(
λ, t− σ(s)

)
=
eν(λ, t− a)− 1

λ
,

and, when −1 < λ < 0,

eν,ν(λ, t− a+ ν − 1) =
1

λ
∆eν(λ, t− a) > 0 if t ∈ Na+1,

eν,ν(λ, t− a+ ν − 1)→ 0 if t→ +∞.

These lemmas and remarks are useful to analyze stability conditions by the fixed point
technique in the rest.

Definition 5 [Mittag-Leffler stability]. (3) is said to be Mittag-Leffler stable if x(t)
satisfies ∣∣x(t)

∣∣ 6 m
(
x(t0)

)
eν
(
λ∗, (t− a)

)
, t ∈ Na+1,

where −1 < λ∗ < 0, m(x(t0)) is locally Lipschitz on D ∈ R, m(x) > 0 and m(0) = 0.
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3 A new equivalent sum equation

3.1 Picard’s method

We consider linear fractional difference equations with nonhomogeneous term. Generally,
we can use Laplace transform or Z-transform to get fractional sum equations. In this
section, we adopt Picard’s method to derive a fractional sum equation.

Lemma 2. Consider the nonhomogeneous equation

C∆ν
ay(t) = λy(t+ ν) + h(t+ ν), t ∈ Na+1−ν ,

y(a) = ya,
(5)

where λ is a constant, and |λ| < 1. The equation has an exact solution

y(t) = y(a)eν(λ, t− a) +

t−ν∑
s=a+1−ν

[
eν,ν

(
λ, t− σ(s)

)
h(s+ ν)

]
, t ∈ Na+1.

Proof. When using the fractional sum equation of (5), we have t ∈ Na. By Picard’s
method, we get the successive iteration as

ym+1(t) = y0 + λ∆−νa+1−νym(t+ ν), m = 0, 1, 2, . . . ,

where y0 = y(a) +∆−νa+1−νh(t+ ν).
For m = 0, we get

y1(t) = y0 + λ∆−νa+1−νy0(t+ ν)

= y(a) + λ∆−νa+1−νy(a) +∆−νa+1−νh(t+ ν) + λ∆−νa+1−ν∆
−ν
a+1−νh(t+ ν)

= y(a) + y(a)
λ(t− a− 1 + ν)(ν)

Γ(ν + 1)
+∆−νa+1−νh(t+ ν)

+ λ∆−νa+1−ν∆
−ν
a+1−νh(t+ ν).

For m = 1, we get

y2(t) = y0 + λ∆−νa+1−νy1(t+ ν)

= y(a)

(
1 +

λ(t− a− 1 + ν)(ν)

Γ(ν + 1)
+
λ2(t− a− 1 + 2ν)(2ν)

Γ(2ν + 1)

)
+

3∑
k=1

λk−1∆−νa+1−ν · · ·∆
−ν
a+1−ν︸ ︷︷ ︸

k factors

h(t+ ν).
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More generally, we have

ym(t) = y(a)

(
1 +

m∑
k=1

λk(t− a− 1 + kν)(kν)

Γ(kν + 1)

)

+

m+1∑
k=1

λk−1∆−νa+1−ν · · ·∆
−ν
a+1−ν︸ ︷︷ ︸

k factors

h(t+ ν). (6)

In order to simplify the second term in the r.h.s. of (6), we only need to discuss the k = 2
since the general case of arbitrary k can be done by induction. After interchange of the
order of summation, we derive that

∆−νa+1−ν∆
−ν
a+1−νh(t+ ν)

=
1

Γ(ν)

t−ν∑
r=a+1−ν

(
t− σ(r)

)(ν−1) 1

Γ(ν)

r∑
s=a+1−ν

(
r + ν − σ(s)

)(ν−1)
h(s+ ν)

=
1

Γ(ν)

t−ν∑
s=a+1−ν

1

Γ(ν)

t−ν∑
r=s

(
t− σ(r)

)(ν−1)(
r + ν − σ(s)

)(ν−1)
h(s+ ν)

=

t−ν∑
s=a+1−ν

∆−νa∗+ν−1

(t− a∗)(ν−1)

Γ(ν)
h(s+ ν), a∗ = s+ 1− ν.

Furthermore, we have

∆−νa+1−ν∆
−ν
a+1−νh(t+ ν)

=

t−ν∑
s=a+1−ν

(t− a∗)(2ν−1)

Γ(2ν)
h(s+ ν) =

t−ν∑
s=a+1−ν

(t− σ(s) + ν)(2ν−1)

Γ(2ν)
h(s+ ν).

Repeat the above procedure, and we arrive at

∆−νa+1−ν · · ·∆
−ν
a+1−ν︸ ︷︷ ︸

k factors

h(t+ ν) =

t−ν∑
s=a+1−ν

(t− σ(s) + (k − 1)ν)(kν−1)

Γ(kν)
h(s+ ν).

Let m→∞ in (6). Then, for t ∈ Na+1,

y(t) = y(a)

(
1 +

∞∑
k=1

λk(t− a− 1 + kν)(kν)

Γ(kν + 1)

)

+

∞∑
k=1

λk−1
t−ν∑

s=a+1−ν

(t− σ(s) + (k − 1)ν)(kν−1)

Γ(kν)
h(s+ ν)
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= y(a)eν(λ, t− a) +

t−ν∑
s=a+1−ν

h(s+ ν)

∞∑
k=0

λk
(t− σ(s) + kν)(kν+ν−1)

Γ(kν + ν)

= y(a)eν(λ, t− a) +

t−ν∑
s=a+1−ν

eν,ν
(
λ, t− σ(s)

)
h(s+ ν).

Theorem 1. Equation (3) is equivalent to the fractional sum equation

x(t) = eν(−A, t− a)x(a)

+

t−ν∑
s=a+1−ν

eν,ν
(
−A, t− σ(s)

)
Bf
(
t+ ν, x(t+ ν)

)
, t ∈ Na+1, (7)

where the matrix Mittag-Leffler function is defined as

eν,ν(−A, t− a) :=

eν,ν(−a1, t− a) · · · 0
...

. . .
...

0 · · · eν,ν(−an, t− a)

 .

3.2 Application to finite-time stability

Let us revisit the definition of finite-time stability. Assume that T is a positive integer and
J = {a, a+ 1, a+ 2, . . . , T}.

Definition 6. (See [26].) System (1) is finite-time stable w.r.t. {δ, ε, J}, δ < ε, if and
only if |φ| < δ implies |x(t)| < ε for all t ∈ J .

Concerning the finite-time stability of the following fractional difference equation

C∆ν
ay(t) = λy(t+ ν) + ωg

(
y(t+ ν)

)
, t ∈ {a+ 1− ν, . . . , T + 1− ν}, (8)

where −1 < λ < 0, fractional sum equations should be used. We can have two kinds:

y(t) = y(a) +∆−νa+1−ν
(
λy(t+ ν) + ωg

(
y(t+ ν)

))
,

|g(y(t+ν))| 6 M̃ , 0 < M̃ , which is directly derived by taking the fractional sum to both
sides of (8), and

y(t) = y(a)eν(λ, t− a) + ω

t−ν∑
s=a+1−ν

eν,ν(λ, t− s)g
(
y(s+ ν)

)
derived from (7). Hence, for t ∈ Na+1, we can have two inequalities∣∣y(t)

∣∣ 6 ∣∣y(a)
∣∣+
∣∣∆−νa+1−ν

(
λy(t+ ν) + ωg

(
y(t+ ν)

))∣∣
6
∣∣y(a)

∣∣+ |λ|∆−νa+1−ν
∣∣y(t+ ν)

∣∣+ |ω|∆−νa+1−ν
∣∣g(x(t+ ν)

)∣∣
http://www.journals.vu.lt/nonlinear-analysis
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from which we can obtain

max
t∈{a+1,...,T}

∣∣y(t)
∣∣ 6 |y(a)|+ |ω|M̃(t−a−1+ν)(ν)

Γ(ν+1)

1− |λ|M̃(t−a−1+ν)(ν)

Γ(ν+1)

.

Consider the condition −1 < λ < 0 and 0 < eν(λ, t− a) < 1 so that, for t ∈ Na+1,

∣∣y(t)
∣∣ 6 ∣∣y(a)eν(λ, t− a)

∣∣+

∣∣∣∣∣
t−ν∑

s=a+1−ν
eν,ν

(
λ, t− σ(s)

)
ωg
(
x(t+ ν)

)∣∣∣∣∣
6
∣∣y(a)

∣∣eν(λ, t− a) +

∣∣∣∣∣ω
∣∣∣∣∣

t−ν∑
s=a+1−ν

eν,ν
(
λ, t− σ(s)

)∣∣∣∣∣g(x(t+ ν)
)∣∣∣∣∣

and ∣∣y(t)
∣∣ 6 ∣∣y(a)

∣∣eν(λ, t− a) + |ω|M̃ eν(λ, t− a)− 1

λ
.

It is clear that the estimation of |y(t)| derived from (7) has no restriction of |λ| and
becomes more convenient and accurate.

4 Mittag-Leffler stability

Let us give some hypotheses for Mittag-Leffler stability analysis.

(H1) There exist constants L > 0 and M > 0 such that

f(0) = 0,
∣∣f(x)− f(y)

∣∣ 6 L|x− y|

for all x, y ∈ CM := {u ∈ `∞a : ‖u‖ 6M, t ∈ Na}.
(H2) There exists 0 < r < 1 such that

L

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣ < r.

(H3) Let λ = max(−a1,−a2, . . . ,−an) and 0 < ai < 1. λ, L and the coefficient
matrix B satisfy

−1 < λ+ L|B| < 0.

Lemma 3. The following inequality holds:

u(t) 6 u(a)eν(ω, t− a) + l

t−ν∑
s=a+1−ν

eν,ν
(
ω, t− σ(s)

)
u(s+ ν), t ∈ Na+1,

|ω| < 1, l > 0, |ω + l| < 1, then

u(t) 6 u(a)eν(ω + l, t− a).

Nonlinear Anal. Model. Control, 24(6):919–936
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Proof. We use a nonnegative discrete function m(t) to construct the following equality:

u(t) = u(a)eν(ω, t− a) + l

t−ν∑
s=a+1−ν

eν,ν
(
ω, t− σ(s)

)
u(s+ ν)−m(t).

We take the discrete Laplace transform La+1 [25,29] to both sides. Then we arrive at

La+1[u] =
u(a)sν−1

sν − (ω + l)(s+ 1)ν
− La+1[m]− l(s+ 1)ν

sν − (ω + l)(s+ 1)ν
La+1[m].

It follows that

u(t) = u(a)eν(ω + l, t− a)−m(t)− l
t−ν∑

s=a+1−ν
eν,ν

(
ω + l, t− σ(s)

)
m(s+ ν)

from which we obtain
u(t) 6 u(a)eν(ω + l, t− a)

and complete the proof.

Theorem 2. If (H1), (H2) and (H3) hold, system (3) is asymptotically stable.

Proof. Define the space

S =
{
x: x ∈ CM , lim

t→+∞
x(t) = 0

}
with the distance ρ(x, y) = ‖x− y‖, and (S, ρ) is a complete space. We assume |x(a)| <
δ = (1− r)M . In the space S, define the contraction mapping T : S → `∞a , then

(Tx)(t) = eν(−A, t− a)x(a)

+

t−ν∑
s=a+1−ν

eν,ν
(
−A, t− σ(s)

)
Bf
(
x(s+ ν)

)
, t ∈ Na+1.

It is clear that T is continuous on S since f is continuous with respect to x.
Besides, if ‖x‖ 6M and t ∈ Na+1, then ‖(Tx)‖ 6M . In fact,

∣∣(Tx)(t)
∣∣ 6 ∣∣eν(−A, t− a)x(a)

∣∣+

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣∣∣f(x(s+ ν)

)∣∣
6
∣∣eν(−A, t− a)x(a)

∣∣+ L

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣∣∣x(s+ ν)

∣∣
6
∣∣eν(−A, t− a)x(a)

∣∣+ML

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣

6 δ + rM 6M.
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Furthermore, by use of the properties of discrete Mittag-Leffler functions in Remark 1,
we can claim that

lim
t→+∞

(Tx)(t) = 0.

In fact, we have

∣∣(Tx)(t)
∣∣ 6 ∣∣eν(−A, t− a)x(a)

∣∣+

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣∣∣f(x(s+ ν)

)∣∣
6
∣∣eν(−A, t− a)x(a)

∣∣+ L|B|
t−ν∑

s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)∣∣∣∣x(s+ ν)

∣∣,
where the first term tends to zero for t → +∞. Since eν,ν(λ, t − a) and x(t) → 0 for
t→ +∞, we can select N enough large such that the second term is decoupled into

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)∣∣∣∣x(s+ ν)

∣∣
=

a+N−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)∣∣∣∣x(s+ ν)

∣∣
+

t−ν∑
s=a+N+1−ν

∣∣eν,ν(−A, t− σ(s)
)∣∣∣∣x(s+ ν)

∣∣
→ 0.

Finally, for arbitrary x, y ∈ S, we have∣∣(Tx)(t)− (Ty)(t)
∣∣

=

∣∣∣∣∣
t−ν∑

s=a+1−ν
eν,ν

(
−A, t− σ(s)

)
B
(
f
(
x(s+ ν)

)
− f

(
y(s+ ν)

))∣∣∣∣∣
6 L

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣∣∣x(s+ ν)− y(s+ ν)

∣∣
6 L

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)
B
∣∣‖x− y‖ = r‖x− y‖.

T is a contraction mapping if 0 < r < 1. By Banach fixed point theorem, the map-
ping T has a unique fixed point x(t) in S, which is also the unique solution of (3) and
limt→+∞ x(t) = 0. That means the zero solution is attractive, and it is easy to prove that
the zero solution is also stable, which completes the proof.

Theorem 3. If (H1), (H2) and (H3) hold, system (3) is Mittag-Leffler stable.
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Proof. From the sum equation of fractional order (7), we get

∣∣x(t)
∣∣ 6 ∣∣eν(−A, t− a)x(a)

∣∣+

∣∣∣∣∣
t−ν∑

s=a+1−ν
eν,ν

(
−A, t− σ(s)

)
Bf
(
x(s+ ν)

)∣∣∣∣∣
6
∣∣x(a)

∣∣|eν(−A, t− a)
∣∣+ L|B|

t−ν∑
s=a+1−ν

∣∣eν,ν(−A, t− σ(s)
)∣∣∣∣x(s+ ν)

∣∣.
By use of Lemma 3, it leads to∣∣x(t)

∣∣ 6 |x0|eν
(
λ+ L|B|, t− a

)
.

The system is Mittag-Leffler stable.

Theorem 4. The following fractional difference equation with delay

C∆ν
ax(t) = −Ax(t+ ν) +Bf

(
x(t+ ν − 1)

)
, t ∈ Na+1−ν

is asymptotically stable if (H1), (H2) and (H3) hold.

We proposed Lyapunov direction method for the fractional difference equation (3)
in [7,40]. But it fails here since there exists a delay term. In order to address this problem,
we can construct Lyapunov functions as that in fractional differential equations [36], i.e.,
the comparison principle, discrete Mittag-Leffler function’s positivity and monotonicity.
On the other hand, we can adopt the fixed point technique and it becomes much easier. In
fact, the space can be defined as

S =
{
x: ‖xt‖ 6M, lim

t→+∞
x(t) = 0, x ∈ `∞a , t ∈ Na+1

}
,

where xt = x(t − 1). We can obtain the same conditions for asymptotic stability. We
construct the contraction map as

(Tx)(t) = eν(−A, t− a)x(a)

+

t−ν∑
s=a+1−ν

eν,ν
(
−A, t− σ(s)

)
Bf
(
x(t+ ν − 1)

)
, t ∈ Na+1.

We can prove that limt→+∞ Tx(t) = 0 and the rest is similar as that in Theorem 2.
As a special case, we can get the following theorem, which can be considered as

a discrete analogy of the fractional delay differential equation for continuous-time neural
network

C
t0D

α
t z(t) = −λ1z(t) + λ2z(t− τ), t ∈ (t0,+∞),

z(t) = φ(t), t ∈ [t0 − τ, t0],

where 0 < α 6 1, and C
t0D

α
t is the Caputo derivative of the differentiable function z(t)

and τ is the time delay.
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Theorem 5. Let z(t): Na → R. The following fractional difference equation with delay
C∆ν

az(t) = −λ1z(t+ ν) + λ2z(t+ ν − 1), t ∈ Na+1−ν ,

z(a) = za,

is asymptotically stable if −1 < λ2 − λ1 < 0, 0 < λ2 and 0 < λ1 < 1.

5 Numerical examples

We apply the stability theory to fractional discrete-time neural networks through the
following examples.

Example 1. Consider the following neural network of fractional discrete time
C∆ν

ax1(t) = −a1x1(t+ ν) + b11 tanh
(
x1(t+ ν)

)
+ b12 tanh

(
x2(t+ ν)

)
,

C∆ν
ax2(t) = −a2x2(t+ ν) + b21 tanh

(
x1(t+ ν)

)
+ b22 tanh

(
x2(t+ ν)

)
,

(9)

where t ∈ Na+1−ν , 0 < ν 6 1, x1(a) = 0.2 and x2(a) = −0.3.
We list the numerical formulae for the solutions for k > 1

x1(k) = x1(0) +
1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
−a1x1(j) + b11 tanh

(
x1(j)

)
+ b12 tanh

(
x2(j)

)]
,

x2(k) = x2(0) +
1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
−a2x2(j) + b21 tanh

(
x1(j)

)
+ b22 tanh

(
x2(j)

)]
.

We use the following parameters: a = 0, ν = 0.9, L = 1, k = 80 and a1 = 0.8, a2 =
0.85, b11 = 0.1, b12 = 0.11, b21 = 0.12, b22 = 0.13. We can check these parameters
satisfy Theorem 2. Figure 1 illustrates the behavior of x1(t) and x2(t), respectively. Each
tends to zero for t→ +∞. Figure 2 shows that system (9) is Mittag-Leffler stable.

Example 2. Consider the delay case
C∆ν

ax1(t) = −a1x1(t+ ν) + b11 tanh
(
x1(t+ ν − 1)

)
+ b12 tanh

(
x2(t+ ν − 1)

)
,

C∆ν
ax2(t) = −a2x2(t+ ν) + b21 tanh

(
x1(t+ ν − 1)

)
+ b22 tanh

(
x2(t+ ν − 1)

)
,

(10)

where t ∈ Na+1−ν , 0 < ν 6 1 and the numerical formula is derived as

x1(k) = x1(0) +
1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
−a1x1(j) + b11 tanh

(
x1(j − 1)

)
+ b12 tanh

(
x2(j − 1)

)]
,
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Figure 1. Numerical solutions of (9): x1(t) (the
red) and x2(t) (the blue).

Figure 2. (9) is Mittag-Leffler stable.

x2(k) = x2(0) +
1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
−a2x2(j) + b21 tanh

(
x1(j − 1)

)
+ b22 tanh

(
x2(j − 1)

)]
.

We obtain a recurrence relationship

x1(k) =
1

1 + a1
x1(0)− a1

1 + a1

1

Γ(ν)

k−1∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)
x1(j)

+
1

1 + a1

1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
b11 tanh

(
x1(j − 1)

)
+ b12 tanh

(
x2(j − 1)

)]
,

x2(k) =
1

1 + a2
x2(0)− a2

1 + a2

1

Γ(ν)

k−1∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)
x2(j)

+
1

1 + a2

1

Γ(ν)

k∑
j=1

Γ(k − j + ν)

Γ(k − j + 1)

[
b21 tanh

(
x1(j − 1)

)
+ b22 tanh

(
x2(j − 1)

)]
,

(11)

and the numerical results are illustrated in Figs. 3 and 4 from which we can see sys-
tem (10) is asymptotically stable.

We need to point out, Eq. (9) is an implicit system whose both sides contain x(k).
Equation (10) can be reduced to an explicit one (11) with which we can obtain the exact
numerical value of x(t) involving no numerical errors. This is very important for long-
term calculation and can depict the delay dynamics more accurately.
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Figure 3. Numerical solutions of (10): x1(t) (the
red) and x2(t) (the blue).

Figure 4. (10) is asymptotically stable.

6 Conclusions

Fractional difference equations can be considered a class of generalized difference equa-
tions. On the other hand, we consider the extensive applications of recurrent neural net-
work. The fractional discrete-time systems are paid much attention less results than the
continuous-time case. This paper introduces a kind of fractional discrete-time neural
network and investigates stability, which is defined in a new sense within a discrete
Mittag-Leffler function. The conditions for the stability conditions are given and numeri-
cal example is provided to support the analysis.

We give our view on other possible applications:

1. Since we adopt the discrete fractional calculus, which is defined in form of a finite
sum, memory effects are exact such the application to big data and long-term
models becomes possible. Particularly for the following fractional discrete-time
neural networks:

C∆ν
ax(t) = −Ax(t+ ν − 1) +Bf

(
x(t+ ν − 1)

)
, t ∈ Na+1−ν . (12)

In fact, for the linear one
C∆ν

ax(t) = λx(t+ ν − 1), 0 < ν 6 1, t ∈ Na+1−ν ,

x(a) = xa > 0,

the exact solution x(t) > 0 if λ > −ν, and a different stability condition from that
of (4) holds. We will consider these in the nearest future and show the convenience
by fixed point theorems.

2. The fixed point technique is adopted in this study. This technique well illustrates
its efficiency. In fact, we also can adopt the Lyapunov method and construct Lya-
punov functions. However, it becomes much complicated since we need to have
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the negative estimation of the fractional difference of the V functions. Particularly,
it is a challenging work to consider the fractional delay equation (12).
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