33 research outputs found

    Parking Garage Functions

    Get PDF
    Senior Project submitted to The Division of Science, Mathematics and Computing of Bard College. This project is about a generalization of parking functions called parking garage functions. Parking functions have been well studied, but the concept of parking garage functions is new and introduced in the project. Parking garage functions are sequences that represent the parking garage level preferences of cars which lead to all cars parking on a level after a systematic placement. We found a recursive formula for the number of sequences that are a parking garage function. We also found a closed formula for a subset of parking garage functions, descending parking garage functions, via a bijection between descending parking garage functions and Dyck paths which are paths on a rectangular grid which only take right and upward steps starting at the origin and remain under a positively sloped diagonal that goes through the origin

    On Flow Polytopes, nu-Associahedra, and the Subdivision Algebra

    Get PDF
    This dissertation studies the geometry and combinatorics related to a flow polytope Fcar(ν) constructed from a lattice path ν, whose volume is given by the ν-Catalan numbers. It begins with a study of the ν-associahedron introduced by Ceballos, Padrol, and Sarmiento in 2019, but from the perspective of Schröder combinatorics. Some classical results for Schröder paths are extended to the ν-setting, and insights into the geometry of the ν-associahedron are obtained by describing its face poset with two ν-Schröder objects. The ν-associahedron is then shown to be dual to a framed triangulation of Fcar(ν), which is a geometric realization of the ν-Tamari complex. The dual graph of this triangulation is the Hasse diagram of the ν-Tamari lattice due to Préville-Ratelle and Viennot. The dual graph of a second framed triangulation of Fcar(ν) is shown to be the Hasse diagram of a principal order ideal of Young’s lattice generated by ν, and is used to show that the h∗-vector of Fcar(ν) is given by ν-Narayana numbers. This perspective serves to unify these two important lattices associated with ν-Dyck paths through framed triangulations of a flow polytope. Via an integral equivalence between Fcar(ν) and a subpolytope UI,J of a product of two simplices subdivisions of UI,J are shown to be obtainable with Mészáros’ subdivision algebra, which answers a question of Ceballos, Padrol, and Sarmiento. Building on this result, the subdivision algebra is extended to encode subdivisions of a product of two simplices, giving a new tool for their future study

    On Rank-Two and Affine Cluster Algebras

    Get PDF
    Motivated by existing results about the Kronecker cluster algebra, this thesis is concerned with two families of cluster algebras, which are two different ways of generalizing the Kronecker case: rank-two cluster algebras, and cluster algebras of type An,1. Regarding rank-two cluster algebras, our main result is a conjectural bijection that would prove the equivalence of two combinatorial formulas for cluster variables of rank-two skew-symmetric cluster algebras. We identify a technical result that implies the bijection and make partial progress towards its proof. We then shift gears to study certain power series which arise as limits of ratios of F-polynomials in cluster algebras of type An,1. With several different perspectives in mind, including that of continued fractions, path-ordered products and the surface model, we state and prove various equivalent formulas for these power series. In our study of these two families, we make use of a product formula for F-polynomials, called Gupta\u27s formula, which is applicable to all cluster algebras of geometric type. We dedicate one of our chapters to an exposition of this formula. Though Gupta\u27s formula has previously appeared in different notations, and in that sense is not new, we believe that our statement and proof of the formula provides a new approach to the formula which is elementary and combinatorial

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    Natural Communication

    Get PDF
    In Natural Communication, the author criticizes the current paradigm of specific goal orientation in the complexity sciences. His model of "natural communication" encapsulates modern theoretical concepts from mathematics and physics, in particular category theory and quantum theory. The author is convinced that only by looking to the past is it possible to establish continuity and coherence in the complexity science

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Combinatoire des cartes et polynome de Tutte

    Get PDF
    Les cartes sont les plongements, sans intersection d'arêtes, des graphes dans des surfaces. Les cartes constituent une discrétisation naturelle des surfaces et apparaissent aussi bien en informatique (codage d'informations visuelles) quén physique (surfaces aléatoires de la physique statistique et quantique). Nous établissons des résultats énumératifs pour de nouvelles familles de cartes. En outre, nous définissons des bijections entre les cartes et des classes combinatoires plus simples (chemins planaires, couples d'arbres). Ces bijections révèlent des propriétés structurelles importantes des cartes et permettent leur comptage, leur codage et leur génération aléatoire. Enfin, nous caractérisons un invariant fondamental de la théorie des graphes, le polynôme de Tutte, en nous appuyant sur les cartes. Cette caractérisation permet d'établir des bijections entre plusieurs structures (arbres cou- vrant, suites de degrés, configurations du tas de sable) comptées par le polynôme de Tutte.A map is a graph together with a particular (proper) embedding in a surface. Maps are a natural way of representing discrete surfaces and as such they appear both in computer science (encoding of visual data) and in physics (random lattices of statistical physics and quantum gravity). We establish enumerative results for new classes of maps. Moreover, we define several bijections between maps and simpler combinatorial classes (planar walks, pairs of trees). These bijections highlight some important structural properties and allows one to count, sample randomly and encode maps efficiently. Lastly, we give a new characterization of an important graph invariant, the Tutte polynomial, by making use of maps. This characterization allows us to establish bijections between several structures (spanning trees, sandpile configurations, outdegree sequences) counted by the Tutte polynomial

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore