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ABSTRACT OF DISSERTATION

On Flow Polytopes, ν-Associahedra, and the Subdivision Algebra

This dissertation studies the geometry and combinatorics related to a flow polytope
Fcar(ν) constructed from a lattice path ν, whose volume is given by the ν-Catalan
numbers. It begins with a study of the ν-associahedron introduced by Ceballos,
Padrol, and Sarmiento in 2019, but from the perspective of Schröder combinatorics.
Some classical results for Schröder paths are extended to the ν-setting, and insights
into the geometry of the ν-associahedron are obtained by describing its face poset with
two ν-Schröder objects. The ν-associahedron is then shown to be dual to a framed
triangulation of Fcar(ν), which is a geometric realization of the ν-Tamari complex.
The dual graph of this triangulation is the Hasse diagram of the ν-Tamari lattice due
to Préville-Ratelle and Viennot. The dual graph of a second framed triangulation
of Fcar(ν) is shown to be the Hasse diagram of a principal order ideal of Young’s
lattice generated by ν, and is used to show that the h∗-vector of Fcar(ν) is given by
ν-Narayana numbers. This perspective serves to unify these two important lattices
associated with ν-Dyck paths through framed triangulations of a flow polytope. Via
an integral equivalence between Fcar(ν) and a subpolytope UI,J of a product of two
simplices ∆a × ∆b, subdivisions of UI,J are shown to be obtainable with Mészáros’
subdivision algebra, which answers a question of Ceballos, Padrol, and Sarmiento.
Building on this result, the subdivision algebra is extended to encode subdivisions of
∆a ×∆b, giving a new tool for their future study.

KEYWORDS: Flow polytope, triangulation, subdivision algebra, associahedron
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Chapter 1 Introduction

The use of combinatorial objects is ubiquitous in modern mathematics. Graphs,
trees, tableaux, posets, partitions, permutations, etc., although fascinating in and
of themselves, can serve as information encoding devices for succinctly capturing
complex mathematical ideas. This power of combinatorial objects has contributed
to the thriving fields of algebraic combinatorics and discrete geometry. Algebraic
combinatorics is concerned with employing algebraic techniques for solving combi-
natorial problems, and conversely, using combinatorial objects to study algebraic
structures. For instance, Young tableaux have proven to be of great utility in Schu-
bert calculus and representation theory, as they conveniently encode group repre-
sentation of the symmetric group and general linear groups. Discrete geometry on
the other hand is concerned with the study of enumerative and combinatorial prop-
erties of geometric objects, including convex polytopes, hyperplane arrangements,
and simplicial complexes. Many combinatorial objects also give rise to interesting
geometric structures. For example, permutations give rise to permutohedra, graphs
to symmetric edge polytopes, posets to order polytopes, etc. The topics of this
dissertation lie in the intersection of algebraic combinatorics and discrete geometry,
and we will witness their delicate interplay.

The primary combinatorial objects we will encounter in this dissertation are
lattice paths. Given a point (a, b) where a and b are nonnegative integers, by a
lattice path we will mean a sequence of steps beginning at the origin and ending
at (a, b). In general, the steps can be vectors (i, j) ∈ Z2

≥0, although we will mainly
consider two types of steps: east steps E := (1, 0) and north steps N := (0, 1).
Therefore we will generally use “lattice path” to mean a path consisting only of E
and N steps, unless stated otherwise.

(0, 0)

(5, 3)

Figure 1.1: A lattice path.

A lattice path can then be written as a word in the alphabet {E,N}. For
example, the lattice path in Figure 1.1 can be written as the word NEENENEE.
A lattice path to the point (a, b) has a total of a + b steps, with the number of
east and north steps given by a and b respectively. We can therefore enumerate the
lattice paths to (a, b) by counting the words of length a + b with a copies of the

letter E and b copies of the letter N . As a result, there are
(
a+b
a

)
=
(
a+b
b

)
= (a+b)!

a!b!

lattice paths to the point (a, b).
Perhaps the most well-known set of lattice paths are the Dyck paths, which

are lattice paths staying weakly above the line y = x. The number of Dyck paths
to a point (n, n) is given by the n-th Catalan number Cat(n) = 1

n+1

(
2n
n

)
. Catalan

1



numbers have been of great interest for combinatorialists, and they are known to
count over two hundred different combinatorial objects. A collection of these objects
was compiled by Stanley [65].

A Dyck path to the point (n, n) can equivalently be defined as a lattice path
using steps E and N which stays weakly above the staircase shaped path (NE)n.
From this perspective it is natural to consider generalizations of Dyck paths by
replacing the staircase path with some other fixed path ν, leading to the following
definition. A ν-Dyck path is a lattice path using steps E and N staying weakly
above a fixed path ν, and the ν-Catalan number Cat(ν) is the number of ν-Dyck
paths.

(0, 0)

(3, 3)

(0, 0)

(5, 3)

(0, 0)

(5, 3)

Figure 1.2: Three ν-Dyck paths.

Note that the number of initial N steps and terminal E steps in ν does not
change the number of ν-Dyck paths. When enumerating ν-Dyck paths, we can
therefore assume that ν begins with an N step, in which case the ν-Catalan number
Cat(ν) can be calculated by the following determinantal formula

Cat(ν) = det

((
1 +

∑b−j
k=1 νk

1 + j − i

))
1≤i,j≤b−1

,

where νk denotes the number of E steps immediately following the k-th N step of
ν. This formula is derived by an application of the Gessel–Viennot Lemma [37], but
no closed-form positive formula is known for general ν. For certain special cases,
such formulas do exist. An important such case is when a and b are coprime and ν
is the lattice path to (a, b) that borders the squares intersecting the line y = b

a
x. In

this case, we write ν(a, b) to denote the path ν determined by (a, b). Any ν(a, b)-
Dyck path is then referred to as a rational (a, b)-Dyck path. For example, the
right-most ν-Dyck path in Figure 1.2 is a rational (5, 3)-Dyck path. The classical
Dyck paths are not rational Dyck paths, as a and b are not coprime when a = b.
However, since ν(n, n + 1) = (NE)nE, the rational (n, n + 1)-Dyck paths can be
identified with the classical Dyck paths by removing the final E step. In this sense,
the rational (a, b)-Dyck paths include the classical case. Rational (a, b)-Dyck paths
are enumerated by the rational Catalan number Cat(a, b) = 1

a+b

(
a+b
a

)
. For more

on rational Dyck paths, we refer the reader to the work of Armstrong, Rhoades, and
Williams [7], and Armstrong, Loehr, and Warrington [6].

Lattice paths are closely related to integer partitions. In particular, a lattice path
ν in the rectangular grid defined by (0, 0) to (a, b) naturally corresponds with an
integer partition λ(ν) = (λ1, . . . , λb), where λk is the number of E steps appearing
before the (b−k+1)-thN step in ν. The Young diagram for λ(ν) may be visualized as

2



the region within the rectangle from (0, 0) to (a, b) which lies NW of ν. For example,
the regions of white boxes above each ν in Figure 1.2 are the Young diagrams of the
partitions (2, 1, 0), (4, 3, 0), and (3, 1, 0) respectively. The set of boxes above a ν-
Dyck path then encodes a partition whose Young diagram is contained in the Young
diagram determined by ν. Each of the ν-Dyck paths in Figure 1.2 corresponds with
the Young diagram of the partition (2, 0, 0). The set of ν-Dyck paths can thus be
studied as the set of Young diagrams contained in the region above ν. As lattice
paths, however, ν-Dyck paths have been studied in various contexts [56, 16, 15].

Lattice paths and their corresponding words will appear throughout this dis-
sertation, although our primary interest will not be in the lattice paths themselves.
Instead, our focus will be on the geometric structures which they can encode, includ-
ing various polytopes and their triangulations, along with simplicial and polytopal
complexes. Without the ability to visualize these objects beyond the third dimen-
sion, their study quickly becomes difficult. However, by encoding them using lattice
paths, we obtain a window into their geometric and combinatorial properties. The
lattice path ν will play a key role throughout this dissertation. It will determine the
set of ν-Schröder paths in Chapter 3, which capture the combinatorial structure of
the ν-associahedron, giving insight into its geometry. In Chapter 4, the path ν gives
rise to a flow polytope whose volume is given by Cat(ν), which has two triangula-
tions related to known lattice structures on ν-Dyck paths. In Chapter 5, the path
ν gives rise to a subdivision of a product of two simplices. With a generalization of
Mészáros’ subdivision algebra, these subdivisions can be refined to triangulations,
one of which is a geometric realization of the cyclic ν-Tamari complex. In this
way, the path ν encodes a multitude of beautiful geometric structures throughout
our story. Perhaps put most simply, this dissertation is a study of the geometry
encoded in a path ν.

An overview of this dissertation is as follows.
In Chapter 2 we introduce the main actors of the dissertation along with the nec-

essary background. We first provide general background on the theory of polytopes,
their triangulations, and polytopal complexes. We will also discuss specific families
of polytopes, including flow polytopes, root polytopes, and techniques relevant to
their study. In particular, we discuss an algebraic setting for obtaining subdivisions
of these polytopes introduced by Mészáros [44, 45] known as the subdivision algebra.
Certain flow polytopes and root polytopes can be encoded with a monomial in this
subdivision algebra, with a reduction operation on the monomial encoding subdi-
visions of these polytopes. Further background on ν-Dyck paths and the relevant
geometric objects associated to them is also provided. This includes background on
the ν-Tamari lattice introduced by Préville-Ratelle and Viennot [56], and its con-
nection to the ν-associahedron and ν-cyclohedron introduced by Ceballos, Padrol,
and Sarmiento [16].

Chapter 3 details a study of the ν-associahedron from a lattice path perspec-
tive, conducted by the present author in collaboration with Martha Yip [11]. We
introduce and study ν-Schröder paths and trees, extending some classical results for
Schröder paths to the ν-setting. We then show that ν-Schröder paths and trees give
an alternate description of the face poset of the ν-associahedron. Using ν-Schröder
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paths, we obtain further insight into the geometric structure of the ν-associahedron,
including a proof that it is contractible via discrete Morse theory.

In Chapter 4, we establish a connection between the ν-associahedron and flow
polytopes. This work was done in collaboration with Rafael González D’León, Fran-
cisco Mayorga Cetina, and Martha Yip [10]. We construct a family of flow poly-
topes from a lattice path ν, which we call ν-caracol flow polytopes. This family
of flow polytopes is combinatorially interesting, and their volumes are given by the
ν-Catalan numbers. Using a triangulation technique developed for flow polytopes
by Danilov, Karzanov, and Koshevoy [24], we proceed to study two triangulations
of the ν-caracol flow polytope, each of which is related to known ν-Catalan objects.
The first triangulation is a geometric realization of the ν-Tamari complex, which is
dual to the ν-associahedron. The second triangulation is related to filters of Young’s
lattice generated by ν, and we use it to compute the h∗-polynomial of the ν-caracol
flow polytope. The chapter concludes with an extension of this work by the present
author and Martha Yip making explicit the connection between ν-caracol flow poly-
topes, acyclic root polytopes, and a subpolytope UI,J of a product of two simplices.
These connections allow the subdivision algebra to be used to obtain triangulations
of UI,J , answering a question of Ceballos et al. [16]. We then demonstrate how to
obtain the ν-Tamari complex using the subdivision algebra.

The objects of study in Chapters 3 and 4 can be broadly classified as belonging
under the umbrella of type A Coxeter combinatorics. With this perspective, Chap-
ter 5 studies their type B counterparts. For any lattice path ν, we construct a flow
polytope which is integrally equivalent to the product of two simplices ∆a×∆b. We
show that ∆a×∆b can be subdivided into a union of “type A” flow polytopes, each
of which can be encoded with a polynomial in the subdivision algebra. This allows
for an extended subdivision algebra for ∆a ×∆b, which we use to obtain the cyclic
ν-Tamari complex as a special case. In this chapter, lattice paths play the role of
inducing subdivisions of ∆a ×∆b, which can then be refined to triangulations with
the subdivision algebra.

We conclude the dissertation in Chapter 6 with a brief discussion of future direc-
tions. Three potential directions of further investigation are identified, and possible
methods of studying them are considered.

Copyright© Matias K. von Bell, 2022.
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Chapter 2 Background

In this chapter, we give the necessary prerequisites on the theory of polytopes and
their triangulations, along with background on the geometry associated with the ν-
Tamari lattice. After some general discussion of polytopes, we focus on two families
of polytopes central to the remainder of this dissertation, namely flow polytopes
and root polytopes. We then discuss the subdivision algebra, which is an algebraic
setting in which certain flow polytopes and root polytopes can be triangulated.
Finally, we give background on the ν-associahedron, ν-Tamari lattice, along with
the their cyclic counterparts.

2.1 Lattice polytopes and their triangulations

Polytopes play an important role in mathematics, and their study dates back to
ancient times. In combinatorics, they generate a wealth of interesting enumerative
questions, and their structure can be studied with the aid of combinatorial objects
such as graphs and posets. Our study of polytopes will be limited to convex poly-
topes, and we will henceforth simply refer to them as polytopes for brevity. To
further simplify matters, the polytopes of interest will all be lattice polytopes. Our
overview of the background will cover only the topics and results necessary for our
purposes, and we refer the interested reader to [38] and [71] for more background
on polytopes, and to [27] for more background on their triangulations.

Definition 2.1.1. A polytope can be defined in either of the following two ways:

� (H-description) A polytope P is the solution set to a finite system of linear
inequalities, which is bounded. In other words,

P := {x ∈ Rn | Ax ≤ b},

where A ∈ Rm×n is a real matrix and b ∈ Rm is real a vector.

� (V-description) A polytope P is the convex hull of finitely many points
v1, . . . ,vk ∈ Rn, in other words

P := conv(v1, . . . ,vk) =

{
k∑

i=1

λivi

∣∣∣∣∣ λi ≥ 0 and
k∑

i=1

λi = 1

}
.

The fact that the H-description and V-description are equivalent definitions is
not obvious, and is a well-known result in the theory of polytopes (see for example
[71, Theorem 1.1]). The following definition captures much of the basic terminology
for polytopes that we will use throughout this dissertation.
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Figure 2.1: Some polytopes in dimensions 1, 2, and 3.

Definition 2.1.2. Let P ⊆ Rn be a polytope.

� The dimension of P is the dimension of its affine hull

aff(P) =

{
k∑

i=1

λixi

∣∣∣∣∣ λi ∈ R, xi ∈ P ,
k∑

i=1

λi = 1

}
.

If P has dimension d, then it is a d-polytope.

� The normalized volume of P , denoted volP , is d! times its Euclidean vol-
ume. Henceforth when speaking of volume, we mean the normalized volume.

� A face F of P is any set of the form F := P ∩ {x ∈ Rn | cTx ≤ c0},
where c0 ∈ R and cTx ≤ c0 is satisfied for all x ∈ P . Faces of polytopes are
themselves polytopes. Note that choosing c = 0 with c0 = 0 gives P itself,
and with c0 = −1 gives the empty face. By convention, the dimension of the
empty face is chosen to be −1.

� A k-face of P is a k-dimensional face of P . The 0-, 1-, and (d− 1)-faces of a
d-polytope are respectively known as vertices, edges, and facets.

� The face lattice of P is the lattice induced by ordering the face of P by
inclusion. The face lattice is ranked by the dimensions of the faces.

� P is simple if each vertex in P is adjacent to d edges (and facets), where d is
the dimension of P .

� P is a lattice polytope if all of its vertices have integer coordinates.

� P is a d-simplex if it is a d-polytope with d+ 1 vertices.

Definition 2.1.3. Two polytopes are said to be combinatorially isomorphic or
of the same combinatorial type if their face lattices are isomorphic as partially
ordered sets. The equivalence classes of combinatorially isomorphic polytopes are
known as combinatorial types.

When the geometric realization of a polytope is important, we have the following
notions of equivalence for polytopes.
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Figure 2.2: A 2-simplex and its face lattice.

Definition 2.1.4. An affine isomorphism between two polytopes P ⊆ Rn and
Q ⊆ Rm is an affine transformation φ : Rn → Rm which restricts to a bijection
between P and Q. If φ further restricts to a bijection between aff(P) ∩ Zn and
aff(Q) ∩ Zm, we say that it is an integral equivalence. If there is an affine
isomorphism between P and Q, we say that they are affinely isomorphic and
write P ∼= Q. If there is an integral equivalence between P and Q, we say that they
are integrally equivalent and write P ≡ Q.

Affinely isomorphic polytopes share the same face lattice, and so they are of
the same combinatorial type. The notion of integral equivalence is important when
we wish to preserve lattice point counts between the polytopes and their dilates,
which is of primary concern in Ehrhart theory. In particular, integrally equivalent
polytopes have the same Ehrhart polynomial. Our focus will not be on Ehrhart
theory, and for our purposes affine isomorphisms suffice. However, since the extra
condition is easy to check and our important maps will also be integral equivalences,
we will use the stronger notion.

Any affine map ψ : Rn → Rn which restricts to a bijection from Zn to itself is
an integral equivalence. A non-trivial scaling is not an integral equivalence, but the
following are some easy to verify examples of integral equivalences Rn → Rn:

� A translation x 7→ x+ kei where 1 ≤ i ≤ n and k ∈ Z.

� A reflection across a hyperplane {x | xi = k/2} where 1 ≤ i ≤ n and k ∈ Z.

� A rotation of π/2 radians about a coordinate axis.

Certain projections are also integral equivalences, as shown by the following
lemma.

Lemma 2.1.5. Let P ⊆ Rn be a lattice polytope. The projection φ : Rn → Rn−1

given by (x1, . . . , xk, . . . , xn) 7→ (x1, . . . , x̂k, . . . , xn) is an integral equivalence between
P and its image φ(P) if and only if φ restricts to a bijection between aff(P) ∩ Zn

and aff(φ(P)) ∩ Zn−1.
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Figure 2.3: Three affinely (and combinatorially) isomorphic polytopes P1,
P2, and P3, of which only P1 and P2 are integrally equivalent.

Proof. Let v1, . . ., vk denote the vertices of P . Any point x in P can then be written
as a convex combination of v1, . . ., vk, that is x =

∑k
i=1 λivi with 0 ≤ λi ≤ 1 for

each i and
∑k

i=1 λi = 1. Since φ restrict to a bijection between aff(P) ∩ Zn and
aff(φ(P))∩Zn−1, it is a bijection between the vertices of P and the vertices of φ(P),
and the restriction extends linearly to a bijection between P and φ(P).

Projecting the polytope P1 in Figure 2.3 to the y-axis, we see that it is inte-
grally equivalent to P2 by a translation and rotation of π/2 radians. The polytope
P3, however, is not integrally equivalent to P1 (or P2) since any affine equivalence
restricting to a bijection between them cannot be a bijection between lattice points.

Definition 2.1.6. A triangulation T of a d-dimensional lattice polytope P is a
finite collection of d-simplices such that

(i) P =
⋃

∆∈T ∆; and

(ii) ∆1∩∆2 is a common face of ∆1 and ∆2 for any pair of simplices ∆1, ∆2 ∈ T .
The d-simplices are referred to as facets of the triangulation.

The combinatorial structure of a triangulation of a polytope is encoded in its
dual graph, that is, the graph on the set of facets in the triangulation, with edges
between facets sharing a common face of codimension one.

Definition 2.1.7. A lattice simplex ∆ ⊆ Rn with vertices v1, . . ., vk+1 is said to be
unimodular if the vectors vk+1 − v1, vk − v1, . . ., v2 − v1 form a lattice basis for
aff(∆) ∩ Zn. A triangulation T is unimodular if all of its facets are unimodular.

Unimodular simplices have normalized volume one, so given a unimodular trian-
gulation of a lattice polytope P , the volume computation becomes an enumeration
problem for simplices. For a non-unimodular simplex consider the central simplex
in a unit cube formed by taking the convex hull of vertices (0, 0, 0), (1, 1, 0), (1, 0, 1),
and (0, 1, 1).
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Another important type of triangulation is the following.

Definition 2.1.8. A triangulation of P ⊆ Rn is said to be regular if it can be
obtained by projecting the lower envelope of a lifting of P to Rn+1.

Proposition 2.1.9 ([27, Proposition 2.2.4]). Every polytope admits a regular trian-
gulation.

A triangulation can be thought of as a simplicial complex, which is defined as
follows.

Definition 2.1.10. A simplicial complex S is a collection of simplices such that

(i) every face of a simplex is also in S; and

(ii) σ1 ∩ σ2 is a face of σ1 and σ2 for any simplices σ1, σ2 ∈ S.

A polytopal complex is defined similarly by replacing the words simplex/simplices
above with polytope/polytopes.

Definition 2.1.11. A simplicial complex is said to be flag if the cardinality of its
minimal non-faces is 2. A flag triangulation is a triangulation that is flag as a
simplicial complex.

Definition 2.1.12. The f-vector of a d-dimensional polytopal complex K is the
vector (f−1, f0, f1, ..., fd) where fk is the number of k-faces in K.

For simplical complexes, it is often useful to encode the f -vector using the h-
vector, which is defined as follows.

Definition 2.1.13. The h-vector of a d-dimensional simplicial complex S is the
vector (h0, h1, . . . , hd) whose entries are given by

hk :=
k∑

i=0

(−1)k−i

(
d− i

d− k

)
fi−1,

where fi denotes the number of i-faces of S.

An important problem in discrete geometry is the enumeration of lattice points
contained in a polytope, which is the primary focus of Ehrhart theory. We give
some important definitions from Ehrhart theory that we will encounter in our story,
and point the interested reader to [9] for an introduction to Ehrhart theory.

Definition 2.1.14. The t-th dilate of a polytope P ⊆ Rn is the polytope tP :=
{tx | x ∈ P}, for t ∈ Z>0. The Ehrhart series EhrP(z) of a polytope P is the
generating function whose t-th coefficient gives the lattice point count in the t-th
dilate of P , i.e.

EhrP(z) = 1 +
∑
t≥1

LP(t)z
t,
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where LP(t) := |tP ∩Zn|. When P is a lattice polytope of dimension d, the Ehrhart
series has the form

EhrP(z) =
h∗(z)

(1 + z)d+1
,

where h∗(z) is a polynomial of degree d. The polynomial h∗(z) is known as the
h∗-polynomial of P and its sequence of coefficients (h∗0, h

∗
1, ..., h

∗
d) is known as the

h∗-vector of P . LP(t) is also a polynomial of degree d known as the Ehrhart
polynomial of P . In particular, Ehrhart [33] showed that there are rational values
c1, c2, . . ., cd, such that

LP(t) =
d∑

i=0

h∗i

(
t+ d− i

d

)
=

d∑
i=0

cit
i.

For lattice polytopes, Stanley [61] showed that h∗(z) has nonnegative coefficients.
He showed further in [63] that the h∗-vector of a lattice polytope coincides with the
h-vector of any of its unimodular triangulations.

2.2 Root polytopes

Root polytopes were first considered in [35], although the name was introduced
later by Postnikov in [54] for the type An Coxeter system. Their triangulations were
studied in [44]. Type Cn and Dn root polytopes and their triangulations have since
also been considered [2, 19, 45]. For the purposes of our story, however, we will only
consider the type An case.

Recall that a root in the type An root system is a vector of the form

αij := ei − ej

where 1 ≤ i, j ≤ n+1, i ̸= j, and ek denotes the k-th standard basis vector in Rn+1.
A root αij is a positive root if i < j and a simple root if j = i + 1. We use Φn

to denote the set of roots in type An, and Φ+
n for the set of positive roots.

Definition 2.2.1. For S ⊆ Φn, the associated (type An) root polytope is the
polytope

R(S) := conv{0,α | α ∈ S}.
Choosing S = Φ+

n gives the positive root polytope R+
n , and choosing S = Φn

gives the full root polytope Rn.

The positive root polytope has also been called the full root polytope in the
work of Mészáros [44] and Postnikov [54], but since we are not restricting ourselves
to positive roots, we follow Ardila–Beck–Hoşten–Pfeifle–Seashore [2] and use “full
root polytope” to mean the convex hull of all roots in Φn. The full root polytope
was studied by Cho in [21] and also appears under the name Legendre polytope in
the work of Hetyei [40] and Ehrenborg–Hetyei–Readdy [32].

Another special class of root polytopes are the acyclic root polytopes defined by
Mészáros in [44]. Given an acyclic (undirected) graph G on vertex set [n+ 1], each
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edge (i, j) in E(G) can be identified with the positive root αij. Let Φ+
G := {αij |

(i, j) ∈ E(G)} be the set of positive roots associated with the edges in G, and let
L(Φ+

G) denote the set of positive roots obtainable as nonnegative linear combinations
of roots in Φ+

G. The acyclic root polytope is the root polytope R+
G := R(L(Φ+

G)).
Letting Pn denote the path graph on n vertices, the acyclic root polytope R+

Pn+1
is

the positive root polytope R+
n .

α23

α13

α12

−α23

−α13

−α12

0

Figure 2.4: The root polytope R+
2 is contained in R2.

2.3 Flow polytopes

Flow polytopes are a rich family of polytopes whose geometric and combinatorial
study began with Baldoni and Vergne in [8] along with unpublished work by Post-
nikov and Stanley. Flow polytopes have received much recent attention due to
their close connections to many areas, including representation theory [8], diagonal
harmonics [50], Schubert polynomials [52], and toric geometry [41]. The class of
flow polytopes includes (in some cases up to integral equivalence) many well-known
polytopes, such as the Chan-Robbins-Yuen polytope [20], the Pitman–Stanley poly-
tope [66], Tesler polytopes [50], certain order polytopes and faces of the alternating
sign matrix polytope [51].

Definition 2.3.1. Let G be a connected directed graph on vertex set V (G) =
[n] and edge multiset E(G) with m edges directed toward their larger vertex. At
each vertex i ∈ V (G) we assign a netflow ai ∈ Z satisfying the balance condition∑n

i=1 ai = 0, and hence an = −
∑n−1

i=1 ai. Vertices with positive, negative, and zero
netflow are respectively referred to as sources, sinks, and inner vertices. For
a = (a1, . . . , an−1,−

∑n
i=1 ai) ∈ Zn, an a-flow on G is a tuple (xe)e∈E(G) ∈ Rm

satisfying ∑
e∈In(j)

xe −
∑

e∈Out(j)

xe = aj, (2.1)

where In(j) and Out(j) respectively denote the set of incoming and outgoing edges
at j. The flow polytope FG(a) is the set of all a-flows on G. A unit flow on G
is a u-flow on G where u = e1 − en.
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Figure 2.5: An a-flow (left) and a u-flow (right) on a graph G.

The fact that FG(a) is a polytope is well-known in discrete optimization. Let
MG denote the incidence matrix of the digraph G whose rows correspond to the
vertices of G and columns correspond to the edges of G. Then

FG(a) = {x ∈ Rm | MGx = a,0 ≤ x}. (2.2)

In this context, FG(a) is a lattice polytope by the Hoffman-Kruskal theorem (see
[23, Theorem 4.5]) and the fact that an incidence matrix of a digraph is totally
unimodular [23, Theorem 4.9]. From (2.2) we see that the dimension of FG(a)
depends only on MG and hence only the graph G. More specifically, we have the
following result, which also appears in [24, Proposition 1] and [8, 51].

Lemma 2.3.2. The dimension of a flow polytope FG(a) is given by

dim(FG(a)) = |E(G)| − |V (G)|+ 1.

Proof. We induct on the number of vertices. Let G be a graph on vertex set [n]. The
result holds for n = 1, so we consider the case when n > 1. Deleting the vertex n
and its k incident edges, we obtain a graph G \ {n}. We see that

MG =

[
MG\{n} B

0T 1T

]
,

where B ∈ R(n−1)×k, 0 ∈ Rm−k and 1 ∈ Rk. All but one of the last k columns of
MG are free, so dim(FG(a)) = dim(FG\{n}(a))+ k− 1. By the inductive hypothesis
dim(FG\{n}(a)) = |E(G)| − k + |V (G)|+ 2, and the result follows.

The V-description of FG(a) can be given as follows.

Proposition 2.3.3 ([49, Proposition 2.5],[41, Lemma 3.1]). The vertices of FG(a)
are the set of a-flows supported on subgraphs of G with no undirected cycles.

Our focus will be on flow polytopes obtained as the set of all unit flows on a
graph G, namely FG(u). For this reason we will suppress notation to FG := FG(u)
for brevity. In this case, the vertices of FG are easier to describe, as they are given
by paths from the source to the sink in G called routes. Letting RG denote the set
of routes in G, we obtain the following.
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Figure 2.6: A graph G and its flow polytope FG (visualized in R3).

Corollary 2.3.4. The flow polytope FG is a lattice polytope with V-description

FG = conv{xR | R ∈ RG}.

Example 2.3.5. Let G be the path graph P5 on 5 vertices with added edges (1, 3),
(2, 5), and (3, 5). The flow polytope FG is a three dimensional polytope in R7, and
its vertices correspond to the possible routes in G (see Figure 2.6).

An edge (i, j) is said to be idle if it is the only outgoing edge from i, or it is
the only incoming edge to j. In the graph of Figure 2.6, the edges (1, 2), (3, 4), and
(4, 5) are all idle edges. The following lemma is useful for altering the underlying
graph while preserving the flow polytope up to integral equivalence.

Lemma 2.3.6 ([31, Corollary 2.13], [52, Lemma 2.2]). If G′ is obtained from G by
contracting idle edges, then FG′ ≡ FG.

The volume of a flow polytope can be computed using the Lidksii formula given
by Baldoni and Vergne [8], which is a sum of Kostant partition functions. Their proof
is based on residue computations, while a proof revealing the underlying geometry
and combinatorics was given by Mészáros and Morales in [49]. Based on the Lidskii
formula, computing the volume of a flow polytope was shown in [12, Theorem 4.4]
to be equivalent to enumerating combinatorial objects which they called “unified
diagrams”. To state the Lidskii formula, we first need to state a few definitions and
establish some notation.

Recall from Section 2.2, that the edges in a graph G can be associated with a
subset Φ+

G of the positive roots Φ+
n−1 in the type An−1 root system. The Kostant

partition function KG(a) is the number vector partitions of a using vectors in
Φ+

G. In other words, it is the number of ways of writing a as a nonnegative integer
combination of vectors in Φ+

G. The shifted out-degree vector s = (s1, ..., sn−1)
of G is the vector where si is one less than the out-degree of vertex i. Note that∑n−1

i=1 si = m−n+1. A weak composition of ℓ ∈ Z≥0 is a sequence of nonnegative
integers whose sum is ℓ. A weak composition d = (d1, ..., dℓ) is said to dominate
s = (s1, ..., sℓ), denoted by d ▷ s, if

∑k
i=1 di ≥

∑k
i=1 si for all k ≥ 1. We use the

notation â to denote the vector consisting of all but the last coordinate of a, and
the multiexponent notation xy := xy11 x

y2
2 · · ·xyℓℓ .
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1. [α1 +α2 +α3] + [α1 +α2] + [α1]

2. [α1 +α2 +α3] + 2[α1] + [α2]

3. 2[α1 +α2] + [α3] + [α1]

4. 2[α1] + [α1 +α2] + [α2] + [α3]

5. 3[α1] + 2[α2] + [α3]

Figure 2.7: The graph car(6) (left) and the five vector partitions of
(3,−1,−1,−1, 0, 0) using vectors in Φ+

car(6) (right).

Theorem 2.3.7 (Lidskii volume formula [12, 8, 49]). Let G be a graph with n
vertices, m edges, shifted out-degree vector s = (s1, ..., sn−1), and net-flow vector a.
Then

volFG(a) =
∑
d ▷ s

(
m− n+ 1

d

)
· âd ·KG|n−1(d− s),

where the sum is taken over the weak compositions d = (d1, ..., dn−1) of m − n + 1
that dominate s.

An analog of Theorem 2.3.7 can be given in terms of in-degrees (see [49, Corol-
lary 1.3]), which is obtained by reversing the directions of the edges in G, and using
the shifted in-degree vector t = (t2, . . . , tn) where ti is one less than the in-
degree of vertex i. In the unit flow case, when a = u, the only nonzero term in the
sum occurs when d = (m− n+ 1, 0, ..., 0), and the Lidksii formula simplifies to the
following special case due to Stanley and Postnikov [49, Theorem 2.2].

Corollary 2.3.8. Let G be a graph with n vertices, m edges, shifted out-degree
vector s = (s1, . . . , sn−1), and shifted in-degree vector t = (t2, . . . , tn). Then

volFG = KG(vout) = KG(vin),

where vout = (m−n+1−s1,−s2, ...,−sn−1, 0) and vin = (0, t2, t3, . . . , tn−(m−n+1)).

In general, the problem of enumerating vector partitions is difficult. In the
following example we compute the volume of a flow polytope with this method.

Example 2.3.9. Two flow polytopes with combinatorially notable volumes are the
following.

1. The caracol graph car(n) is constructed from the path graph on vertex set
[2, n − 1] by adding vertices 1 and n, along with the edges {(1, i), (i, n) | 1 <
i < n}. The volume computation of the caracol flow polytope Fcar(n) by
the Lidskii formula amounts to finding Kcar(n)|n−1(n − 3,−1, ...,−1, 0). The
positive roots of Φ+

car(n) that can be used in the vector partition are of the

form [α1 + · · · + αk], where 1 ≤ k ≤ n − 2. These vector partitions are
in bijection with Dyck paths, as visualized in Figure 2.8 using the vector
partitions in Figure 2.7. For a proof of this bijection, we point the reader to
[12, Proposition 3.3]. As a result, the volume of Fcar(n) is Cat(n− 3).
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Figure 2.8: The correspondence between vector partitions and Dyck paths.

2. The flow polytope FKn , where Kn denotes the complete graph on n vertices,
has been of particular interest and is called the Chan–Robbins–Yuen poly-
tope. Its volume was conjecture by Chan, Robbins, and Yuen in [20] to be
a product of consecutive Catalan numbers, namely volFKn =

∏n−2
i=1 Cat(i).

This was proven by Zeilberger [70] using a special case of the Morris constant
term identity equivalent to the Selberg integral, but no combinatorial proof is
known.

Framed triangulations of flow polytopes

A well-known class of triangulations of a flow polytope FG are induced by framings
of the graph G. A framing at the vertex i is a pair of linear orders (≺In(i),≺Out(i))
on the incoming and outgoing edges at i. A framed graph, denoted (G,≺), is a
graph with a framing at every inner vertex. For a route R containing an inner vertex
i, let Ri (respectively iR) denote the maximal subpath of R ending (respectively
beginning) at i. Furthermore, let I (i) = {Ri | R ∈ RG} and O(i) = {iR | R ∈
RG}. We then define linear orders ≺I (i) and ≺O(i) on I (i) and O(i) as follows.
Given paths Ri,Qi ∈ I (i), let j ≤ i be the first vertex after which Ri and Qi
coincide. Let eR be the edge of R entering j and let eQ be the edge of Q entering
j. Then Ri ≺I (i) Qi if and only if eR ≺In(j) eQ. Similarly for iR, iQ ∈ O(i), let
j′ ≥ i be the last vertex before which iR and iQ coincide. Let e′R be the edge of R
leaving j and let e′Q be the edge of Q leaving j′. Then iR ≺O(i) iQ if and only if
e′R ≺Out(j′) e

′
Q. Two routes R and Q containing an inner vertex i are coherent at i

if Ri ≺I (i) Qi and iR ≺O(i) iQ, or if Qi ≺I (i) Ri and iQ ≺O(i) iR. Routes R and Q
are then said to be coherent if they are coherent at each common inner vertex. A
set of mutually coherent routes is a clique. For a maximal clique C, let ∆C denote
the convex hull of the vertices of FG corresponding to the unitary flows along the
routes in C. A framing on G then induces a triangulation of FG by the following
theorem due to Danilov–Karzanov–Koshevoy [24].

i

2
1

3
2
1

i

Ri iR

Qi iQ

Figure 2.9: A framing at a vertex and coherent routes.
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Theorem 2.3.10. Let (G,≺) be a framed graph and let T be the collection of all
simplices ∆C such that C is a maximal clique in (G,≺). Then T is a regular
unimodular triangulation of FG.

The triangulation given in Theorem 2.3.10 is known as theDanilov–Karzanov–
Koshevoy (DKK) triangulation of FG (induced by ≺). Another triangulation
of FG arising from (G,≺) called the framed Postnikov–Stanley (PS) trian-
gulation also appears in the literature. However, Mészáros–Morales–Striker [51,
Theorem 7.8] showed that the PS triangulation and the DKK triangulation induced
by the framed graph (G,≺) are equal.

2.4 The subdivision algebra

The subdivision algebra is an algebraic setting in which subdivisions of certain root
polytopes and flow polytopes can be encoded algebraically using a reductions of
polynomials. It was first introduced by Mészáros [44, 45] for acyclic root polytopes,
and has since been used extensively to study subdivisions of flow polytopes [46, 48,
52]. We will describe the subdivision algebra for both families of polytopes.

Definition 2.4.1. The subdivision algebra S (β) is an associative and commuta-
tive1 algebra over the ring of polynomials Q[β], generated by {xij | 1 ≤ i < j ≤ n},
and subject to the relation xijxjk = xikxij + xjkxik + βxik, if 1 ≤ i < j < k ≤ n.

Given a polynomial p in S (β), we say that p′ is a reduction of p if p′ is obtained
from p by substituting the factor xijxjk of each monomial of p divisible by xijxjk
with xikxij + xjkxik + βxik, where 1 ≤ i < j < k ≤ n. A consequence of a reduction
is that p′ has two more monomials than p. A reduced form of a monomial M in
S (β) is defined to be the final polynomial pℓ in a sequence M = p0, p1, . . ., pℓ,
where each polynomial is obtained from the previous polynomial via a reduction,
and no reductions are possible in pℓ. Reduced forms are not unique in general.

i j k

i j k

i j k

i j k

xijxjk

xijxik

xikxjk

βxik

Figure 2.10: A graphical representation of a reduction.

Given a multigraph G in vertex set [n], we can associate to it the following
monomial in the subdivision algebra:

M(G) =
∏

(a,b)∈E(G)

xab.

1A non-commutative version was also studied by Mészáros in [44] called the quasi-classical
Yang-Baxter algebra.
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1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

x14x23x24

x13x14x23 x12x13x14 βx13x14

βx14x23

Figure 2.11: A reduction tree corresponding to the reductions in Example 2.4.2.

An application of the relation xijxjk = xikxij + xjkxik + βxik in Definition 2.4.1
then results in monomials corresponding to the following three new graphs.

G1 := (G \ {(i, j)}) ∪ {(i, k)},
G2 := (G \ {(j, k)}) ∪ {(i, k)}, and
G3 := (G \ {(i, j), (j, k)}) ∪ {(i, k)}.

(2.3)

We may now speak of a reduction of a graph G at a pair of edges (i, j) and (j, k)
as the operation giving rise to the three graphs G1, G2, and G3.

Example 2.4.2. Let G = ([4], {(1, 2), (2, 3), (2, 4)}). Then M(G) = x12x23x24, and
a possible sequence of reductions of M(G) is as follows:

p0 = x12x23x24

p1 = x12x14x23 + x14x23x24 + βx14x23

p2 = x12x13x14 + x13x14x23 + x14x23x24 + βx13x14 + βx14x23

The reduction in each step is performed on the pairs in boldface. No reductions are
possible in p2 and hence p2 is a reduced form of M(G).

A reduction of G can be viewed as a rooted tree, with G as the root with the
graphs G1, G2, and G3 from (2.3) as leaves. Continuing to perform reductions on
the leaves until no more reductions are possible, we obtain a rooted ternary tree
called a reduction tree. The leaves of the reduction tree with the same number of
edges as G are said to be full-dimensional. It is important to note here that when
a reduction is performed on a leaf at a pair (i, j), (j, k), the same pair is reduced in
all other leaves where such a reduction is possible. Sometimes it is convenient to
consider simple reductions, which are obtained by setting β = 0 in the reduction
relation xikxij + xjkxik + βxik. The reduction tree obtained from simple reductions
is a binary tree, and its leaves are all full-dimensional.

The sequence of reductions in Example 2.4.2 corresponds with the reduction tree
in Figure 2.11, with monomials of the reduced form p2 of M(G) given by the five
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leaves of the tree, three of which are full-dimensional. A reduction tree obtained in
this way is not unique in general, and depends on the reduction order. However,
the number of leaves in two reduction trees of a graph is always the same, and
furthermore, the following lemma holds.

Lemma 2.4.3 ([46, Lemma 1]). For two reduction trees of a graph G, let r1k and r2k
denote the number leaves in the two reduction trees with k edges. Then r1k = r2k.

As a consequence, the number of degree k monomials in any reduced form of
M(G) is the same.

The following lemma explains how the subdivision algebra encodes subdivisions
of acyclic root polytopes.

Lemma 2.4.4 (Reduction Lemma for Acyclic Root Polytopes [44, Lemma 5]). Let
G be a graph, with G1, G2, and G3 as given in (2.3). Then R+

G = R+
G1

∪ R+
G2
, and

R+
G1

∩R+
G2

= R+
G3
.

In other words, a reduction cuts the acyclic root polytope R+
G into two full-

dimensional faces encoded by G1 and G2, with G3 encoding their shared inner face.
As each resulting piece is again an acyclic root polytope, we can iterate these re-
ductions until we obtain a triangulation. The full dimensional leaves of a reduction
tree then correspond with the facets of the triangulation, while the remaining leaves
give the inner faces of the triangulation.

Example 2.4.5. The reduced form x12x13+x13x23+βx13 ofM(P3) = x12x23 encodes
the subdivision of R+

P3
= R+

2 in Figure 2.12.

x23

x13

x12

0

x13x23x12x13

βx13

Figure 2.12: The subdivision of R+
2 encoded by x12x13 + x13x23 + βx13.

Having now seen how reductions of monomials in the subdivision algebra encode
subdivisions of acyclic root polytopes, we shift our attention to flow polytopes. The
following notion will be useful.

Definition 2.4.6. Let G be a digraph on [n] with all edges oriented from smaller

to larger vertices. Define the fully augmented graph G̃ to be the connected
graph with vertex set V (G̃) := [n] ∪ {s, t}, where s < 1 < · · · < n < t, and edge

set E(G̃) := E(G) ∪ {(s, i), (i, t) | i ∈ V (G)}. The partial augmentation of G,

denoted Ĝ, is obtained from the full augmentation G̃ by removing edges (s, i) where
i has out-degree one, and any edges (j, t) where j has in-degree one.
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1 2 3 4

G

1 2 3 4s t

G̃

1 2 3 4s t

Ĝ

Figure 2.13: A graph G (left) with its full augmentation (center) and partial
augmentation (right).

The results in the remainder of this section hold for both fully and partially
augmented graphs (see Remark 2.4.10), but we will state them for fully augmented
graphs. Letting G1, G2, and G3 be as in (2.3), then the following lemma is the flow
polytopal version of Lemma 2.4.4.

Lemma 2.4.7 (Reduction Lemma for Flow Polytopes [46, Lemma 2.2], [52, Propo-
sition 2.3]). Let G be a digraph with G1, G2, and G3 as given in (2.3). Then there
exists interior disjoint polytopes P1 and P2 such that FG̃ = P1∪P2, with P1 ≡ FG̃1

,
P2 ≡ FG̃2

, and P1 ∩ P2 ≡ FG̃3
.

Note in particular that in the above lemma a flow polytope subdivides into flow
polytopes only up to an integral equivalence. This differs from Lemma 2.4.4, where
an acyclic root polytope subdivides into acyclic root polytopes. Let e1 = (i, j),
e2 = (j, k), and e3 = (i, k) be the edges in the construction of G1, G2 and G3 from
(2.3). The polytopes P1 and P2 are then the polytopes obtained by cutting FG̃ with
the hyperplane xe1 = xe2 . We can naturally interpret the flow in the edge e3 of G1,
G2, and G3 as the shared flow in e1 and e2 of G. This gives rise to the integral
equivalences in the reduction lemma above, which is visualized in Figure 2.14.

i j k

G
xe1 xe2

i j k

xe2

xe1 − xe2

xe1 > xe2

G1

i j k

xe1

xe2 − xe1

xe1 < xe2

G2

i j k

xe1

xe1 = xe2

G3

Figure 2.14: A visualization of the integral equivalences in Lemma 2.4.7.

As in the case of acyclic root polytopes, the reduction lemma for flow poly-
topes can be iterated to obtain a triangulation of the flow polytope FG̃, which is
encapsulated in the following proposition.
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Proposition 2.4.8 ([46, Theorem 3]). The leaves of a reduction tree of G encode
a regular flag triangulation of FG̃. Each leaf with |E(G)| − k edges encodes a codi-
mension k inner face of the triangulation.

Example 2.4.9. Continuing Example 2.4.2 with G = ([4], {(1, 2), (2, 3), (2, 4)}), the
leaves of the reduction tree in Figure 2.11 encode a triangulation of FG̃ consisting of
three full dimensional simplices and two inner simplices of codimension one. Let H
be the graph associated with βx13x14. The flow polytope FH̃ is then integrally
equivalent to a codimension one simplex of the triangulation, but it is not the
simplex itself. From the reduction tree it is possible to recover the vertices of FG̃

whose convex hull is the simplex associated with FH̃ . To that end, we label the
edge e3 = (i, k) in a reduction with the formal sum of edges e1 + e2. The edges in a
leaf of the reduction tree of G can then be labeled with formal sums of edges in G.
For example, in the graph H, the edge (1, 4) was obtained from a reduction of the
pair {(1, 2), (2, 4)}, so we have e(1,4) = e(1,2) + e(2,4). Similarly, since (1, 3) in H was
obtained from a reduction of the pair {(1, 2), (2, 3)}, we have e(1,3) = e(1,2) + e(2,3).

A route in H̃ is then expressible as a formal sum of all edges used in the route. The
route (s, 1), (1, 4), (4, t) in H̃ is expressed as the formal sum e(s,1)+e(1,2)+e(2,4)+e(4,t),

from which we can read the corresponding route (s, 1), (1, 2), (2, 4), (4, t) in G̃. In

this way, we can recover all routes in G̃ corresponding to the routes in H̃. See
Figure 2.15 for an example.

H̃

e(1,2) + e(2,4)

e(1,2) + e(2,3)

G̃

Figure 2.15: The correspondence between the routes not shared by H̃ and G̃.

Remark 2.4.10. Lemma 2.4.7 also holds if we replace G̃, G̃1, G̃2, and G̃3 with
Ĝ, Ĝ1, Ĝ2, and Ĝ3 respectively. This is because the removed edges from the full
augmentation G̃ appear only in routes of G̃ which are contained (as vertices) in

all inner faces of the triangulation. Thus removing such edges from G̃ amounts to
removing cone points of the triangulation. For the same reason Proposition 2.4.8
also holds when replacing G̃ with Ĝ.

2.5 The ν-associahedron and ν-Tamari lattice

The associahedron is a well-known simple polytope with fascinating connections to
many areas of mathematics beyond combinatorics, including homotopy theory [67],
real moduli spaces [29], and the theory of scattering amplitudes in quantum field
theory [5]. The associahedron first appears in the work of Dov Tamari in the 1950’s
and independently in the work of Jim Stasheff in the early 1960’s. However, it was
not realized as a convex polytope until 1980’s by Mark Haiman (unpublished) and
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((ab)c)d

a((bc)d)

a(b(cd))

(a(bc))d

(ab)(cd)

(ab)cda(bc)d

(abc)d

abcd

a(bcd) ab(cd)

Figure 2.16: The faces of A2 correspond with parenthesizations of a word
on n + 2 letter, subdivisions of an (n + 3)-gon, and little Schröder paths
above the path (NE)n+1.

independently by Carl Lee [43]. Subsequently, several other realizations have been
found and a good overview of various realizations is given by Ceballos, Santos, and
Ziegler [18]. The associahedron has also been generalized in various ways, including
rational associahedra [7], graph associahedra [14], poset associahedra [34], and ν-
associahedra [16], the last of which are of interest in our story.

Before introducing the ν-associahedron, we take a brief look at the classical
associahderon. Let Dn denote the partial order on the subdivisions of a regular
(n + 3)-gon, ordered by coarsenings. As an abstract polytope, the associahedron
can be defined as follows.

Definition 2.5.1. The n-dimensional associahedron An is the (abstract) polytope
whose face lattice is given by the lattice Ln := Dn ∪ {0̂}.

The vertices of the associahedron An correspond with the triangulations of the
regular (n+3)-gon, which are enumerated by the Catalan number Cat(n+1). In this
way the associahedron can be considered as the secondary polytope of the regular
(n + 3)-gon. The faces of An are also in bijection with the set of parenthesizations
of a word on n + 2 letters, where two vertices are adjacent if their corresponding
parenthesizations differ by an application of the associativity law. It is from this
characterization that the associahedron gets its name. Another well-known set of
combinatorial objects associated with faces of An is the set of Schröder paths from
the point (0, 0) to the point (n+1, n+1). We will discuss this description in terms
of Schröder paths in greater detail in Chapter 3. Figure 2.16 gives an example of
A2 with its faces labeled using the three mentioned sets of combinatorial objects.

2.5.1 The ν-associahedron

A recent generalization of the associahedron was given by Ceballos, Padrol, and
Sarmiento [16] which they call the ν-associahedron. To define it, we first need
combinatorial objects known as (I, J)-forests. Let I ⊆ [n], J ⊆ [n], and let ≺
denote the total order 1 ≺ 1 ≺ 2 ≺ 2 ≺ · · · ≺ n ≺ n on [n]⊔ [n]. Denote by ≺I,J the

order induced on I⊔J by ≺. The pair (I, J) is said to be valid if min(I⊔J) ∈ I and
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1 2 2 3 3 4 5 5 1 2 2 3 3 4 5 5 1 2 2 3 3 4 5 5

Figure 2.17: Three (I, J)-forests. The two left-most graphs are also covering
(I, J)-forests, while the left-most graph is the only (I, J)-tree.

max(I ⊔ J) ∈ J . All pairs (I, J) are assumed to be valid unless otherwise stated. A
pair (i, j) is called an arc if i ∈ I and j ∈ J .

Definition 2.5.2. For a valid pair (I, J), an (I, J)-forest is a subgraph of the
complete bipartite graph K|I|,|J | that is

1. Increasing: each arc (i, j) satisfies i ≺ j (i.e. i ≤ j); and

2. Non-crossing: no two arcs (i, j) and (i′, j
′
) satisfy i ≺ i′ ≺ j ≺ j

′
.

An (I, J)-tree is a maximal (I, J)-forest. The (I, J)-forests which contain the arc
(1, n) and have no isolated nodes are known as covering (I, J)-forests.

As an example, let I = {1, 2, 3, 5} and J = {2, 3, 4, 5}. A covering (I, J)-forest
in this case must contain the arcs (1, 5), (2, 2), (3, 3), and (5, 5). Figure 2.17 shows
an example of the three types of (I, J)-forests in this case.

To a valid pair (I, J) we can associate a lattice path ν. First, we obtain a
path ν(I, J) by reading the steps in the set {Ei | i ∈ I} ∪ {Nj | j ∈ J} ac-
cording to the order induced by ≺I,J . Then removing the initial E step and ter-

minal N step gives a path ν(I, J). For example, choosing the pair (I, J) as in
Figure 2.17, we have ν(I, J) = E1E2N2E3N3N4E5N5, and ν(I, J) = ENENNE.

On the other hand, choosing I ′ = {3, 6, 8, 10} and J
′
= {6, 8, 9, 15}, we obtain that

ν(I ′, J
′
) = E3E6N6E8N8N9E10N15 and ν(I ′, J

′
) = ENENNE. Note in particular

that ν(I ′, J
′
) = ν(I, J), and hence different (I, J)-pairs can give rise to the same

path ν. From the class of (I, J)-pairs giving rise to the same path, we select as
a unique representative the canonical (I, J)-pair, which is the pair with mini-
mal labeling according to ≺. For example, the (I, J)-pair with I = {1, 2, 3, 5} and
J = {2, 3, 4, 5} is the minimal pair giving rise to ν = ENENNE. Decreasing any
value in I or J gives a different path. As a result, we obtain a natural bijection
between lattice paths and the equivalence classes of valid (I, J)-pairs giving rise to
the paths. When the pair (I, J) is the canonical representative, or otherwise clear
from context, we write ν := ν(I, J) and ν := ν(I, J) for brevity. We will also speak
of the (I, J)-pair induced by ν as the minimal (I, J)-pair giving rise to ν.

The ν-associahedron can be defined combinatorially as follows.

Definition 2.5.3. For a lattice path ν(I, J) the ν-associahedron Aν is the (ab-
stract) polytopal complex, whose face poset is the poset of covering (I, J)-forests
ordered by reverse inclusion on arcs.
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Figure 2.18: Various paths ν and their corresponding ν-associahedra.

Definition 2.5.4. The ν-Tamari complex is the flag simplicial complex on (I, J)-
forests induced by ν whose minimal non-faces are pairs of crossing arcs.

Lemma 2.5.5. If ν is a lattice path from (0, 0) to (a, b), the dimension of the ν-
Tamari complex is a+ b.

Proof. The top-dimensional simplices of the ν-Tamari complex are given by (I, J)-
trees, which have a total number of |I|+ |J | = a+b+2 vertices. Hence they contain
a+ b+ 1 arcs, and are a+ b dimensional.

The ν-Tamari complex can be realized by triangulating the polytope

UI,J := {(ei, ej) | i ∈ I, j ∈ J},

with faces of the triangulation given by

∆FI,J
:= conv{(ei, ej) | (i, j) ∈ FI,J},

where FI,J denotes an (I, J)-forest. The interior faces of the ν-Tamari complex are

given by covering (I, J)-forests, and ordering them by reverse inclusion gives the
face poset of the ν-associahedron. In Chapter 4 we will obtain a related geometric
realization of the ν-Tamari complex as a triangulated flow polytope, and thereby
also obtain a realization of the ν-associahedron as its dual.

2.5.2 The ν-Tamari lattice

The edges in the 1-skeleton of the ν-associahedron can be directed to obtain the
Hasse diagram of a lattice known as the ν-Tamari lattice. The ν-Tamari lattice,
denoted Tam(ν), was introduced by Préville-Ratelle and Viennot [56] as a lattice
of ν-Dyck paths. In addition to this description, we will describe the ν-Tamari
lattice using (I, J)-trees and ν-trees, both of which are due to Ceballos, Padrol, and
Sarmiento [16, 17]. An example of these three combinatorial objects are shown in
Figure 2.19, and each description has its advantages.

23



1 1 2 2 3 4 4 5 6 6

E0 N0 E1 N1 E2 E3 N2 E4 E5 N3

Figure 2.19: Three corresponding ν-Catalan objects, with ν = ν(5, 3). A
ν-Dyck path (left), an (I, J)-tree (center), and a ν-tree (right).

The ν-Dyck path description

A valley point of a lattice path is a point p at the end of an E step that is
immediately followed by an N step. Let µ be a ν-Dyck path. For any lattice point
p on µ, let horizν(p) denote the maximum number of E steps that can be taken
from p without crossing ν. This is known as the horizontal distance from p to ν.
For example, horizν(p) of the lattice points on the ν-Dyck path in Figure 2.19 are
0, 1, 3, 2, 1, 3, 2, 1, 0 as it is traversed from (0, 0) to (5, 3). The set of ν-Dyck paths
can then be endowed with the structure of a poset with the covering relation ⋖ν

defined as follows. If p is a valley point of µ, let q be the first lattice point in µ after
p with horizν(p) = horizν(q), and let µ[p,q] denote the subpath of µ between p and
q. Define a rotation on µ at p by switching the east step preceding p with the
subpath µ[p,q]. If µ′ is the lattice path obtained by rotating µ at p, then µ ⋖ν µ

′ is
a covering relation in Tam(ν). Let <ν denote the transitive closure of the relation
⋖ν .

Definition 2.5.6 (Préville-Ratelle – Viennot [56]). The ν-Tamari lattice Tam(ν) is
the lattice of ν-Dyck paths induced by the relation <ν .

Figure 2.20: The ν-Tamari lattice indexed by ν-Dyck paths (left), (I, J)-
trees (center), and ν-trees (right) for ν = ν(5, 3).
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The (I, J)-tree description

Given two (I, J)-trees T and T ′, we say that T ′ is an increasing flip of T if T ′ is
obtained from T by replacing an arc (i, j) with an arc (i′, j′), where i < i′ and j < j′.
Define a relation on the set of (I, J)-trees by T ⋖I,J T

′ whenever T ′ is obtained from
T by an increasing flip. The transitive closure <I,J of the relation T ⋖I,J T

′ gives a

lattice structure on the set of (I, J)-trees known as the increasing flip lattice of
(I, J)-trees.

Proposition 2.5.7 ([16, Theorem 3.4]). The increasing flip lattice on the set of
(I, J)-trees determined by ν is isomorphic to Tam(ν).

The ν-tree description

Given a lattice path ν from (0, 0) to (a, b), let Pν denote the set of lattice points in
the plane which lie weakly above ν inside the rectangle defined by (0, 0) and (a, b).
An (I, J)-tree T can be represented as a point configuration in Pν . First, we label
the E steps in ν with increasing nonnegative integers in the order of their appearance
in the path, and similarly we label the N steps with increasing nonnegative integers
(see Figure 2.19). We call this indexing the natural indexing of ν. An arc in T
can then be written as (Ex, Ny), to which we associate the point (x, y) in Pν .
The collection of points corresponding to the arcs of T in this way is called the
grid representation of T . These grid representations were studied in detail in
[17] under the name ν-trees (see [17, Remark 3.7]). The non-crossing condition for
arcs in an (I, J)-tree can be translated to ν-trees and a ν-tree can then be defined
without reference to an (I, J)-tree as follows.

Definition 2.5.8. Two lattice points p and q in Pν are tree-incompatible if p is
southwest or northeast of q, and the smallest rectangle containing p and q contains
only lattice points of Pν . The points p and q are tree-compatible if they are not
tree-incompatible2. A ν-tree is a maximal set of tree-compatible points in Pν .

It may seem peculiar that a collection of points is called a ‘tree’, but this is
justified as we may associate a planar tree embedded in Pν to each ν-tree T as
follows. Each point except (0, b) in a grid representation has either one point above
it in the same column or one point to its left in the same row, but not both [17,
Lemma 2.2]. Thus we can connect each point to the point above it or to its left,
forming a rooted binary tree with a root at (0, b). Figure 2.19 (right) gives an
example of a ν-tree, which is the grid representation of the (I, J)-tree in the center.

If a ν-tree has points p, q, and r such that r is the southwest corner of the rect-
angle determined by p and q (with p northwest of q or vice versa), then replacing r
with the lattice point at the northeast corner of the rectangle is called a (right) ro-
tation. For example, in Figure 2.19, the only possible rotation in the ν-tree replaces
the lattice point (1, 2) with (2, 3). Rotations in a ν-tree are a direct translation of

2This notion is called ν-compatibility in [16]. We use “tree-compatibility” as it contrasts with
the path-compatibility notion in Chapter 4.
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increasing flips for (I, J)-trees. Define a partial order <ν on the set of ν-trees given
by a covering relation T ⋖ν T

′ if and only if T ′ is formed from T by a rotation. This
partial order is the rotation lattice of ν-trees [17, Theorem 2.8]. The rightmost
lattice in Figure 2.20 shows the ν-Tamari lattice indexed with ν-trees.

Proposition 2.5.9 ([17, Theorem 3.3]). The rotation lattice on the set of ν-trees is
isomorphic to Tam(ν).

2.6 The ν-cyclohedron

In their geometric study of Tamari lattices, Ceballos, Padrol, and Sarmiento [16]
also gave a cyclic counterpart to the ν-associahedron, which generalizes Simeon’s
type B associahedron [59].

First, the non-crossing condition for (I, J)-forests needs to be extended to the
cyclic setting. Two arcs (i, j) and (i′, j′) are said to cyclically cross if any of the
following conditions hold (up to reversing the roles of the arcs):

(1) i < i′ < j < j′, (2) j′ < i < i′ < j, (3) j < j′ < i < i′,

(4) i′ < j < j′ < i, (5) i < j′ < i′ < j, (6) j < i < j′ < i′.

These are visualized in Figure 2.21

i i′ j j′

(1)

j′ i i′ j

(2)

j j′ i i′

(3)

i′ j j′ i

(4)

i j′ i′ j

(5)

j i j′ i′

(6)

Figure 2.21: The six configurations of cyclically crossing arcs.

Definition 2.6.1. Given a pair (I, J) (not necessarily valid), a cyclic (I, J)-forest
is subgraph of K|I|,|J | whose arcs are cyclically non-crossing. A cyclic (I, J)-tree

is a maximal cyclic (I, J)-forest. A covering cyclic (I, J)-forest is a cyclic (I, J)-
forest with no isolated nodes.

We think of cyclic (I, J)-forests as being wrapped around a cylinder as sug-
gested in Figure 2.22. The cyclic counterparts to the ν-associahedron and ν-Tamari
complex are then defined as follows.

Definition 2.6.2. Let ν(I, J) be a lattice path. The ν-cyclohedron is the (abstract)
polytopal complex whose face poset is given by covering cyclic (I, J)-forests, ordered
by reverse inclusion on arcs.
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1 2 3 3 4 5 6 6 7 7 8 1 2 3 3 4 5 6 6 7 7 8

Figure 2.22: Two cyclic (I, J)-trees. The left tree is also an (I, J)-tree.

Definition 2.6.3. The cyclic ν-Tamari complex is the flag simplicial complex
on cyclic (I, J)-forests whose minimal non-faces are pairs of cyclically crossing arcs.

Two cyclic (I, J)-trees T and T ′ are related by an increasing flip if T ′ can be
obtained from T by replacing an arc (i, j) ∈ T with an arc (i′, j′) where i < i′. This
gives a cover relation T <I,J T

′ on cyclic (I, J)-trees. The cyclic ν-Tamari poset
is the transitive closure of the relation <I,J on the set of cyclic (I, J)-trees. The
following simple example shows that the cyclic ν-Tamari poset is not a lattice in
general.

Example 2.6.4. Let ν be the path ENE. The minimal choices for I and J are
then I = {1, 2, 3} and J = {2, 3}. The Hasse diagram of the cyclic ν-Tamari poset
is shown below in Figure 2.23.

1 2 2 3 3

1 2 2 3 3 1 2 2 3 3

Figure 2.23: A cyclic ν-Tamari poset.

Copyright© Matias K. von Bell, 2022.
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Chapter 3 The ν-associahedron and Schröder combinatorics

The ν-associahedron was introduced by Ceballos, Padrol, and Sarmiento [16] in
their study of the geometry of ν-Tamari lattices, where it was defined in terms
of covering (I, J)-forests. In this chapter we study the ν-associahedron using ν-
Schröder paths and ν-Schröder trees, giving alternative combinatorial descriptions
to the ν-associahedron. Using these alternate descriptions, we obtain insight into
its geometry and topology. Before studying this perspective, however, we consider
the combinatorics of the two alternative ν-Schröder objects.

3.1 ν-Schröder objects

In this section, we study two useful sets of ν-Schröder objects. The first is the set
of ν-Schröder paths, which generalize the classical Schröder paths. After extend-
ing some classical results for Schröder paths to the ν-setting, we introduce the set
of ν-Schröder trees, which generalize the ν-trees studied by Ceballos, Padrol, and
Sarmiento in [17].

3.1.1 ν-Schröder paths

The set of ν-Schröder paths are a generalization of ν-Dyck paths. In addition to
the terminology for ν-Dyck from Chapter 2, we define the following paths and new
terminology.

Definition 3.1.1. Let ν be a lattice path from (0, 0) to (a, b).

1. A high peak is a peak point occurring strictly above the path ν.

2. The ν-diagonal is the set of squares immediately below the peaks of ν.

3. A (small) ν-Schröder path is a lattice path from (0, 0) to (a, b) using north
N := (0, 1), east E := (1, 0), or diagonal D := (1, 1) steps, which stays
weakly above the path ν. We denote the set of (small) ν-Schröder paths by
SPν and its cardinality by schν .

4. Let µ denote the path obtained from ν by replacing each of its peaks with a
D step. A large ν-Schröder path is path from (0, 0) to (a, b) using N , E,
and D steps, which stays weakly above the path µ. We denote the set of large
Schröder paths by LSPν and its cardinality by Schν .

Figure 3.1 provides some examples of both small and large ν-Schröder paths.
The region below ν is shaded in gray, with the ν-diagonal in a darker gray. In the
rightmost path, the point (0, 2) is a high peak, while (3, 4) is a peak point which is
not a high peak.
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(0, 0)

(6, 3)

(0, 0)

(5, 4)

(0, 0)

(5, 4)

Figure 3.1: From left to right: a large ν(6, 3)-Schröder path, a large ν-
Schröder path, and a rational (4, 5)-Schröder path.

Remark 3.1.2. We point out two special cases; the classical case and the rational
case. Classical Schröder paths to a point (n, n) are obtained by choosing ν to
be the staircase path (NE)n. For any pair of nonnegative integers (a, b), the line
segment from (0, 0) to (a, b) determines a unique lowest lattice path that stays
weakly above it. That is, the path ν = ν(a, b) with valleys at the lattice points
{(k, ⌈kb/a⌉) | ⌈kb/a⌉ ̸= ⌈(k + 1)b/a⌉, 1 ≤ k ≤ a− 1}. As mentioned in Chapter 1,
when a and b are coprime, the set of ν(a, b)-Dyck paths is the set of rational (a, b)-
Dyck paths defined by Armstrong, Rhoades and Williams [7]. Similarly, a rational
(a, b)-Schröder path is a ν(a, b)-Schröder path, where a and b are coprime. The
lattice path on the right in Figure 3.1 is an example of a rational (4, 5)-Schröder path
where ν(4, 5) is determined by the white dotted line segment from (0, 0) to (5, 4).
We point out that the lattice path ν on the left in Figure 3.1 is also determined by
the line segment from (0, 0) to (a, b), but we do not consider this to be a rational
case as a = 3 and b = 6 are not coprime.

Furthermore, in the case a = n + 1 and b = n for some positive integer n, we
have that ν(n, n + 1) = (NE)nE, and the set of ν-Schröder paths is equivalent to
the set of classical Schröder paths.

Aguiar and Moreira [1, Proposition 3.1] showed that the set of classical large
Schröder paths can be partitioned into two halves where one half consists of paths
that do not contain D steps on the diagonal, and the other half consists of paths
that contain at least one D step on the diagonal. Gessel [36] showed that the same
result holds in the more general rational (a, b)-case. We further generalize Gessel’s
argument to the setting of ν-Schröder paths.

Theorem 3.1.3. Let ν be a lattice path. Then Schν = 2 · schν if and only if ν begins
with an N step and ends with an E step.

Proof. Suppose ν begins with N and ends with E. Note that the set LSPν\SPν
contains the ν-Schröder paths with at least one D step on the ν-diagonal. Define a
map f : SPν → LSPν\SPν as follows: A path µ ∈ SPν can be partitioned as Nµ1Eµ2,
where E is the first E step on the ν-diagonal. The existence of such an E step is
guaranteed by the fact that ν ends in an E step, so there is a ν-diagonal square in
the top row. Let f(µ) be the path µ1Dµ2. We claim that f is a bijection.
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To see that f(µ) ∈ LSPν\SPν , note that f shifts the steps in µ1 down by one unit,
while the steps in µ2 remain fixed. Thus the D step of f(µ) which is between µ1

and µ2 occurs on the ν-diagonal, since it replaced the E step of µ which preceeded
µ2.

A step in Nµ1 can only intersect a horizontal run in ν at the leftmost lattice
point of the horizontal run, since otherwise the first E step of the horizontal run
is an E step of µ on the ν-diagonal. Therefore, only N steps and D steps which
intersect only the leftmost lattice points of horizontal runs can occur in Nµ1, both
of which remain weakly above ν after shifting down by one unit. Thus f(µ) ∈ SPν ,
and so f is well-defined.

The inverse map f−1 : LSPν\SPν → SPν is defined as follows: For π ∈ LSPν\SPν ,
partition π into π1Dπ2 where D is the last D step on the ν-diagonal. Then f−1 is
given by π1Dπ2 7→ Nπ1Eπ2, with f(f

−1(π)) = π and f−1(f(µ)) = µ. Hence f is a
bijection, and |SPν | = 2 · |LSPν\SPν |.

Conversely, suppose ν does not begin with an N step. In this case the map
f−1 : LSPν\SPν → SPν is injective, but for any path ρ ∈ SPν that begins with
a D (or E) step there is no path σ ∈ LSPν\SPν such that f−1(ρ) = σ. Hence
|LSPν\SPν | < |SPν | and so 2 |SPν | ≠ |LSPν\SPν |. The case when ν does not end with
an E step can be argued similarly.

A ν-Dyck path is completely determined by its high peaks. It is also completely
determined by its valleys (see Figure 3.2). Using this fact, we obtain the next result,
which is a direct generalization of the arguments in Deutsch [28] and Gessel [36] to
the ν-setting.

Possible high peaks Possible valleys

Dyck path determined
by two high peaks

Dyck path determined
by the two corresponding valleys

Figure 3.2: High peaks and valley points determine ν-Dyck paths.

Lemma 3.1.4. Let ν be a lattice path that begins with an N step and ends with
an E step. The set of ν-Dyck paths with i high peaks is in bijection with the set of
ν-Dyck paths with i+ 1 peaks.

Proof. Since ν is a lattice path that begins with a north step and ends with an east
step, then each ν-Dyck path with i + 1 peaks is determined by its i valleys, and
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it suffices to show that there is a bijection between the set of ν-Dyck paths with
i high peaks and the set of ν-Dyck paths with i valleys. A bijection is given by
mapping a ν-Dyck path with high peaks at the lattice points (p1, q1), . . . , (pi, qi) to
the ν-Dyck path with valleys at the lattice points (p1+1, q1− 1), . . . , (pi+1, qi− 1),
and mapping the unique ν-Dyck path with no valleys to the unique ν-Dyck path
with no high peaks (which is ν itself). This map is well-defined because high peaks
are strictly above the path ν. The inverse map sends a ν-Dyck path with i valleys
at the lattice points (p1, q1), . . . , (pi, qi) to the ν-Dyck path with i high peaks at
(p1 − 1, q1 + 1), . . . , (pi − 1, qi + 1), so the map is a bijection.

Definition 3.1.5. The i-th ν-Narayana number Narν(i) is the number of ν-Dyck
paths with exactly i valleys. The ν-Narayana polynomial is

Nν(x) =
∑
i≥0

Narν(i)x
i.

This generalization of the Narayana numbers was introduced by Ceballos, Padrol
and Sarmiento [16] as the h-vector of the ν-Tamari complex. The rational (a, b) case
also appears in the work of Armstrong, Rhoades and Williams [7] as the h-vector
of their rational associahedron. Bonin, Shapiro and Simion [13] considered the
Narayana polynomial for the dual associahedron.

Proposition 3.1.6. Let schν(i) denote the number of ν-Schröder paths with i D
steps. Then

Nν(x+ 1) =
∑
i≥0

schν(i)x
i.

Proof. Note that schν = schNνE, that is, appending an N step to the beginning of
ν and an E step to the end of ν does not change the number of ν-Schröder paths.
Hence we can assume without loss of generality that ν begins with an N step and
ends with an E step. By Lemma 3.1.4, Narν(i) is also the number of ν-Dyck paths
with exactly i high peaks. The result then follows from the computation∑

j≥0

Narν(j)(x+ 1)j =
∑
i≥0

∑
j≥0

Narν(j)

(
j

i

)
xi =

∑
i≥0

schν(i)x
i,

where the last equality follows from the observation that for each ν-Dyck path with
j high peaks there are exactly

(
j
i

)
ways to choose which i of the high peaks to replace

with a D step.

Corollary 3.1.7. The number of ν-Schröder paths is given by specializing Nν(x) at
x = 2.

Proof. The claim follows by noting that schν =
∑

i≥0 schν(i) = Nν(2). An alterna-
tive way to see this is to note that Narν(i) is the number ν-Dyck paths with i high
peaks. For each of the high peaks, there are two choices; keep the peak or replace
it with a D step. Thus the total number of ν-Schröder paths is

schν =
∑
i≥0

Narν(i)2
i = Nν(2).
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Corollary 3.1.8. Let schν(i) denote the number of ν-Schröder paths with i D steps.
Then ∑

i≥0

(−1)ischν(i) = 1.

Proof. This follows from the fact that
∑

i≥0(−1)ischν(i) = Nν(0), and there is a
unique ν-Dyck path with no valleys.

Remark 3.1.9. Corollary 3.1.8 can be obtained topologically from the results in
Section 3.2 since

∑
i≥0(−1)ischν(i) is the Euler characteristic of the ν-associahedron,

which we show to be contractible in Theorem 3.2.10.

Remark 3.1.10. Theorem 3.1.3 can be deduced from Corollary 3.1.7 since Narν(i)
is the number ν-Dyck paths with i + 1 peaks if and only if ν begins with a N -step
and ends with an E-step, in which case

Schν =
∑
i≥0

#(ν-Dyck paths with i+ 1 peaks) · 2i+1 = 2
∑
i≥0

Narν(i)2
i = 2 · schν .

We end this section with some enumerative results for the rational (a, b)-Schröder
paths, but we first recall some results on rational (a, b)-Dyck paths.

For coprime positive integers a and b, the rational (a, b)-Catalan number
Cat(a, b) is the number of (a, b)-Dyck paths, and the rational (a, b)-Narayana
number Nar(a, b, i) is the number of (a, b)-Dyck paths with i peaks. Armstrong,
Rhoades, and Williams [7] showed that

Cat(a, b) =
1

a+ b

(
a+ b

a

)
=

1

a

(
a+ b− 1

b

)
=

1

b

(
a+ b− 1

a

)
,

and for i = 0, . . . , a,

Nar(a, b, i) =
1

a

(
a

i

)(
b− 1

b− i

)
.

Next, we enumerate both large and small (a, b)-Schröder paths with respect to
the number of D steps. For coprime positive integers a, b, and i = 0, . . . , a, let
sch(a, b, i) denote the number of (small) (a, b)-Schröder paths with i D steps and let
Sch(a, b, i) denote the number of large (a, b)-Schröder paths with i D steps.

The proof of the following result closely mirrors the one given by Song [60,
Theorem 2.1], who studied Schröder paths from (0, 0) to (kn, n), which is equivalent
to the rational case when b = n and a = kn+ 1.

Proposition 3.1.11. For coprime positive integers a, b, and i = 0, . . . , b,

Sch(a, b, i) =
1

a

(
a

i

)(
a+ b− 1− i

b− i

)
=

1

b

(
b

i

)(
a+ b− 1− i

a− i

)
.
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Proof. The crucial observation is that the set of large (a, b)-Schröder paths with i D
steps can be generated by taking the set of (a, b)-Dyck paths with at least i peaks,
and replacing i of the peaks with diagonal steps. Each large (a, b)-Schröder path is
obtained in a unique way in this construction, thus

Sch(a, b, i) =
∑
p≥i

(
p

i

)
Nar(a, b, p) =

∑
p≥i

(
p

i

)
1

a

(
a

p

)(
b− 1

b− p

)
=

1

a

(
a

i

)∑
p≥i

(
a− i

p− i

)(
b− 1

b− p

)
=

1

a

(
a

i

)(
a+ b− 1− i

b− i

)
.

=
1

b

(
b

i

)(
a+ b− 1− i

a− i

)
.

Following directly from the bijection f constructed in Theorem 3.1.3, we have
the next result which relates Sch(a, b, i) and sch(a, b, i).

Corollary 3.1.12. For coprime positive integers a, b, and i = 0, . . . , a,

Sch(a, b, i) = sch(a, b, i) + sch(a, b, i− 1),

with the understanding that sch(a, b,−1) = 0.

From this corollary, we can deduce an explicit formula for the numbers sch(a, b, i).

Proposition 3.1.13. For coprime positive integers a, b, and i = 0, . . . , a− 1,

sch(a, b, i) =
1

a

(
b− 1

i

)(
a+ b− 1− i

b

)
=

1

b

(
a− 1

i

)(
a+ b− 1− i

a

)
.

Proof. Induct on i. By definition, sch(a, b, 0) = Sch(a, b, 0) = Cat(a, b), and one can
check via a direct computation that Sch(a, b, i)− sch(a, b, i− 1) = sch(a, b, i).

3.1.2 ν-Schröder trees

In this section we introduce ν-Schröder trees, which generalize ν-trees. Let ν be a
lattice path from (0, 0) to (a, b) and let Pν denote the region of the plane which
lies weakly above ν inside the rectangle defined by (0, 0) and (a, b). In Figure 3.3,
Pν is represented by the unshaded region in the rectangular grid. Recall from
Definition 2.5.8, that two lattice points p and q in Pν are tree-incompatible if
and only if p is southwest or northeast of q, and the smallest rectangle containing
p and q is contained in Pν . We say that p and q are tree-compatible if they are
not tree-incompatible.

Definition 3.1.14. A ν-Schröder tree is a set of tree-compatible points in Pν

including the point (0, b), such that each row and each column contains at least one
point. The point (0, b) in a ν-Schröder tree is the root, and the other points will
be called nodes. Let STν denote the set of ν-Schröder trees.
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A ν-tree is a maximal collection of tree-compatible points, and note that it is
a binary trees. The ν-Schröder trees thus generalize ν-trees just as Schröder trees
generalize binary trees in the classical sense.

As in the case of ν-trees, we may associate a planar tree embedded in Pν to
each ν-Schröder tree T as follows. If a non-root node p of T in Pν has a node
above it in the same column or a node to the left of it in the same row, we connect
them by an edge. Note that the tree-compatibility of the nodes guarantees that it
does not have both. However, it could have neither, in which case we consider the
smallest rectangular box containing p and exactly one other node q of T . The node
q must be the northwest corner of such a box. The root guarantees the existence
of such a box, and uniqueness follows from the fact that the northwest corners of
two such hypothetical boxes would be tree-incompatible. We then connect p and q
by an edge. The resulting tree is guaranteed to be non-crossing, as otherwise the
parent nodes of the two crossing edges would be tree-incompatible.

Example 3.1.15. Letting ν = ν(3, 5), Figure 3.3 provides two examples of ν-
Schröder trees. The region Pν is the unshaded region weakly above ν. The root
is the node at (0, 3). Note that although the node (2, 3) is northeast of the node
at (0, 1) in the left tree, they are tree-compatible since the rectangle determined
by them is not contained in Pν . No more nodes can be added to the left tree in
Figure 3.3 without introducing a pair of tree-incompatible nodes, hence it is a ν-tree.

Figure 3.3: A ν-tree (left) and a ν-Schröder tree (right), where ν = ν(3, 5).

Definition 3.1.16. Let p, q and r be nodes in a ν-Schröder tree S such that either
p is the first node above q and r is the first node to the right of q, or p is the first
node to the left of q and r is the first node below q. We define a contraction of S
at node q as the ν-Schröder tree resulting from removing the node q from S. When
p is above q we call it a right contraction, when q is above r we call it a left
contraction. Define a rotation at q by removing the point q and placing it in the
other corner of the box determined by p and r. If p is above q, we call it a right
rotation, and if q is above r, we call it a left rotation. There is a third contraction
possible, namely when r is southeast of a non-leaf node p, with neither corner of the
box determined by p and r containing a node of S. If removing the node p yields a
ν-Schröder tree, the removal of p will be called a diagonal contraction.

Figures 3.4 and 3.5 give diagrammatic illustrations of these definitions.
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qpright

contraction

left

contraction

right rotation

left rotation

Figure 3.4: A right and left contraction as intermediate steps in a right and
left rotation, respectively.

diagonal

contraction

Figure 3.5: A diagonal contraction at the node (1,2).

Remark 3.1.17. The term contraction comes from noticing that removing the
node q is equivalent to contracting the edge between q and its neighbor closest to
the root. The tree on the right in Figure 3.3 is formed from the tree on the left by
contracting at the points (0, 1) and (2, 2). Performing a contraction on a ν-tree T
can be thought of as an intermediate step in a left or right rotation of ν-trees as
defined in [17]. See Figure 3.4.

Proposition 3.1.18. The set of ν-Schröder trees is the set of trees obtained from
contracting ν-trees.

Proof. Since contraction always leaves at least one node in every row and column,
performing a sequence of contractions on a ν-tree results in a ν-Schröder tree. Con-
versely, given a ν-Schröder tree T , it is contained in a maximal set of tree-compatible
nodes, that is, a ν-tree T ′. Contracting T ′ at the nodes not appearing in T in any
order yields T .

Remark 3.1.19. Since the set of ν-trees determine a set of binary trees with labels
left and right [17, Lemma 2.4], we can define the set of ν-Schröder trees as the set
of labeled trees resulting from contracting internal edges in the corresponding set
of binary trees. When contracting at a node p labeled left or right, assign the label
middle to all children with a different label than p. If p has label middle, assign
the label middle to all of its children. Relabel the left and right children E and N
respectively. In a contraction at q, each child of q receives the label D.
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Next, we show that the leaves of a ν-Schröder tree determine the path ν, and
vice versa. As a result, the path ν can be read from any ν-Schröder tree.

Proposition 3.1.20. A node in a ν-Schröder tree is a leaf if and only if it is the
starting point of a vertical run or an end point of a horizontal run in ν.

Proof. If a node in a ν-Schröder tree T occurs at the starting point of a vertical run
of ν or at the end point of a horizontal run, then it must be a leaf as it cannot have
any nodes to its south, east or southeast.

Conversely let p be a leaf in T . Suppose toward a contradiction that p is not
the starting point of a vertical run or the end point of a horizontal run in ν. Then
there is a lattice point q ∈ Pν that is an end point of a horizontal run or beginning
point of a vertical run such that q is to the south, east, or southeast of p. Note
that q must be in T , as T is maximal and q is tree-compatible with every point in
Pν . The point q cannot be directly south or east of p, since by definition there
would be an edge in T from q to p, contradicting the assumption that p is a leaf.
If q is southeast of p, then the points p and q determine a smallest rectangular box
B in Pν containing both p and q. Since q is in T , there is a path from q to the
root of T . Consider the last node s on the path from q to the root such that s is
contained in B. Since p is a leaf, we have that s is not south or east of p, and s ̸= p.
Let t ∈ T be the next node in the path from s towards the root. Then t is either
north, west, or northwest of s. If t is north, west, or northwest of p, then s and
t forms a box in Pν that contains p, implying that there is an edge in T from p
to s, contradicting the assumption that p is a leaf. Thus, t must be northeast or
southwest of p. However in both cases this means that the nodes t and p in T are
tree-incompatible, so t cannot exist. It follows that there is no path from q to the
root, which is a contradiction.

Since a lattice path is determined by its initial point, terminal point, and valley
points, and the previous proposition showed that the leaves of a ν-Schröder tree are
precisely these points of ν, then we have the following corollary.

Corollary 3.1.21. The path ν is determined by a ν-Schröder tree.

Remark 3.1.22. When ν = (NE)n we recover the classical Schröder trees, that is,
trees with n+ 1 leaves where each non-leaf node has at least two children.

3.1.3 The posets of ν-Schröder paths and trees

In this section we construct partial orders on the sets of ν-Schröder paths and trees,
and then show that the posets are isomorphic. We begin by constructing a bijection
between the two ν-Schröder objects.

The bijection L : STν → SPν we give here between ν-Schröder trees and ν-
Schröder paths is a generalization of the bijection between ν-trees and ν-Dyck paths
given by Ceballos, Padrol and Sarmiento [17, Theorem 3.3]. Given a ν-Schröder tree
T , we assign labels N , E and D to its non-root nodes as follows: if its parent node
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is in the same column then label it N , if its parent node is in the same row then
label it E, and if its parent node is in neither then label it D.

First define a right-flushing map R, which takes a ν-Schröder path µ and
maps it to a ν-Schröder tree T = R(µ) by right-flushing the lattice points of µ as
follows. Begin by labeling the points in µ in the order they appear on the path, as
it is traversed from the origin to (a, b). Starting from the bottom row in Pν and
proceeding upward, place the points in the same row of Pν from right to left as far
right as possible, while avoiding x-coordinates forbidden by previously right-flushed
rows. The x-coordinate of an initial point of an E or D step in µ that has been
right-flushed is said to be forbidden. We claim that the lattice points obtained by
right-flushing all the lattice points in µ are the nodes of a ν-Schröder tree T . See
the top of Figure 3.6 for an example of the right-flushing map R.

We first check that R is well-defined. It is not immediately clear that right-
flushing is always possible on a row, that is, that there is always an x-coordinate
available in a row for the placement of a node. To verify that placing a node is
always possible, suppose that we are right-flushing a point p in the ν-Schröder path
µ. Let p denote the node to which p is right-flushed. We need the number of lattice
points in the row in Pν on which p lies to be greater than the number of forbidden
x-coordinates before p, which we denote by forbν(p). Note that forbν(p) is equal to
the number of E and D steps before p. Let horizν(p) denote the maximal number
of east steps that can be placed starting at p before crossing ν (while remaining in
the smallest rectangle containing ν). For example, in Figure 3.6, horizν(4) = 2 and
horizν(9) = 3. The difference between the number of lattice points in the row with
p and the number of E and D steps before p is equal to horizν(p)+1, and since this
quantity is greater than or equal to one, there is a free column for the placement
of p.

Next, we verify that T = R(µ) is in fact a ν-Schröder tree. The construction
guarantees the tree-compatibility of the nodes, so it remains to verify the existence
of the root, and that every row and column has a node. It is clear that every row has
a node, as there is a lattice point of µ in every row. The total number of forbidden
x-coordinates is the number of E and D steps in µ, which is a, thus when flushing
the last point of µ, we must have a forbidden x-coordinates, or in other words, nodes
in a columns. Note that the first column cannot be forbidden by any previous node,
as such a forbidding node would correspond to a E or D step crossing ν. Thus the
last node must be placed in (0, b), and so we have a node in each column, and a
root.

Now that R is well-defined, we define its inverse known as the left-flushing
map L, which left-flushes the nodes in a ν-Schröder tree T to form a ν-Schröder
path µ = L(T ) as follows. First order the nodes in T from bottom to top and right
to left. Starting from the bottom row in Pν and proceeding upward, place the nodes
from left to right in the same row as far left as possible, while avoiding x-coordinates
forbidden by previously left-flushed rows. The forbidden x-coordinates of a row are
the x-coordinates of lattice points corresponding to nodes labeled E or D in T . We
claim that the resulting collection of lattice points is a ν-Schröder path µ. Note
that by construction µ is the same path as the one obtained by reading the labels
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in a post-order traversal of T . See the bottom of Figure 3.6 for an example of the
left-flushing map L.

To verify that L is well-defined, we first check that left-flushing a node p in a
ν-tree is always possible, that is, that there is always an available lattice point of Pν

in the row of p in which to place p. We need more lattice points of Pν on the row
of p than forbν(p). Let hrootν(p) denote the number of nodes labeled E or D in the
unique path from p to the root. For example, in Figure 3.6 if p is the node labeled
N at (5, 3), then hrootν(p) = 3. The difference between the number of lattice points
of Pν on the row of p and forbν(p) is hrootν(p) + 1. Since this quantity is greater
than or equal to one, there is an available x-coordinate in the row of p in which to
place p.

It remains to check that µ = L(T ) is a ν-Schröder path. It is clear from the
construction that µ is a lattice path with N , E and D steps. For any p ∈ T the
quantity hrootν(p) is one less than the difference between the number of lattice
points of Pν on the row of p and the number of E and D nodes read before p,
which is precisely horizν(p). Thus we have hrootν(p) = horizν(p) ≥ 0 for any p, that
is, µ lies weakly above ν.
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Figure 3.6: The right-flushing map R (top) and the left-flushing map L

(bottom). The action of L is equivalent to reading the labels of the ν-
Schröder tree in post-order traversal starting at the root and going counter-
clockwise. The zigzag lines indicate the forbidden x-coordinates.

Theorem 3.1.23. The map L : STν → SPν is a bijection between the set of ν-
Schröder trees and the set of ν-Schröder paths.

Proof. We need only check that the right and left flushing maps R and L are inverses
of one another. Let µ be a ν-Schröder path. The x-coordinate of a point p in µ is
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determined by the number of E and D steps before p, which is precisely forbν(p).
Therefore the x-coordinate of the point to which p is sent under L is the same as
that of p, and since R and L do not alter the y-coordinates, p is sent to p. Hence
L(R(µ)) = µ. Consider a node q in an ν-Schröder tree T . If there is a lattice point to
the east of q not containing a node, then that column must have a northmost node r
southeast of q. The label on r cannot be N as then its column would have a node
tree-incompatible with q. Thus any lattice point east of q is occupied by a node or
is forbidden. In other words, the nodes in T are as far right as possible. Therefore,
if the point q in L(T ) is the point to which the node q is left flushed under L, then
it then must taken back to q under the right flushing map. Hence R(L(T )) = T .

Definition 3.1.24. Define a covering relation ⋖ on the set of ν-Schröder trees by
T ⋖ T ′ if and only if T ′ is a contraction of T . We call the poset induced by this
cover relation the poset of ν-Schröder trees.

To define a poset on ν-Schröder paths, we translate contractions of ν-Schröder
trees to ν-Schröder paths. The right, left and diagonal contractions are considered
separately, as they correspond to different contraction moves on ν-Schröder paths.

First we consider a right contraction of a ν-Schröder tree T at a node q with
parent node p above q and with a child node r to the right of q. The labels of the
nodes q and r are N and E respectively. Contracting at q removes the node q and
the label on the node r becomes D. This corresponds to replacing an E step and
a N step in L(T ) with a D step. In the counterclockwise post-order traversal of T ,
the E and N steps are consecutive, and so correspond to a valley in L(T ). Thus a
right contraction in T corresponds to replacing a valley in L(T ) with a D step.

Next, consider a left contraction in T at a node q with parent node p to the left
of q and with a child node r below q. As in the case above, contracting at q replaces
an E step and N step with a D step at r. However, this time the N and E steps
are not necessarily consecutive in L(T ), as q may have other children which are read
before q in the post-order traversal of T . The node r is the previous node in the
post order traversal of T such that hrootν(r) = hrootν(q). Recall from Section 3.1.3
that hrootν(x) = horizν(x). Therefore, r is the previous lattice point on L(T ) such
that r is the initial point of an N step and horizν(r) = horizν(q). Left contraction
deletes this pair of E and N steps, and places a D step at r. See Figure 3.7 for an
example.

Lastly, consider a diagonal contraction in T at a node r with parent node p.
Note that r must have a left child s and a right child t, as otherwise contracting
at r would not yield a ν-Schröder tree (either the row or column of r would not
contain a node). The labels of the nodes r, s, and t are D, N , and E respectively.
Contracting at r changes the labels of both s and t to D. In the post-order traversal
of the tree, this contraction corresponds to replacing the label N at s with D,
replacing the label E at t with D, and removing the point r labeled D. Note
that s is the first point before t in the post-order traversal satisfying hrootν(s) =
hrootν(r) = hrootν(t) − 1. Therefore, s is the previous point on L(T ) such that
horizν(s) = horizν(r) = horizν(t)− 1. Diagonal contraction thus deletes the step E
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with end point r and the step N with initial point s, and places a D step at s. See
Figure 3.8 for an example.
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Figure 3.7: A right and left contraction of a pair of (3, 5)-Schröder trees,
and the corresponding contractions in the associated (3, 5)-Schröder paths.
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Figure 3.8: A diagonal contraction of a (3, 5)-Schröder tree and the corre-
sponding diagonal contraction in a (3, 5)-Schröder path.

The set of ν-Schröder paths then form a poset with the cover relation inherited
from the poset of ν-Schröder trees.

Definition 3.1.25. The (contraction) poset of ν-Schröder paths is the set of
ν-Schröder paths with cover relation µ ≺ λ if and only if λ is formed from µ by a
contraction. The three contraction moves are the following:

1. Right Contraction: Replace a consecutive EN pair with D.

2. Left Contraction: Delete an E step with initial point q, along with the
preceding N step with initial point r satisfying horizν(r) = horizν(q). Shift
the subpath between the deleted steps one unit to the right, placing a D step
at r.

3. Diagonal Contraction: Delete an E step ending at a point r, which is the
initial point of a D step, along with the preceding N step with initial point s
satisfying horizν(s) = horizν(r). Shift the subpath between the deleted steps
one unit to the right, placing a D step at s.
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E0 N0 E1 N1 E2 E3 N2 E4 E5 N3

Figure 3.9: On the left is a covering (I, J)-forest F . The associated path
ν can be read from the labels below the covering (I, J)-forest (ignoring the
steps E0 and N3). On the right is the ν-Schröder tree that corresponds to
F under the bijection of Proposition 3.2.1.

See Figure 3.11 for an example of the poset of ν-Schröder paths for the rational
ν = ν(3, 5). By the bijection in Theorem 3.1.23 and the translation between con-
tractions of ν-Schröder trees and contractions of ν-Schröder paths above, the next
theorem now follows.

Theorem 3.1.26. The poset of ν-Schröder trees is isomorphic to the poset of ν-
Schröder paths.

3.2 The face poset of the ν-associahedron

Having constructed the posets of ν-Schröder trees and ν-Schröder paths and shown
that they are isomorphic, we proceed to show that they are both isomorphic to the
face poset of the ν-associahedron.

We begin by first relating the covering (I, J)-forests determined by ν to ν-
Schröder trees. Recall from Section 2.5.2 that ν-trees are grid representations of
(I, J)-trees. We extend the notion of grid representations to covering (I, J)-forests.
As in Section 2.5.2, we use the natural indexing of ν, indexing E steps in ν with
increasing nonnegative integers in the order of their appearance in the path, and
similarly indexing the N steps with increasing nonnegative integers in the order of
appearance in ν. Then an arc (Ex, Ny) in a covering (I, J)-forest naturally corre-
sponds with the lattice point (x, y). As in the case with (I, J)-trees, we call the
collection of lattice points corresponding to the arcs of a covering (I, J)-forest F
the grid representation of F . Thus ν-Schröder paths are grid representations of
covering (I, J)-forests. See Figure 3.9 for an illustration of this correspondence.

Proposition 3.2.1. Covering (I, J)-forests are in bijection with ν-Schröder trees.

Proof. Given a covering (I, J)-forest F , the arcs of F can be identified with the
labels at their end points, that is, pairs of the form (Ei, Nj). For each such arc,
insert a node at the coordinate (i, j) of the grid from (0, 0) to (|I| − 1, |J | − 1),
and call the resulting configuration of nodes in the grid T . The fact that F has
no isolated nodes guarantees that each row and column of the grid contains a node
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of T . The increasing condition guarantees that the nodes are in Pν , and the non-
crossing condition guarantees that the nodes in T are tree-compatible. Thus T is a
ν-Schröder tree. This construction is readily invertible.

Corollary 3.2.2. Covering (I, J)-forests are in bijection with ν-Schröder paths.

Recall that the ν-associahedron Aν is the polytopal complex whose face post is
given by the poset of covering (I, J)-forests. By the following theorem, we can now
describe Aν in terms of our ν-Schröder objects.

Theorem 3.2.3. The following posets are isomorphic:

1. The face poset of the ν-associahedron.

2. The poset of ν-Schröder trees.

3. The poset of ν-Schröder paths.

Proof. Posets 1 and 2 are seen to be isomorphic since the cover relation in the
poset of covering (I, J)-forests is equivalent to contracting the corresponding node
in the ν-Schröder tree. The isomorphism between posets 2 and 3 was shown in
Theorem 3.1.26.

As an immediate consequence we have the following corollary.

Corollary 3.2.4. The number of k-dimensional faces of the ν-associahedron is the
number of ν-Schröder paths with k D steps. In particular, schν(k) enumerates the
k-faces of Aν.

Combining Corollaries 3.1.8 and 3.2.4 gives the following.

Corollary 3.2.5. The Euler characteristic of the ν-associahedron is one.

A lattice is Eulerian if every nontrivial interval has an equal number of elements
in the even ranks versus the odd ranks. Face lattices of convex polytopes are well
known to be Eulerian (see for example [64, p.272]).

Theorem 3.2.6. Let P̂ denote the poset P with an adjoined minimal element 0̂ and
maximal element 1̂. If Pν is the poset of ν-Schröder paths or ν-Schröder trees, then
P̂ν is a lattice. Furthermore, every interval [x, y] in P̂ν \ {1̂} is an Eulerian lattice.

Proof. Since Aν is a polytopal complex, Pν ∪ {0̂} is a meet semilattice, with the

meet of two faces being their (possibly empty) intersection. Since z ∧P̂ {1̂} = z, P̂ν

is a meet semilattice. By [64, Proposition 3.3.1], it follows that P̂ν is a lattice.

Let x, y ∈ P̂ . If z and w are two upper bounds in P̂ for x and y then the join x∨P̂ y
is the unique face at the intersection of w and z. If there is no face containing x and
y as subfaces in Aν , then x∨P̂ y = 1̂. Every interval [0̂, y] ∈ P̂ \{1̂} corresponds to a
convex polytope in a geometric realization of Aν , and hence is Eulerian. Therefore
every subinterval [x, y] ⊆ [0̂, y] in P̂ \ {1̂} is an Eulerian lattice.
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Figure 3.10: A ν-associahedron with its faces indexed by ν-Schröder paths.

Let ν be a lattice path with n steps. Préville-Ratelle and Viennot [56, Theorem 3]
showed that the ν-Tamari lattice is isomorphic to an interval in the classical (NE)n+1

Tamari lattice. Extending this isomorphism gives that the ν-associahedron is iso-
morphic to a connected subcomplex of the boundary complex of the n-associahedron.
As a result, we have the following corollary.

Corollary 3.2.7. If ν = (EN)n+1, then Pν ∪ {0̂} is isomorphic to the face lattice

of the n-associahedron. For general ν, P̂ν is isomorphic to a sublattice of the face
lattice of the m-associahedron, where m is the number of steps in ν.

Since the classical Tamari lattice can be partitioned into disjoint intervals of
ν-Tamari lattices [56, Theorem 3], another consequence is that⋃

ν path of
length n

P̂ν
∼= F

where F is a sublattice of the face lattice of the n-associahedron.

3.2.1 Contractibility of the ν-associahedron

Having shown that the Euler characteristic of the ν-associahedron is one, it is natural
to ask whetherAν is contractible. We apply discrete Morse theory to the contraction
poset of ν-Schröder paths to show thatAν is in fact contractible. This contractibility
property of Aν is a special case of a result on the contractibility of the dual polytopal
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complex of a triangulated polytope, which Francisco Santos generously shared with
us.

Definition 3.2.8. Given a poset P , a partial matching in P is a matching in the
underlying graph of the Hasse diagram of P . That is, a subset M ⊆ P × P , such
that

� (a, b) ∈M implies a ≺ b;

� each element a ∈ P belongs to at most one element of M .

When (a, b) ∈M , we write a = d(b) and b = u(a). A partial matching is acyclic if
there does not exist a cycle

b1 ≻ d(b1) ≺ b2 ≻ d(b2) ≺ · · · ≺ bn ≻ d(bn) ≺ b1

where n ≥ 2 and the bi ∈ P are distinct. Any elements of P not in an element of
M are called critical elements.

The main theorem of discrete Morse theory for complexes is the following.

Theorem 3.2.9 ([42, Theorem 11.13]). Let C be a polytopal complex with face
poset F . Let M be an acyclic matching on F , and let ci denote the number of
critical elements in F corresponding to i-dimensional faces of C. Then C is homo-
topy equivalent to a CW complex of C consisting of ci faces of dimension i.

For more on discrete Morse theory, see [42].

Theorem 3.2.10. The ν-associahedron Aν is contractible.

Proof. Let Aν be the ν-associahedron with face poset Pν . By Theorems 3.2.3
and 3.2.9, it suffices to find an acyclic matching on Pν with a single critical ele-
ment corresponding to a vertex in Aν .

LetM be the set of edges (π, σ) where π is formed from σ by replacing with EN
the first D step not preceded by any valley. We claim that M is the desired acyclic
partial matching. See Figure 3.11 for an example.

First we check that M is in fact a partial matching. If (π, σ) ∈ M , then σ is
formed by a contraction of π, so π ≺ σ in Pν . Next we show that a path π cannot be
in more than one element of M . Note that there cannot be a pair of elements (τ, π)
and (π, σ) in M because all D steps in π = d(σ) are preceded by the added valley
and so τ = d(π) cannot exist. Also, there cannot be two pairs (τ, π) and (τ ′, π) inM
where τ ̸= τ ′ since d(π) is unique by construction. It remains to check that there are
no two pairs (π, σ) and (π, ρ) in M with σ ̸= ρ. Suppose the contrary, then σ and
ρ can be partitioned into σ = σ1Dσσ2 and ρ = ρ1Dρρ2, where the Dσ and Dρ steps
are the first D steps not preceded by a valley in the respective paths σ and ρ. If σ1
and ρ1 have the same number of steps, then it follows from π = σ1ENσ2 = ρ1ENρ2
that σ1 = ρ1. However, we cannot have σ1 = ρ1, because then we would also have
σ2 = ρ2, from which it would follow that σ = σ1Dσσ2 = ρ1Dρρ2 = ρ. Thus either σ1
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Figure 3.11: The contraction poset of (3, 5)-Schröder paths, which is the face
poset of the ν(3, 5)-associahedron of Figure 3.10. The bolded edges denote
the acyclic partial matching M described in the proof of Theorem 3.2.10.
The path N3E5 is the unique critical element in this matching.

has fewer steps than ρ1 or vice versa. If σ1 has fewer steps, then π can be partitioned
as π = π1ENπ2ENρ2, where π1ENπ2 = ρ1. However, this means ρ = π1ENπ2Dρρ2
has a valley before Dρ, which contradicts the fact that (π, ρ) is in M . Similarly ρ1
cannot have fewer steps. We conclude that M is a partial matching.

Next, we check that M is acyclic. Suppose to the contrary that there exists a
cycle

π1 ≻ d(π1) ≺ π2 ≻ d(π2) ≺ · · · ≺ πn ≻ d(πn) ≺ π1

with n ≥ 2. Note that any pair (d(πi), πi) satisfies area(d(πi)) = area(πi) − 1/2,
where area(π) denotes the area between π and ν. Every pair d(πi) ≺ πj in the cycle
is related by a contraction of d(πi), and each contraction move either decreases the
area of the path, or adds exactly half a unit of area. Since area(π1) at the beginning
and the end of the cycle must be equal, each contraction between d(πi) and πj must
increase the area by exactly one half, and must therefore be a right contraction.
The first valley in d(π1) is the one added to π1. Since π2 must have a D step not
preceded by a valley, it must be a result of a right contraction at the first EN pair
in d(π1), which means π1 = π2. Therefore n < 2, giving the desired contradiction,
and so M is acyclic.

Finally, we check that the only critical element in Pν is the path N bEa. Any
other path π will have either a first D step not preceded by a valley, or not. If it
does, then (d(π), π) ∈ M . If it does not have such a D, step, then it must have a
first valley. Letting σ be the path π but with the first valley replaced with a D step
gives an element (π, σ) ∈M .

Remark 3.2.11. The acyclic matchingM is more difficult to describe in the setting
of ν-Schröder trees or of (I, J)-trees, thus highlighting a benefit of the ν-Schröder
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path perspective. The utility of paths is the clear linear order on the steps, making
it easy to check if valleys occur before a D step.

In [16], Ceballos, Padrol, and Sarmiento show that the ν-associahedron appears
as a dual polytopal complex of a triangulation of the polytope UI,J = conv{(ei, ej) |
i ∈ I, j ∈ J, i < j}. In Chapter 4 we will obtain it as the dual polytopal complex
of a triangulated flow polytope. In either case, the following result by Santos then
gives an alternative proof of the contractibility of the ν-associahedron.

Proposition 3.2.12 (Santos [58]). The dual polytopal complex of a triangulated
polytope is contractible.

Proof. Let B be the barycentric subdivision of the triangulation. That is, the
triangulation obtained by putting a vertex at the barycenter of every simplex of
every dimension and taking as simplices the vertex sets that correspond to flags in
the original triangulation. Topologically, the dual polytopal complex of the original
triangulation is homeomorphic to the subcomplex of B consisting of faces fully
contained in the interior of the polytope. Now, B consists of three types of faces,
namely faces Fi contained entirely in the interior, faces Fb contained entirely on the
boundary, and intermediate faces Fm with vertices in the interior and boundary.
Every face of B can be expressed as the join F = Fi ∗ Fb of (possibly empty) faces,
where Fi is an interior face and Fb is a boundary face. In the intermediate case
when neither Fb nor Fi is empty, F \ Fb is a half-open simplex that deformation
retracts to Fi. Simultaneously performing such deformations on the intermediate
faces gives a deformation retract from the topological interior of the polytope (an
open ball) to the barycentric subdivision of the dual polytopal complex. Hence, the
dual polytopal complex is homotopically equivalent to an open ball, and thereby
contractible.

Copyright© Matias K. von Bell, 2022.
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Chapter 4 The family of ν-caracol flow polytopes

In this chapter, we study a family of flow polytopes which we call ν-caracol flow
polytopes, whose normalized volumes are given by ν-Catalan numbers. After con-
structing these flow polytopes and studying their basic properties, we consider two
particular DKK triangulations arising from two different framings. The triangula-
tions we obtain have connections to two lattices on ν-Catalan objects that appear
recurrently in the literature:

1. The ν-Tamari lattice Tam(ν) introduced by Préville-Ratelle and Viennot [56].

2. The principal order ideal I(ν) determined by ν in Young’s lattice Y .

We study these triangulations in Sections 4.2.1 and 4.2.2. In Section 4.3.2, we show
that the ν-caracol flow polytope is integrally equivalent to a subpolytope UI,J of
a product of two simplices studied by Ceballos, Padrol, and Sarmiento [16]. They
were curious to know if the subdivision algebra can be used to obtain subdivisions
of UI,J , which we show is possible through the connection to flow polytopes. We
also provide an alternative way to answer the question via acyclic root polytopes.

4.1 The ν-caracol flow polytope

The ν-caracol flow polytope is obtained from a graph which we call the ν-caracol
graph, which is defined using the lattice path ν as follows.

Definition 4.1.1. Let a and b be nonnegative integers, and let ν be a lattice path
from (0, 0) to (a, b) with w valleys. We can write ν =

∏w+1
i=0 N

biEai+1 , and we set
a0 = bw+1 = 1. The ν-caracol graph car(ν) is the path graph on vertex set [w+2]
with added vertices s and t, together with ai copies of (s, i + 1) and bi copies of
(i + 1, t) for 0 ≤ i ≤ w. We direct all edges from the smaller vertex to the larger
vertex, with the convention that s = 0 and t = w + 3.

An example of a ν-caracol graph is given in Figure 4.1. Note that there are
a + 1 and b + 1 edges incident to the source and sink respectively, along with
w + 1 edges in the path on vertices [w + 2]. Thus the total number of edges in
car(ν) is a + b + w + 3. Recall from Chapter 2 that the (intrinsic) dimension of
a flow polytope is given by dimFG = |E(G)| − |V (G)| + 1, so we conclude that
dimFcar(ν) = (a+ b+ w + 3)− (w + 4) + 1 = a+ b.

The flow polytope on the graph car(ν) in the special case when ν = (NE)n has
previously been studied by Mészáros [48] and by Benedetti et al. [12]. The graph
was dubbed the caracol graph by the latter, as it resembles a snail shell in the planar
drawing, with “caracol” being the word for snail in Spanish.
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(0, 0)

(7, 5)

ν = NE2NEN2E3NE

a0 = 1 b0 = 1
a1 = 2 b1 = 1
a2 = 1 b2 = 2
a3 = 3 b3 = 1
a4 = 1 b4 = 1

s 1 2 3 4 5 t

Figure 4.1: A lattice path and its associated ν-caracol graph.

4.1.1 The volume of Fcar(ν)

Mészáros and Morales [49] have previously considered a closely-related variant of the
flow polytope Fcar(ν), denoted as FΠ⋆

b (ν)
in their work. When ν has no initial N steps,

the underlying graph Π⋆
b(ν) can be obtained from car(ν) by contracting all inner

edges which are idle, and a simple transformation reveals that the flow polytopes
Fcar(ν) and FΠ⋆

b (ν)
are integrally equivalent. They observed that the normalized

volume of FΠ⋆
b (ν)

is the number of lattice points in the Pitman–Stanley polytope

PSb(ν) = {y ∈ Rb
≥0 |

∑k
i=1 yi ≤

∑k
i=1 νi}, which is equal to the number of ν-Dyck

paths.
We obtain a proof of this result by giving a combinatorial interpretation to the

vector partitions enumerated by the Kostant partition function in the Lidskii volume
formula. This method was first considered in [12] and further developed in [69].

For flow polytopes of ν-caracol graphs with unitary net flow, the Kostant par-
tition function Kcar(ν)(vin) has a simple combinatorial interpretation which we now
describe. This generalizes the construction for the case ν = NEk−1NEk · · ·NEk

considered in [69, Section 2.4].

Definition 4.1.2. Let ν be a lattice path from (0, 0) to (a, b) and let ℓ be the number
of initial N steps in ν. Let νi denote the number of E steps at height ℓ + i− 1 for
1 ≤ i ≤ b − ℓ + 1. An in-degree gravity diagram for the flow polytope Fcar(ν)

consists of a collection of dots and line segments with the following properties:

(i) The dots are arranged in columns indexed by the simple roots α3, . . . , αb+2,
with ν1 + · · ·+ νj−2 dots in the column indexed by αj, and all dots are drawn
justified upwards.

(ii) Horizontal line segments may be drawn between dots in consecutive columns
so that each dot is incident to at most one line segment. A trivial line segment
is a singleton dot. All non-trivial line segments must contain a dot in the
column indexed by αb+2 (that is, all line segments are justified to the right).
Longer line segments appear above shorter line segments.

We denote the set of all in-degree gravity diagrams by Gcar(ν)(vin). See Figure 4.2
for an example of an in-degree gravity diagram.
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The proof of the following Lemma is analogous to the one in [12, Theorem 3.1]
for out-degree gravity diagrams. See also [69].

Lemma 4.1.3. There is a bijection between the set of vector partitions of vin with
respect to Φ+

car(ν) and the set of in-degree gravity diagrams for the flow polytope

Fcar(ν). Consequently, Kcar(ν)(vin) = |Gcar(ν)(vin)|.

Example 4.1.4. Let ν = NE2NENNE3NE. A vector partition of vin = 2α3 +
3α4 + 3α5 + 6α6 + 7α7 with respect to the positive roots in Φ+

car(ν) is

vin = α(3,8) + α(5,8) + 2α(6,8) + α3 + 2α4 + α5 + 2α6 + 3α7.

This vector partition is represented by the gravity diagram on the left of Figure 4.2.

The connection between in-degree gravity diagrams and ν-Dyck paths is given
by the following.

Lemma 4.1.5. There is a bijection between the set Gcar(ν)(vin) of in-degree gravity
diagrams for the flow polytope Fcar(ν) and the set Dν of ν-Dyck paths.

Proof. In an in-degree gravity diagram for car(ν), the column indexed by αk has
ν1 + · · · + νk dots, for k = 3, . . . , b + 2. This is precisely the number of squares in
the row between the lines x = 0, y = k − 1, y = k, and above ν.

Therefore, given an in-degree gravity diagram Γ ∈ Gcar(ν)(vin), we may rotate it
90 degrees counterclockwise and embed the array of dots into the squares of Z2 so
that the dots in the column indexed by αb+2 lie in the row of squares just above the
line y = b, and the dots in the first row of Γ lie in the column of squares just right of
the line x = 0. By the previous observation, we see that the dots of Γ occupy every
square in Z2 between the lines x = 0, x = a and y = b+ 1, and which lie above the
path ν. See Figure 4.2 for an illustration.

Line segments of the rotated embedded gravity diagram Γ are now vertical, and
they extend down from just above the top row of the rectangular grid. The lengths
of these vertical line segments are weakly decreasing from left to right, so the line
segments of Γ define a unique ν-Dyck path that separates the dots in Γ which are
incident to a line segment in Γ, from the dots which are not incident to any (proper)
line segment in Γ. This construction defines a map Ξ : Gcar(ν)(vin) → Dν .

Conversely, any ν-Dyck path defines an in-degree gravity diagram Γ for Fcar(ν),
where every dot of Γ that occupies a square that is above the ν-Dyck path is incident
to a line segment of Γ, and every dot of Γ that occupies a square that is below the
ν-Dyck path is not incident to any (proper) line segment of Γ. Therefore, Ξ is a
bijection.

Theorem 4.1.6 ([49, Corollary 6.17]). The volume of Fcar(ν) is the ν-Catalan num-
ber Cat(ν).
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α3 α4 α5 α6 α7

(0, 0)

(7, 5)
ν5 = 1

ν4 = 3

ν3 = 0

ν2 = 1

ν1 = 2

α
3
α
4
α
5
α
6
α
7

Figure 4.2: A gravity diagram (left) representing a vector partition of vin

associated with car(ν) for ν = NE2NENNE3NE. The bijection Ξ from
Theorem 4.1.6 sends the gravity diagram to the ν-Dyck path via a 90 degree
rotation (right).

Proof. Combining Proposition 2.3.8 and Lemmas 4.1.3 and 4.1.5, the normalized
volume of Fcar(ν) is

volFcar(ν) = Kcar(ν)(vin) = |Gcar(ν)(vin)| = |Dν | = Cat(ν).

In the next section, we construct two regular unimodular triangulations for the
flow polytope Fcar(ν) with combinatorially interesting dual graph structures, giving
two more proofs that the normalized volume of Fcar(ν) is the number of ν-Dyck
paths.

4.2 Framed triangulations of Fcar(ν)

We introduce two particular framed triangulations of Fcar(ν), which we call the
planar-framed triangulation and the length-framed triangulation. In order to de-
scribe these framings we define the length of an edge (i, j) to be |j − i|, and assign
labels to the edges in car(ν) incident to the source and sink as follows. We label the
edges incident to s with integers 0, 1, ..., a in any fixed order such that longer edges
have larger labels than shorter edges. We then label the edges incident to t with
integers 0, 1, ..., b in any fixed order such that longer edges have smaller labels than
shorter edges. See Figure 4.3 for an example of such a labeling.

s 1 2 3 4 t
0
1
2
3
4
5

0
1

2
3

Figure 4.3: The edge labeling for source and sink edges in car(ν(5, 3)).
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Definition 4.2.1. The length framing ≺length of car(ν) is the framing obtained
by ordering both the incoming and outgoing edges at each inner vertex from longest
to shortest. To break ties between multiedges of the same length, we consider the
edge with the larger label to be longer.

Definition 4.2.2. The planar framing ≺planar of car(ν) is the framing obtained
by ordering the incoming edges at each inner vertex from longest to shortest, while
ordering their outgoing edges from shortest to longest. We break ties between mul-
tiedges of the same length by considering edges with larger labels to be longer.

We point out that the study of length-framed and planar-framed triangulations
of flow polytopes on the ν-caracol graphs can be extended systematically to all
graphs. Particularly for graphs which are symmetric with respect to the vertical
axis, our viewpoint suggests that these two framings are in a sense dual to one
another, so perhaps we should not be surprised to find that both framings lead to
combinatorially interesting triangulations of Fcar(ν).

To describe the combinatorial structure of the length-framed and planar-framed
triangulations of car(ν) we use three different ν-Catalan families of objects, as each
highlights the combinatorics in crucial and distinct ways. These are (I, J)-trees,
ν-Dyck paths, and ν-trees which were discussed in Section 2.5.2. The role that they
play in the combinatorics of the triangulations is summarized in Table 4.1 below.

Table 4.1: ν-Catalan objects and their role in the combinatorial structure
of the two framed triangulations.

Triangulation Vertices Facets Adjacency Dual graph

Length-framed

Arcs of
(I, J)-trees

(I, J)-trees
Two (I, J)-trees that
differ by one arc Hasse dia

Hasse diag.
of Tam(ν)

Lattice points
above ν

ν-trees
Two ν-trees that differ by
a rotation

(not obtained
directly)

ν-Dyck paths
Two ν-Dyck paths that
differ by a rotation

Planar-framed
Lattice points
above ν

ν-Dyck paths
Two ν-Dyck paths that
differ by a pair EN to
NE

Hasse diag.
of I(ν)

4.2.1 The length-framed triangulation

The goal of this section is to show that the flow polytope Fcar(ν) has a regular
unimodular triangulation whose dual graph structure is given by the Hasse diagram
of the ν-Tamari lattice. The triangulation in question arises from the length-framing
(Definition 4.2.1). We show that this length-framed triangulation is combinatorially
equivalent to the ν-Tamari complex (Definition 2.5.4).

Recall from Section 2.3 that the vertices of Fcar(ν) are determined by routes
(unitary flows) in car(ν). These are completely characterized by two edges in car(ν):
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the initial edge from the source s, and the terminal edge to the sink t. A route in
car(ν) with initial edge labeled x and terminal edge labeled y will be denoted by Rx,y.
For example, the route s, 2, 3, t in Figure 4.3 is denoted R1,2.

Next, we describe a key bijection between the set of routes Rν in the ν-caracol
graph car(ν) and the set Aν of possible arcs in an (I, J)-tree determined by ν. Recall
from Section 2.5.1 that the lattice path ν determines a canonical pair (I, J), where
the elements in the sets I and J respectively correspond to the E and N steps in
the path ν = EνN . Describing the bijection in terms of the N and E steps is easier
than using the elements of I and J , so we index the steps in ν according to the
natural indexing described in Section 2.5.2. In other words, we index the E steps
left to right by 0, 1, . . . , a, and index the N steps left to right by 0, 1, . . . , b. Then
arcs in an (I, J)-trees can then be expressed as pairs of the form (Ex, Ny).

Define the map φ : Rν → Aν by φ(Rx,y) = (Ex, Ny). To see that this is well-
defined, suppose the initial and terminal edges of Rx,y are (s, i) and (j, t) respectively.
Then i ≤ j, which implies Ex appears before Ny in ν, so (Ex, Ny) is a valid arc in Aν .
Figure 4.4 shows an example of this correspondence between routes and arcs.

Lemma 4.2.3. The map φ : Rν → Aν is a bijection.

Proof. Define the inverse map φ−1 : Aν → Rν by φ−1((Ex, Ny)) = Rx,y. Suppose
the edge in car(ν) that is incident to the vertex s having the label x is (s, i), and
the edge that is incident to the vertex t having the label y is (j, t). Since (Ex, Ny) is
an arc, this implies i ≤ j, and s, i, i+1, . . . , j−1, j, n+1 is the route Rx,y in car(ν),
so φ−1 is well-defined. It is clear that φ ◦ φ−1 and φ−1 ◦ φ are identity maps.

1 2 3 4 5

6 7 8 9

E0 E1 E2 E3 E4 E5N0 N1 N2 N3

1

2

3
4
5 6

7
8
9

Figure 4.4: A maximal clique of routes (left) representing a top-dimensional
simplex in the length-framed triangulation of Fcar(ν) for ν = ν(5, 3). The
bijection φ from Lemma 4.2.3 sends each route to the corresponding arc of
the (I, J)-tree on the right.

Lemma 4.2.4. Let φ be the bijection in Lemma 4.2.3. Two routes Rx,y and Rx′,y′

in the framed graph (car(ν),≺length) are coherent if and only if φ(Rx,y) = (Ex, Ny)
and φ(Rx′,y′) = (Ex′ , Ny′) are non-crossing arcs in Aν.

Proof. If x = x′, then the routes are coherent and the corresponding arcs (Ex, Ny)
and (Ex′ , Ny′) are non-crossing. Otherwise assume x < x′. If the arcs (Ex, Ny) and
(Ex′ , Ny′) cross then y < y′ necessarily and Ex, Ex′ , Ny, Ny′ appear in that order in
ν. Denote the terminal edge of the route Rx,y by (ℓ, t). Then x < x′ and y < y′

imply that the routes Rx,y and Rx′,y′ are incoherent at the vertex ℓ. Conversely, let
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(s, j) and (s, j′) respectively denote the initial edges of Rx,y and Rx′,y′ so that j ≤ j′,
and suppose these routes are incoherent. They must be incoherent at a maximal
vertex ℓ for which (ℓ, t) is the terminal edge of Rx,y, and ℓ ≤ ℓ′ where (ℓ′, t) is the
terminal edge of Rx′,y′ . Moreover, since Rx,y and Rx′,y′ coincide at ℓ, then j

′ ≤ ℓ, and
hence Ex, Ex′ , Ny, Ny′ appear in that order in ν and the arcs (Ex, Ny) and (Ex′ , Ny′)
cross.

Theorem 4.2.5. The length-framed triangulation of Fcar(ν) is a regular unimodular
triangulation whose dual graph is the Hasse diagram of the ν-Tamari lattice Tam(ν).

Proof. By Lemma 4.2.4, the bijection φ in Lemma 4.2.3 extends to a bijection Φ
from the set of maximal cliques of routes in the length-framed car(ν) to the set of
(I, J)-trees determined by ν. Two facets in a DKK triangulation of a flow polytope
are adjacent if and only if they differ by a single vertex, that is, if the corresponding
maximal cliques differ by a single route. Under the bijection Φ, two facets are
adjacent if and only if their corresponding (I, J)-trees differ by a single arc, which
is precisely the description of the Hasse diagram of the ν-Tamari lattice.

Example 4.2.6. Let ν = ν(5, 3). One example of the bijection Φ between cliques
of routes of car(ν) and (I, J)-trees is illustrated in Figure 4.4. The dual graph of
the length-framed triangulation of Fcar(ν) is shown in Figure 4.7.

As a simplicial complex, the length-framed triangulation of car(ν) is a flag sim-
plicial complex whose minimal non-faces are pairs of incoherent routes. This is
precisely the description of the ν-Tamari complex in Definition 2.5.4, but with arcs
replaced with routes. The following result is then a corollary of Theorem 4.2.5.

Corollary 4.2.7. Let ν be the lattice path from (0, 0) to (a, b). The length-framed
triangulation of Fcar(ν) is a geometric realization of the ν-Tamari complex of dimen-
sion a+ b in R|E(car(ν))|.

A second description in terms of ν-trees

Another useful combinatorial object for indexing facets in the length-framed trian-
gulation of Fcar(ν) is the ν-tree discussed in Section 2.5.2. The vertices of Fcar(ν) can
be associated with the set Pν of lattice points lying weakly above ν in the rectangle
defined by (0, 0) and (a, b). We will see that the lattice points in a ν-tree correspond
to vertices in a facet of the length-framed triangulation, and that two facets are
adjacent if their corresponding ν-trees differ by a rotation.

Let γ : Aν → Pν be the map from the set of possible arcs in an (I, J)-tree
determined by ν to the lattice points in Pν given by (Ex, Ny) 7→ (x, y). For any
arc (Ex, Ny), since Ex appears before Ny in ν, we have γ(Ex, Ny) = (x, y) ∈ Pν , so
γ is well-defined. Note that γ takes the arcs of an (I, J)-tree to the lattice points
in its grid representation. Also, γ−1 is well-defined since if (x, y) ∈ Pν , then Ny is
preceeded by at least x E steps in ν, and hence (Ex, Ny) ∈ A . Thus γ is a bijection,
and the next lemma follows.
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Figure 4.5: A maximal clique of routes in car(ν) representing a facet in
the length-framed triangulation of Fcar(ν) with ν = ν(5, 3). The bijection θ
from Lemma 4.2.8 sends each route to a node in the ν-tree, while Θ1 sends
the maximal clique to the ν-tree.

Lemma 4.2.8. The map θ : Rν → Pν given by θ = γ ◦ φ is a bijection.

In summary, we have the following bijections between routes in car(ν), possible
arcs in an (I, J)-trees determined by ν, and lattice points lying weakly above ν.

Aν

γ

!!
Rν

φ
==

θ
//Pν

The bijection θ leads to a characterization of the routes which appear in every
facet of the length-framed triangulation of Fcar(ν). Recall from Lemma 4.2.4 that
two routes in Rν are coherent if and only if their corresponding arcs in Aν are non-
crossing. Since the non-crossing condition for arcs in (I, J)-trees translates to the
tree-compatibility condition of ν-trees, we have that routes in Rν are coherent if
and only if their corresponding lattice points via θ are tree-compatible. Note that
a ν-tree will always contain the root (0, b), the valleys of the lattice path ν, along
with each initial point of any initial N steps of ν and each terminal point of any
terminal E steps of ν. These points correspond to the routes which are coherent
with all other routes in the length-framing, and thus appear in every facet of the
length-framed triangulation. In the example in Figure 4.5, the routes which appear
in every top-dimensional simplex of the length-framed triangulation of Fcar(ν) are
labeled 1, 3, 5, 7, 8, and 9.

By mapping routes to lattice points, θ extends to a bijection Θ1 from the set
of maximal cliques in the length framing of car(ν) to the set of ν-trees. The map
Θ1 takes the maximal clique of routes in Figure 4.5 to the ν-tree on the right. It is
now also clear that two adjacent facets in the length-framed triangulation of Fcar(ν)

differ by a single vertex, and the corresponding ν-trees under Θ1 differ by a single
lattice point via a rotation.

4.2.2 The planar-framed triangulation

In this section we show that the flow polytope Fcar(ν) has a regular unimodular
triangulation whose dual graph is the Hasse diagram of a principal order ideal I(ν)
in Young’s lattice.
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Principal order ideals in Young’s lattice

Recall that Young’s lattice Y is the poset on integer partitions with covering
relations λ⋖λ′ if λ is obtained from λ′ by removing one corner box of λ′. Recall that
a lattice path ν in the rectangular grid defined by (0, 0) to (a, b) defines a partition
λ(ν) = (λ1, . . . , λb) by letting λk denote the number of E steps appearing before the
(b − k + 1)-th N step in ν. The Young diagram for λ(ν) may be visualized as the
region within the rectangle from (0, 0) to (a, b) which lies NW of ν. For example,
the path ν in Figure 4.1 defines the partition λ(ν) = (6, 3, 3, 2, 0). An order ideal
of a poset P is a subset I ⊆ P with the property that if x ∈ I and y ≤ x, then
y ∈ I. An ideal is said to be principal if it has a single maximal element x ∈ P ,
and such an ideal will be denoted by I(x).

If µ is a ν-Dyck path, then it lies weakly above the path ν and so µ can be
identified with a partition λ(µ) that is contained in λ(ν). Thus there is a one-to-one
correspondence between the set of ν-Dyck paths with the set of elements in the
order ideal I(ν) := I(λ(ν)) in Y . Under this correspondence, in terms of ν-Dyck
paths, a path π covers a path µ if and only if π can be obtained from µ by replacing
a consecutive NE pair by a EN pair. See the right side of Figure 4.7 for an example
of I(ν) with ν = NENE2NE2.

The planar-framed triangulation

We can now study the dual structure of the planar-framed triangulation. The set
of routes which are coherent in the planar framing are different than those under
the length framing. However, the bijection θ : Rν → Pν in Lemma 4.2.8 given
by Rx,y 7→ (x, y) is not dependent on any framing, and still maps the routes in a
simplex to a set of lattice points in Pν . To translate the coherence of routes in
the planar framing to the collections of lattice points in Pν , we need the following
notion. Two lattice points (x1, y1) and (x2, y2) with x1 < x2 are said to be path-
incompatible if y1 > y2. Otherwise, any other pair of lattice points are said to be
path-compatible. Maximal sets of path-compatible lattice points lying above ν
determine a unique ν-Dyck path.

Lemma 4.2.9. Let θ : Rν → Pν be the bijection Rx,y 7→ (x, y). Two routes Rx,y

and Rx′,y′ in the framed graph (car(ν),≺planar) are coherent if and only if (x, y) and
(x′, y′) are path-compatible.

Proof. A result of Mészáros, Morales and Striker [51, Lemma 6.5] states that two
routes in a planar framing of a G are coherent if and only if they are non-crossing in
a planar drawing of G. Let Rx,y and Rx′,y′ be two non-crossing routes in car(ν), with
x < x′. The non-crossing condition guarantees that if x < x′, then y < y′. Thus
(x, y) and (x′, y′) are path-compatible. Conversely, if (x, y) and (x′, y′) are path-
compatible, then y < y′, which guarantees that Rx,y and Rx′,y′ are non-crossing.

As a consequence, θ maps a maximal clique of coherent routes in (car(ν),≺planar)
to a maximal set of path-compatible points in Pν , which is a ν-Dyck path. Thus θ
extends to a bijection Θ2 from maximal cliques of routes in (car(ν),≺planar) to the
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set of ν-Dyck paths. We observe that a ν-Dyck path always contains the lattice
points of any initial N steps and terminal E steps of ν. Hence, under θ, these
points correspond to the routes that are coherent with all other routes, and thus
appear in every facet of the planar-framed triangulation. For example, the routes
in Figure 4.6 appearing in every facet of the planar-framed triangulation of Fcar(ν)

are labeled 1, 2, 7, 8, and 9.

1 2 3 4 5

6 7 8 9

1

2

3
4 5

6 7 8 9

Figure 4.6: A maximal clique of routes in car(ν) corresponding to a facet in
the planar-framed triangulation of Fcar(ν) for ν = ν(5, 3). The map θ from
Lemma 4.2.8 sends each route (left) to a lattice point on the ν-Dyck path
(right), while Θ2 sends the maximal clique to the ν-Dyck path.

Theorem 4.2.10. The planar-framed triangulation of Fcar(ν) is a regular and uni-
modular triangulation whose dual graph is the Hasse diagram of the principal order
ideal I(ν) in Young’s lattice Y .

Proof. Under the bijection Θ2, two top-dimensional simplices are adjacent if and
only if their corresponding ν-Dyck paths π1 and π2 differ by a single lattice point.
Let (x1, y1) ∈ π1 and (x2, y2) ∈ π2 be the lattice points which are not contained
in both paths. Assume without loss of generality that x1 < x2. Since these lattice
points are not path-compatible, we must have y1 > y2. Thus (x1, y1) is in the top
left corner of the single square determined by (x1, y1) and (x2, y2), while (x2, y2) is in
the bottom left. In other words, π1 and π2 differ by a transposition of a consecutive
NE pair, which is precisely the description of the covering relation in the principal
order ideal I(ν).

The graph on the right in Figure 4.7 is an example of the dual graph of the
planar-framed triangulation of Fcar(ν), where ν = ν(5, 3).

In summary, we’ve now seen the map θ : Rν → Pν extend to a bijection between
facets in triangulations and combinatorial objects in two ways. In the length-framed
case, θ extended to the bijection Θ1 between maximal cliques and ν-trees, while in
the planar-framed case θ extended to a bijection Θ2 between maximal cliques and
ν-Dyck paths.

4.2.3 Comparing the length-framed and planar-framed triangulations

A special case when the dual graph of the length-framed and planar-framed trian-
gulations of Fcar(ν) are the same is given by the following proposition.
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Figure 4.7: The ν-Tamari lattice (left) and the Hasse diagram of the order
ideal I(ν) ⊆ Y (right) for ν = ν(5, 3). These are the dual graphs of the
length-framed and planar-framed triangulations of Fcar(ν).

Proposition 4.2.11. When ν = EaN b, so that the set of ν-Dyck paths is the set of
all lattice paths from (0, 0) to (a, b), the length-framed triangulation and the planar-
framed triangulation of Fcar(ν) have the same dual graph. Furthermore, Tam(ν) is
isomorphic to I(ν).

Proof. We use the ν-Dyck path description (see Section 2.5.2) of the ν-Tamari lattice
Tam(ν) in this proof. Let µ be a ν-Dyck path. For any valley point p of µ, the
next lattice point q in µ with horizν(p) = horizν(q) is the next lattice point after
p. This is because the horizontal distance of any of the lattice points in a run of
consecutive N steps is the same when ν = EaN b. Performing a rotation on µ at the
valley point p to obtain the ν-Dyck path µ′ is then the same as exchanging the EN
pair centered at p with an NE pair in µ. Thus µ <ν µ

′ is a covering relation in the
lattice Tam(ν) if and only if it is a covering relation in the dual order ideal I(ν)∗.
Therefore, Tam(ν) = I(ν)∗. Lastly, the lattice I(ν) is self-dual since ν = EaN b.
Therefore, Tam(ν) and I(ν) are isomorphic.

This special case when ν = EaN b will be encountered again in Chapter 5,
where we will see that Fcar(ν) is integrally equivalent to the product of two sim-
plices ∆a×∆b. The triangulations induced on ∆a×∆b via this integral equivalence
by the length-framed and planar-framed triangulations are both examples of “stair-
case triangulations” of ∆a ×∆b. Staircase triangulations will be discussed in more
detail in Chapter 5.

4.2.4 The h∗-vector of the ν-caracol flow polytope

Recall that the h∗-vector of a lattice polytope can be computed from any of its
unimodular triangulations. Therefore, to obtain h∗-vector of Fcar(ν), we can compute
the h-vector of the planar-framed triangulation of Fcar(ν).

We begin by recalling some relevant definitions from [71]. Given a simplicial
complex, a shelling is an ordering F1, ..., Fs of its facets such that for every i < j
there is some k < j such that the intersection Fi ∩ Fj ⊆ Fk ∩ Fj, and Fk ∩ Fj is
a facet of Fj. A simplicial complex is said to be shellable if it admits a shelling.
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The h-vectors of shellable simplicial complexes have nonnegative entries which can
be computed combinatorially from the shelling order as follows. For a fixed shelling
order F1, ..., Fs define the restriction Rj of the facet Fj as the set Rj := {v ∈ Fj :
v is a vertex in Fj and Fj \ v ⊆ Fi for some 1 ≤ i < j}. Then the i-th entry of the
h-vector is given by hi = |{j : |Rj| = i, 1 ≤ j ≤ s}|.

Lemma 4.2.12. Let C be the planar-framed triangulation of Fcar(ν) interpreted as
a simplicial complex. Any linear extension of I(ν) gives a shelling order of C.

Proof. By Theorem 4.2.10 we can give the dual graph of C the structure of I(ν),
identifying each facet in C with the associated ν-Dyck path in I(ν). For a linear
extension L of I(ν), we can order the facets F1, ..., Fs of C according to L. Let πi
and πj be two ν-Dyck paths in L, with i < j. Let πs1 be the minimal ν-Dyck path
that covers both πi and πj, i.e. πs1 = πi ∨ πj in I(ν). Now πs1 contains the lattice
points in πi ∩ πj, and so Fi ∩ Fj ⊆ Fs1 . It is clear that there exists a sequence of
ν-Dyck paths πs1 , πs2 , ..., πj such that each path contains the lattice points πi ∩ πj,
and each path is formed from the previous path by replacing a consecutive NE pair
with EN . Given such a sequence of paths, let πk be the second to last path in the
sequence. Replacing a consecutive NE pair with EN in πk yield πj. Now k < j, and
Fi∩Fj is contained in every facet Fsℓ for 1 ≤ ℓ ≤ k. In particular, Fi∩Fj ⊆ Fk∩Fj.
Furthermore, πk and πj differ by a single lattice point, hence we obtain that Fk ∩Fj

is a facet of Fj.

Let ν be a lattice path from (0, 0) to (a, b). Recall from Definition 3.1.5 that
the ν-Narayana number Narν(i) is the number of ν-Dyck paths with i valleys. The
ν-Narayana polynomial is Nν(x) =

∑
i≥0Narν(i)x

i. The following now extends a
result of Mészáros [48, Theorem 4.4] for the classical case when ν = (NE)n to
general ν.

Theorem 4.2.13. The h∗-polynomial of Fcar(ν) is the ν-Narayana polynomial.

Proof. As previously mentioned, it will suffice to find the h-vector of the planar-
framed triangulation of Fcar(ν), which can be computed from a shelling order of the
planar-framed triangulation of Fcar(ν). We fix a linear extension of I(ν), which by
Lemma 6.1 a gives a shelling order F1, ..., Fs. For a facet Fi, |Ri| is the number of
facets incident to Fi appearing before Fi in the shelling order. Since the shelling
order is given by a linear extension of I(ν), |Ri| is the number of elements covered
by Fi in I(ν). By the cover relation in I(ν), Fi covers exactly as many elements as
its corresponding ν-Dyck path has valleys. The i-th entry of the h-vector can now
be computed as follows

hi = |{j : |Rj| = i, 1 ≤ j ≤ s}|
= |{paths in I(ν) that cover exactly i paths}|
= |{ν-Dyck paths with exactly i valleys}|
= Narν(i).
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Example 4.2.14. Let ν = NENE2NE2. The dual graph of the planar-framed
triangulation of Fcar(ν) is then the Hasse diagram of I(ν) as shown on the right in
Figure 4.7. The number of ν-Dyck paths with 0, 1, and 2 valleys are respectively 1,
4, and 2. Thus the ν-Narayana polynomial is Narν(x) = 1 + 4x+ 2x2.

A different proof of Theorem 4.2.13 can be obtained by computing the h-vector
of the length-framed triangulation of Fcar(ν), which by Corollary 4.2.7 is combina-
torially equivalent to the ν-Tamari complex with the pair (I, J) associated to ν. In
[16, Lemma 4.5] a shelling order on facets of this complex was used to show that the
h-vector of the (I, J)-Tamari complex is given by the ν-Narayana numbers. Since
any lattice unimodular triangulation can be used to calculate the h∗-vector of Fcar(ν),
Theorem 4.2.13 provides a new proof that the h-vector of the ν-Tamari complex is
given by the ν-Narayana numbers.

4.2.5 A connection with order polytopes

Let G be a planar graph with a unique source and sink. A result of Mészáros,
Morales and Striker [51, Theorem 3.11] states that for such a graph G, the flow
polytope FG is integrally equivalent to the order polytope O(PG), where PG is a
poset induced by the bounded faces of the planar embedding of G.

In this section, we explain how our results for flow polytopes on the caracol
graphs car(ν) lead to analogous results for a certain class of order polytopes O(Qν).
We give a brief background of known results relating order polytopes and flow poly-
topes following the exposition of [51], and explain their implications when applied
to car(ν).

Let (P,≤P ) be a finite poset with elements {p1, . . . , pd}. The order polytope
of P is the set of points

O(P ) =
{
(xp1 , . . . , xpd) ∈ [0, 1]d | xpi ≤ xpj if pi ≤P pj

}
.

Given a linear extension σ : P → [d] of the poset P , i.e. an order preserving bijection
with [d] endowed with its natural order, define the simplex

∆σ =
{
(xp1 , . . . , xpd) ∈ [0, 1]d | xσ−1(1) ≤ · · · ≤ xσ−1(d)

}
.

The canonical triangulation of O(P ), first defined by Stanley [62], is the set of
top-dimensional simplices

{∆σ | σ is a linear extension of P} .

Thus the normalized volume of O(P ) is the number of linear extensions of P .
For a planar graph G with a fixed embedding in the plane, the truncated dual

graph G∗ of G is the dual graph whose vertices correspond to the bounded faces
of G. Viewing G∗ as embedded on the plane also, then the orientation on the edges
of G induces an orientation on the edges of G∗. The graph G∗ then induces the
Hasse diagram of a poset that is denoted by PG. We demonstrate this in the case
of car(ν).

59



s 1 2 3 4 5 t
E1

E2

E3

E4

E5

E6

E7

N1

N2

N3

N4

N5

Figure 4.8: A graph car(ν) and its truncated dual car(ν)∗ in orange (left),
and the induced Hasse diagram of the poset Qν = Pcar(ν) (right).

For a lattice path ν from (0, 0) to (a, b), we fix the embedding of car(ν) onto
the plane so that the vertices of car(ν) are in increasing order on the x-axis, and
edges incident to the source s and sink t are respectively drawn above and below the
x-axis. Then the poset Pcar(ν) has a+b elements corresponding to the bounded faces
of the embedded car(ν), and is constructed as follows. Using the edge labeling for
car(ν) described in Section 4.1 and shown in Figure 4.3, we label the vertices in the
truncated dual graph car(ν)∗ in the following manner. Each vertex in a bounded
region above the x-axis is labeled Ek where k is the label of the longest bounding
edge of the region, and each bounded region below the x-axis is labeled Nk where k is
the label of the shortest labeled bounding edge of the region. If two vertices p and q
are adjacent in car(ν)∗, then the regions associated with them share a directed edge
(i, j) of car(ν). We direct the edge (p, q) in car(ν)∗ toward the vertex corresponding
to the region to the left of the edge (i, j). Figure 4.8 gives an example.

Note that we recover ν from Pcar(ν) by taking the linear extension of Pcar(ν) where
E steps are read before N steps whenever possible. With this observation, it means
that we can define a class of posets Qν (equal to Pcar(ν)) indexed by lattice paths ν
without any reference to flow polytopes. The Hasse diagram of the poset Qν can be
constructed from ν by forming an increasing chain of the E steps and an increasing
chain of the N steps, and then connecting the chains at each NE pair forming a
peak of ν (directed toward the E step).

It was first observed by Postnikov (also see Mészáros, Morales and Striker [51,
Theorem 1.3]) that the canonical triangulation of O(PG) is the same as the planar-
framed DKK triangulation of FG up to an integral equivalence. Combined with
Theorems 4.2.5 and 4.2.10, we have the following two corollaries.

Corollary 4.2.15. The canonical triangulation of the order polytope O(Qν) has
dual graph which is the Hasse diagram of the principal order ideal I(ν) in Young’s
lattice.

Corollary 4.2.16. The order polytope O(Qν) has a regular unimodular triangula-
tion whose dual graph is the ν-Tamari lattice Tam(ν).
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Corollary 4.2.17. The number of linear extensions of the poset Qν is Cat(ν).

For a poset P , let J(P ) denote the lattice of order ideals of P ordered by in-
clusion. From [62, Section 5], the maximal chains of J(P ) are in bijection with the
facets in the canonical triangulation of O(P ). This gives another perspective on the
direct relationship between facets in the planar-framed triangulation of Fcar(ν), max-
imal cliques in the flow polytope Fcar(ν), ν-Dyck paths, maximal chains in J(Qν),
and facets in the canonical triangulation of O(Qν). In this case, the Hasse diagram
of J(Qν) can be obtained by taking the lattice on the points Pν which lie above ν,
and rotating it counterclockwise by 45 degrees.

Having obtained results for order polytopes via methods for flow polytopes,
we now end this section with a result for flow polytopes via methods for order
polytopes. Stanley [62, Section 1] gave a full description of the faces of an order

polytope O(P ) via partitions of the poset P̂ := P ∪ {0̂, 1̂} into connected blocks
satisfying a compatibility criterion. Translating these results to our setting, we can
describe the face lattice of Fcar(ν) using the following notion of valid subwords of
ν̂ := NνE.

Definition 4.2.18. Let ν̂ := NνE, with its letters indexed by their position in the
word. A subword σ of ν̂ is valid if it satisfies the following conditions.

1. If σ contains an E step and an N step of ν̂, then it contains a peak of ν̂.

2. If σ contains Ei and Ej with i < j, then σ contains all Ek with i < k < j.

3. If σ contains Ni and Nj with i < j, then σ contains all Nk with i < k < j.

4. If σ contains Ni and Ej with i < j, then σ contains all steps Xk of ν̂ with
i < k < j.

In particular, ν̂ itself is a valid subword, as are each of the letters in ν̂. The word ν̂
can now be partitioned into valid subwords. As an example, consider the word
ν̂ = N1N2E3E4N5E6N7N8E9, which can be partitioned into the valid subwords σ1 =
N1N2E3N5, σ2 = E4, and σ3 = E6N7N8E9. The following is a direct consequence of
[62, Theorem 1.2] when translated to our setting (connectedness corresponds with
conditions 1, 2, and 3 in Definition 4.2.18, while compatibility corresponds with
condition 4).

Proposition 4.2.19. The face lattice of Fcar(ν) is the poset of partitions of ν̂ into
valid subwords, ordered by reverse inclusion of the partitions. The face lattice is
ranked by the number of valid subwords in the partition.

The empty face of Fcar(ν) corresponds to ν̂ itself and the top dimensional face is
the partition into a+ b+ 2 subwords, each consisting of a single step of ν̂. We have
the following corollary.

Corollary 4.2.20. Let peak(ν) denote the number of consecutive NE pairs in a
lattice path ν from (0, 0) to (a, b). The number of facets of Fcar(ν) is then a + b +
peak(ν̂).
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Proof. The facets of Fcar(ν) correspond with the partitions of ν̂ into a+ b+ 1 valid
subwords. In such a partition, exactly one subword contains two letters. From the
conditions of a valid subword, we see that such a subword is either a peak, or consists
of two E steps, or two N steps. As there are exactly a valid subwords with two E
steps and b valid subwords with two N steps, the result follows.

4.3 The polytope UI,J

Having seen in Corollary 4.2.7 that the length-framed triangulation of Fcar(ν) gives
a geometric realization of the ν-Tamari complex, we wish to know how it relates to
other known realizations. Recall from Chapter 2 that for any valid pair (I, J), Ce-
ballos, Padrol, and Sarmiento [16] gave a realization of the ν(I, J)-Tamari complex
by triangulating the polytope

UI,J := {(ei, ej) | i ∈ I, j ∈ J}.

The faces of the triangulation were given by

∆FI,J
:= conv{(ei, ej) | (i, j) ∈ FI,J},

where FI,J is a (I, J)-forest.
Having two different polytopes, each with a triangulation giving rise to the ν-

Tamari complex, it is natural to consider the connection between them. In this
section we determine that the polytopes UI,J and Fcar(ν) are in fact integrally equiv-
alent. As a consequence, we obtain that UI,J can be subdivided using the subdivision
algebra, answering a question of Ceballos, Padrol, and Sarmiento. We further show
how UI,J can be projected onto an acyclic root polytope, which answers the same
question from the perspective of acyclic root polytopes.

4.3.1 The graph G(I, J)

In order to relate the polytopes Fcar(ν) and UI,J , we construct a flow polytope over

a graph G(I, J) which is integrally equivalent to both. The graph G(I, J) will also
allow us to make explicit the connection between UI,J and acyclic root polytopes.

Crucial to our construction is the following relabeling of certain elements in J .
Define the map prec : J → [n] as follows. If with respect to the order ≺I,J , the

element j ∈ J is not immediately preceded by an element in I, then prec(j) = j.
Otherwise, prec(j) is defined to be this immediately preceding element that is in I.

Let A(I, J) be the graph with vertex set I ∪ J and edge set {(i, j) | i ≺I,J j, i ∈
I, j ∈ J}. If each j ∈ J is identified with prec(j), then the identification partitions
I ∪ J into blocks of size one or two. Define prec(A(I, J)) to be the quotient graph
of A(I, J) under this partition of its vertices. We may identify its vertex set with
I ∪ prec(J), and its edge set is {(i, prec(j)) | i < prec(j), i ∈ I, j ∈ J}.

Definition 4.3.1. Let G be a simple graph on a linearly ordered vertex set whose
edges are ordered from the smaller to the larger vertex. Define the minimal graph

62



min(G) to be the graph obtained from G by removing every edge (i, j) such that
there is a directed path i, i1, . . . , ik, j in G with k ≥ 1.

As an example, the graph G(I, J) in Figure 4.9 is the minimal graph of the
graph prec(A(I, J)). In fact, it is easy to verify that for any valid (I, J)-pair,
G(I, J) = min prec(A(I, J)).

We note that G(I, J) can be thought of as a directed graph, with edges directed
from the smaller to the larger vertex. Also, the head of each edge is in I, while the
tail of each edge is in prec(J).

Recall that given a graph G on [n], the fully augmented graph G̃ is the connected

graph G̃ with vertex set Ṽ (G) = [n]∪{s, t}, where s < 1 < · · · < n < t, and edge set

Ẽ(G) ∪ {(s, i), (i, t) | i ∈ V (G)}. Also, recall that the partially augmented graph Ĝ

is obtained by removing from G̃ the set of edges of the form (s, i) or (j, t) where i
is a sink of G or j is a source of G.

Example 4.3.2. Consider the valid pair I = {1, 2, 3, 5, 9}, J = {2̄, 7̄, 8̄, 9̄}. Then
1 ≺ 2 ≺ 2̄ ≺ 3 ≺ 5 ≺ 7̄ ≺ 8̄ ≺ 9 ≺ 9̄ with respect to the order ≺I,J , so

prec(J) = {2, 5, 8, 9}. The graphs A(I, J) and prec(A(I, J)) are shown on the right
of Figure 4.9. The minimal graphG(I, J) has vertex set I∪prec(J) = {1, 2, 3, 5, 8, 9}.
The partially augmented graph Ĝ(I, J) has vertex set V (G(I, J)) ∪ {s, t} and edge
set E(G(I, J)) ∪ {(s, i) | i ∈ I} ∪ {(prec(j, t) | j ∈ J}. These are shown on the left
of Figure 4.9.

Remark 4.3.3. Looking ahead, the four graphs displayed in Figure 4.9 are central
to the four polytopes of Theorem 4.3.8 in the sense that the polytopes S(G) and FĜ

can respectively be seen as the convex hulls of (sub)paths of the graphs G = G(I, J)

and Ĝ, while UI,J and the acyclic root polytope R+
G can be seen as the convex hulls

of edges of the graphs A = A(I, J) and prec(A). Perhaps this viewpoint illuminates
why these four polytopes have the ‘same’ subdivision algebra.

Lemma 4.3.4. For any two vertices v and w of G(I, J) with v < w there exists at
most one directed path from v to w.

Proof. Suppose there are two distinct paths P and Q from v to w. We can assume
without loss of generality that v is the first point at which P and Q differ. Then
the first edges (v, p1) and (v, q1) of P and Q are different, and we may assume
that p1 < q1. Now, the path P is of the form v, p1, . . . , pk, . . . , w where pk is the
largest vertex in P which is smaller than q1. Since (v, q1) and (pk, pk+1) are edges
in G(I, J), then pk ∈ I and q1 ∈ prec(J). Since pk < q1, by definition, the edge
(pk, q1) is in prec(A(I, J)), and furthermore there is a path P ′ in G(I, J) from pk
to q1. However, the concatenation of the paths v, p1, . . . , pk and P ′ is then a path
from v to q, and by the definition of G(I, J), the edge (v, q1) cannot be in G(I, J),
which is a contradiction.

We have just shown that as a directed graph, G(I, J) = min prec(A(I, J)) is
acyclic. However, in general, it is possible to start with a graph and obtain a
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A(I, J)

1 2 2 3 5 7 8 9 9

prec(A(I, J))

1 2, 2 3 5, 7 8 9, 9

G(I, J)

1 2 3 5 8 9

Ĝ(I, J)

s 1 2 3 5 8 9 t

Figure 4.9: Various graphs associated to the valid pair I = {1, 2, 3, 5, 9}
and J = {2, 7, 8, 9}. The graph A(I, J) (top right), its quotient graph
prec(A(I, J)) (bottom right), its minimal graph G(I, J) (bottom left), and

the partially augmented graph Ĝ(I, J) (top left). See Remark 4.3.3 for an
explanation of the roles played by these graphs in Theorem 4.3.8.

minimal graph that contains cycles (as an undirected graph). For example, let H
be the graph on the vertex set [4] with directed edges (1, 3), (1, 4), (2, 3), and (2, 4).
Then min(H) = H is not acyclic, as an undirected graph. This example illustrates
why under the uniform projection map of Ceballos et al. [16, Section 1.4], certain
UI,J do not project to acyclic root polytopes. See Example 4.3.5.

Example 4.3.5. Let I = {1, 2} and J = {3, 4} so that UI,J = conv{(e1, e3),
(e1, e4), (e2, e3), (e2, e4)}. The map of Ceballos et al. which projects R8 → R4

along the subspace spanned by {(ei, ei) | i = 1, . . . , 4} sends UI,J to the polytope
Q = conv{e1 − e3, e1 − e4, e2 − e3, e2 − e4}. This is not an acyclic root polytope for
the simple reason that it does not contain the origin. Aside from that, Q also cannot

be described as the convex hull of points Φ+
G = Φ+

An−1
∩cone(G) where G is acyclic. If

such aG exists, it must contain the edges (1, 3), (2, 3), (2, 4) because they correspond
to positive roots which cannot be expressed as positive linear combinations of other
lower roots lying in Q. If these edges are in G, then the acyclic G cannot contain
the edge (1, 4). However, the vertex e1 − e4 /∈ cone(G) for this G.

For the class of graphs prec(A(I, J)), Lemma 4.3.6 shows that if we forget the ori-
entation on the edges of G(I, J) = min prec(A(I, J)), then G(I, J) remains acyclic.

Lemma 4.3.6. The graph G(I, J) is acyclic as an non-oriented graph.

Proof. Suppose there is a cycle in G(I, J). Let v and w be the smallest and largest
vertices in the cycle respectively. We can partition the cycle into two sequences of
edges, each beginning at v and ending at w. By Lemma 4.3.4 we know that these
sequences cannot both form directed paths from v to w. Thus at least one of the
sequences is of the form v, v1, v2, . . . , vℓ, w where vk > vk+1 for some k. We choose k
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so that vk is the smallest vertex for which vk+1 < vk. The edge (vk+1, vk) is an edge
in G(I, J) with vk+1 < vk, so vk+1 ∈ I and vk = prec(j) for some j ∈ J . Now any ui
in J satisfying vk+1 < ui < vk must satisfy ui = prec(ui), as otherwise (vk+1, vk)
can be written as a linear combination of (vk+1, ui) and (ui, vk). It follows that the
vertices u1, ..., uℓ satisfying vk+1 < u1 < · · · < uℓ < vk are all in I or are all in J with
prec(ui) = ui for each i. We therefore also obtain that vk−1 < vk+1 < vk < vk+2. In
the case that ui ∈ I for each i, we have that uℓ ̸= vk = prec(j), and hence vk ∈ I.
Now (vk, vk+2) is either an edge in G(I, J) or a nonnegative linear combination of
edges in G(I, J). In either case, we can write (vk+1, vk+2) as a nonnegative linear
combination of edges in G(I, J) which is a contradiction. We similarly obtain a
contradiction if all ui are in J and satisfy prec(ui) = ui.

4.3.2 A subdivision algebra for UI,J

In this section we make explicit the relationships between four polytopes. These
are the polytope UI,J , the flow polytope FĜ(I,J), the acyclic root polytope R+

G(I,J)
,

and a polytope S(G(I, J)) which generalizes a polytope of Mészáros from [48]. We
begin with the construction of these polytopes using the graphs of Section 4.3.1.
The reader may find it helpful to refer often to Figure 4.9.

For a valid pair (I, J) ∈ [n] × [n], suppose the graph G(I, J) has m edges, so

that the partially augmented graph Ĝ has m̂ = m+ |I|+ |J | edges. For brevity we
will generally suppress notation in this section, and simply write G := G(I, J). Let

{e(i,j) | (i, j) ∈ E(G)} be the orthonormal basis for Rm and let {e(i,j) | (i, j) ∈ E(Ĝ)}
be the orthonormal basis for Rm̂. Recall that the flow polytope FĜ can be defined
in terms of its routes, i.e.

FĜ = conv{routes (s, . . . , t) in Ĝ} ⊆ Rm̂.

Next, we show that FĜ is integrally equivalent to a ν-caracol flow polytope.

Lemma 4.3.7. For any valid pair (I, J) and ν = ν(I, J), the flow polytopes FĜ(I,J)

and Fcar(ν) are integrally equivalent.

Proof. Recall from Lemma 2.3.6 that if e is an idle edge, then FG ≡ FG/e. Therefore,

it suffices to show that we can contract idle edges in Ĝ(I, J) and car(ν) to obtain
the same graph. Let w be the number of valleys in ν. We can then write ν =∏w

i=1E
aiN bi . If Pw denotes the path graph of [w], let H be the graph obtained from

Pw ∪ {s, t} by adding ai copies of the edge (s, i) and bi copies of the edge (i, t) for

each i ∈ [w]. Contracting all idle inner edges of Ĝ(I, J) and car(ν) yield H up to a
relabeling of the vertices (see Figure 4.10), and so the result follows.

Let π1 : Rm̂ → Rm be the projection onto the coordinates associated with the
inner edges of Ĝ, and define the polytope S(G) to be the image of FĜ under π1.
Note that since (I, J) is a valid pair, we have that I ∩ prec(J) ̸= ∅, and moreover

every route in Ĝ of the form (s, v, t) with v ∈ I ∩ prec(J) projects to 0 under π1.
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Ĝ(I, J)

s 1 2 3 5 8 9 t

H

s 1 2 3 t

car(ν)

s 1 2 3 4 t

Figure 4.10: Contracting idle edges in Ĝ(I, J) and car(ν) gives the graph H
up to relabeling of the vertices. Here I = {1, 2, 3, 5, 9} and J = {2, 7, 8, 9}.

The polytope S(G) can equivalently be defined as

S(G) = conv{paths (v1, . . . , vℓ) in G | v1 ∈ I and vℓ ∈ prec(J)} ⊆ Rm,

and in this definition we include the empty path in G so that 0 ∈ S(G).
Recall that A = A(I, J) is the graph on I ∪J with the edge set {(i, j) | i ≺ j} ⊆

I × J . It follows that we can express UI,J as

UI,J = conv{(ei, ej) | (i, j) ∈ E(A)} ⊆ R2n.

The acyclic root polytope R+
G defined in Section 2.2 is

R+
G = conv{0, ei − ej | (i, j) ∈ E(prec(A))} ⊆ Rn,

where prec(A) is the quotient graph of A defined in Section 4.3.1.
We define the map π2 : R2n → Rn on the standard basis of R2n as follows. Let

π2((ei,0)) = ei for i = 1, . . . , n, and

π2((0, ej)) =

{
−eprec(j), if j ∈ J,

−ej, if j /∈ J.

Let AI,J denote the affine span aff{(ei, ej) | (i, j) ∈ E(A)}, so that UI,J ⊆ AI,J . Now,

the restriction π2 : AI,J → Rn gives π2(ei, ej) = ei − eprec(j) for each (i, j) ∈ E(A),

and the image of UI,J under π2 is R+
G.

Recall Rm̂ = span{ee | e ∈ E(Ĝ)}. We define a map φ1 : Rm̂ → R2n by

φ1(ee) =


(ei,0), if e = (s, i),

(0, ej), if e = (prec(j), t),

(0,0), otherwise,

where 0 ∈ Rn, and extend linearly. Now φ1 maps routes of Ĝ to vertices of UI,J ,
and the image of FĜ is UI,J under φ1.

Let φ2 : Rm → Rn be the linear map defined by φ2(e(i,j)) = ei − ej for (i, j) ∈
E(G), extended linearly. We can now state our main theorem.
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Theorem 4.3.8. Let I ⊆ [n], J ⊆ [n] be a valid pair. For the polytope UI,J , there
exists an acyclic root polytope R+

G and a flow polytope FĜ such that the following
diagram commutes:

FĜ

π1

��

φ1 // UI,J

π2

��
S(G) φ2

//R+
G

where φ1 and φ2 are integral equivalences.

Proof. We first check that φ1 and φ2 are integral equivalences. Let xe denote the
coordinate in Rm associated with the edge e in Ĝ. Now φi restricts to the linear
map φ1 : Rm → AI,J given by

φ1

(
(xe)e∈Ĝ

)
=

∑
i∈I

x(s,i)ei ,
∑
j∈J

x(prec(j),t)ej


where ei and ej are in Rn.

If v is a vertex in FĜ, then it corresponds to a unique route in G, which by
Lemma 4.3.4 is determined by a pair of edges (s, i) and (prec(j), t) with i ≤ prec(j).
Thus x(s,i) = x(prec(j),t) = 1 and so φ1(v) = (ei, ej), which is a vertex in UI,J . In
particular, φ1 is a bijection between the vertices of FĜ and UI,J , and it extends to
a bijection between the polytopes. Furthermore, since φ1 maps FĜ ⊆ [0, 1]m into
UI,J ⊆ [0, 1]2n while preserving its dimension, it also preserves the respective lattices
intersected with the affine span of the polytopes. Thus φ1 is an integral equivalence.

In [47, Theorem 4.4] Mészáros showed that φ2 is a linear map restricting to
a bijection between S(G) and R+

G, so it remains to check that φ2 preserves the
lattice. Note that the edges of G form an orthonormal basis for R|E(G)|, and so
dim(S(G)) = |E(G)|. Since the dimension of R+

G is the number of edges in its
minimal graph, it also has dimension |E(G)|. Therefore φ2 is a dimension preserving
linear map between [0, 1]-polytopes, and hence preserves the lattice.

Finally, we check that the diagram commutes. By linearity of the maps, it
suffices to check that the square commutes for vertices of FĜ. Let v be a vertex
of FĜ, which then corresponds with a route R determined by a pair of edges (s, i)
and (prec(j), t). Now π2(φ1(v)) = π2((ei, ej)) = ei − eprec(j). On the other hand,

if (i0, i1), (i1, i2), ..., (ik, ik+1) is the unique path in Ĝ(I, J) from i = i0 to prec(j) =

ik+1, then we have φ2(π1(v)) = φ2

(∑k
ℓ=0 e(iℓ,iℓ+1)

)
=
∑k

ℓ=0 eiℓ −eiℓ+1
= ei−eprec(j).

Example 4.3.9. Let I = {1, 2, 3, 5, 9} and J = {2̄, 7̄, 8̄, 9̄}. The graph G = G(I, J)
shown at the bottom left of Figure 4.9 hasm = 5 edges, and the partially augmented
graph Ĝ at the top left of Figure 4.9 has m̂ = 14 edges. The flow polytope FĜ ⊆ R14

is the convex hull of the 15 routes of Ĝ. Under the projection π1 : Rm̂ → Rm, the
three routes (s, 2, t), (s, 5, t), and (s, 9, t) are mapped to 0. We then see that the
polytope S(G) ⊆ R5 is the convex hull of 0 and the points defined by the 12 subpaths
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in G from a vertex i ∈ I to a vertex k ∈ prec(J) = {2, 5, 8, 9}. The map φ2 then
takes a subpaths in G to the root determined by the its end points. For example,
the path (2, 5, 8) is taken to the root e2−e8 = (e2−e5)+(e5−e8). The convex hull
of 0 and the roots obtainable in this way is precisely R+

G. The map φ1 takes the 15

routes in Ĝ to the 15 arcs of A(I, J). For example the route (s, 2, 5, t) is taken to
the arc (2, 7) since 5 = prec(7), while the route (s, 2, 5, 8, t) in FĜ is taken to the
arc (2, 8). The projection π2 now takes (2, 7) to the root e2 − e5, and it takes (2, 8)
to the root e2 − e8.

Theorem 4.3.8 is the key to obtaining subdivisions of UI,J with the subdivision

algebra. LetM(G) =
∏

(i,j)∈E(G) xij be the monomial corresponding to G = G(I, J).

Then reductions of M(G) encode subdivisions of FĜ(I,J), and via the integral equiv-
alence φ1 they induce subdivisions of UI,J , and we have the following corollary.

Corollary 4.3.10. Reductions of the monomial M(G(I, J)) in the subdivision al-
gebra encode subdivisions of UI,J .

The above corollary can also be seen using the acyclic root polytope R+
G. Since a

reduced form ofM(G) encodes a triangulation ofR+
G, any such triangulation induces

a triangulation of UI,J by adding cone points.

Example 4.3.11. For the G = G(I, J) in Figure 4.9, M(G) is the monomial
x12x25x35x58x59. We can perform a sequence of reductions on M(G) with β = 0
to obtain the following polynomial p.

x12x15x35x18x19 + x12x18x35x38x19 + x12x18x38x58x19 + x12x19x35x58x39

+x12x19x38x58x39 + x12x19x39x58x59 + x15x25x35x18x19 + x18x25x35x28x19

+x18x28x35x38x19 + x18x28x38x58x19 + x19x25x35x28x29 + x19x28x35x38x29

+x19x28x38x58x29 + x19x29x38x58x39 + x19x29x35x38x39 + x19x29x39x58x59

Each monomial simultaneously encodes a simplex of a triangulation of FĜ(I,J),

R+

G(I,J)
, and UI,J . Consider for example the first monomial M = x12x15x35x18x19

in p. For the flow polytope FĜ(I,J) it encodes the convex hull of the routes in Ĝ(I, J)

determined by the edge pairs {(s, i), (j, t) | xij divides M} and the exceptional
routes. For the acyclic root polytope R+

G(I,J)
it encodes the simplex conv{0, ei−ej |

xij divides M}. Finally, for UI,J it encodes the simplex conv{(ei, ej) | xi,prec(j)
divides M or prec(j) = i}. Since 5 = prec(7), we can replace any 5 appearing
as a second subscript in M with 7, giving x12x17x37x18x19. With such a shift, the
vertices of the simplex can be directly read from the monomial. In this case, the
vertices correspond with non-crossing arcs in the (I, J)-tree in Figure 4.11. In fact,
p encodes the simplices of the (I, J)-Tamari complex as we shall see in the next
section.
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1 2 2 3 5 7 8 9 9

Figure 4.11: The (I, J)-tree corresponding to the monomial x12x17x37x18x19.

4.3.3 The ν-Tamari complex via the subdivision algebra

Having seen how the subdivision algebra can be used to subdivide UI,J , we will

conclude this chapter by giving a reduction order for the monomial M(G(I, J))
which gives rise to the ν(I, J)-Tamari complex. Recall that many (I, J)-pairs can
give rise to the same path ν. For the sake of clarity, we will assume in the remainder
of the chapter that (I, J) is the canonical (I, J)-pair, although the results obtained
also hold more generally for any valid (I, J)-pair. For a canonical pair (I, J), we
have that prec(J) = J = {j | j ∈ J}, allowing us to omit the prec function in the
exposition.

A graph is said to be alternating if none of its vertices have both incoming
and outgoing edges. A graph is non-crossing if it does not have a pair of edges
(i, j) and (i′, j′) satisfying i < i′ < j < j′. Let Dν denote the set of all maximal
alternating non-crossing graphs on vertex set I ∪ J with edges (i, j) with i ∈ I,
j ∈ J , and i < j. Note that by maximality the graphs in Dν must be trees and
therefore have |I ∪ J | − 1 edges.

Lemma 4.3.12. The alternating non-crossing graphs in Dν are in bijection with
the (I, J)-trees determined by ν.

Proof. The bijection is given by mapping each arc (i, j) in an (I, J)-tree to the edge
(i, j) in a graph, and noting that non-crossing condition is identical for arcs and
edges. Although the arcs of the form (i, i) are mapped to empty edges, the map is
a bijection as such arcs appear in all (I, J)-trees.

At a vertex j, the edges (i, j) and (j, k) where i < j < k form a longest pair if
(i, j) is the longest incoming edge to j and (j, k) is the longest outgoing edge from j.

Lemma 4.3.13. The reduced forms of M(G(I, J)) obtained by any reduction order
in which longest pairs are reduced first at each vertex are equal.

Proof. We begin by observing that it suffices to show that the monomials of highest
degree encode the graphs in Dν , as they determine the remaining terms in the
reduced form. This can be seen from the reduction tree, as the simple reductions
determine the entire reduction tree.

We first show that a reduction at a longest pair preserves the non-crossing con-
dition. Let G be a non-crossing graph on I ∪ J with all edges directed forward.
Consider any vertex j with its longest incoming and outgoing edges (i, j) and (j, k),
i.e. there are no edges (i′, j) and (j, k′) with i′ < i and k < k′. Since no edge in
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G crosses (i, j) or (j, k), and they are a longest pair, the edge (i, k) does not cross
any edge in G. Thus each of the three graphs obtained by a reduction at j are
non-crossing.

Let R be a reduced form of M(G(I, J)) obtained by reducing longest pairs first.
Since the graph G(I, J) is non-crossing by construction, all graphs encoded by the
monomials in R are non-crossing. In addition, the graphs obtained from G(I, J) by
reductions do not have multiedges, as G(I, J) is acyclic as an undirected graph. In
G(I, J), there is an edge for each i ∈ I \ J , an edge for each j ∈ J \ I, and the
edges on the path through vertices in I ∩ J . Thus the number of edges in G(I, J)
is |I ∪ J | − 1. Since simple reductions preserve the number of edges, the monomials
of highest degree in R encode simple alternating graphs with |I ∪ J | − 1 edges, and
hence must be maximal.

Since the monomials of highest degree in a reduced form of M(G(I, J)) corre-
spond with the facets of a unimodular triangulation of FĜ(I,J), they are enumerated

by its volume, namely, the ν-Catalan number Cat(ν). This is also the number
of (I, J)-trees, and therefore via the bijection in Lemma 4.3.12 the monomials of
highest degree in R must comprise the whole set Dν . Since the inner faces of a
triangulation are determined by the facets of the triangulation, the reduced form R
is determined by its monomials of highest degree.

Define the length reduction order to be the reduction order obtained by
reducing the longest pair {(i, j), (j, k)} with minimal j at each reduction step.

Theorem 4.3.14. The triangulation of FĜ(I,J) obtained by reducing the monomial

M(G(I, J)) in the length reduction order is a geometric realization of the ν-Tamari
complex.

Proof. Let R be the reduced form obtained from reducing G(I, J) in the length
reduction order. Let M be a monomial of highest degree in R and let GM be
the graph with vertex set V (G) = I ∪ prec(J) and edges set E(G) = {(i, j) |
xij divides M}. Label each edge (s, i) in ĜM with Ei and each edge (j, t) with Nj.

As GM is alternating, a route in ĜM has edges (s, i), (i, j), and (j, t), with i ∈ I,
j ∈ prec(J), and (i, j) is the empty edge if i = j. Let AI,J denote the set of possible

arcs on the pair (I, J). Define the map Φ : RĜ(I,J) → AI,J by mapping the route

determined by the pair of edges (Ei, Nprec(j)) to the arc (i, j). Now Φ extends to a
bijection between simplicial complexes, taking faces of the triangulation to (I, J)-
forests. Since ν(I, J) = ν(I, prec(J)), the conclusion follows.

By Corollary 4.3.10, the following is immediate.

Corollary 4.3.15. The triangulation of UI,J obtained by reducing M(G(I, J)) in
the length reduction order encodes a geometric realization of the ν-Tamari complex.

Mészáros showed in [47] that the h-polynomial of a framed triangulation of a flow
polytope FG̃ can be obtained from any reduced form R of M(G) as a polynomial
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in β. In particular the h-polynomial is obtained by first substituting xij = 1 for all
xij in R, and then computing R(β − 1).

We know from Theorem 4.2.13 that the h-vector of Fcar(ν) ≡ FĜ(I,J) ≡ UI,J is the

ν-Narayana polynomial. Thus R(xij = 1, β − 1) is the ν-Narayana polynomial, and
from Proposition 3.1.6 we know that the shifted h-polynomial, i.e. R(xij = 1, β), is
the ν-Schröder polynomial.

Copyright© Matias K. von Bell, 2022.
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Chapter 5 A subdivision algebra for ∆a ×∆b via flow polytopes

Given a standard a-simplex ∆a and a standard b-simplex ∆b, their Cartesian product
is the (a+ b)-dimensional polytope

∆a ×∆b = conv{(ei, ej) | ei ∈ ∆a and ej ∈ ∆b}.

The triangulations of ∆a × ∆b have been extensively studied. They serve as
building blocks in the study of triangulations of more complicated polytopes [39, 53],
and play an important role in understanding triangulations more generally [25, 57].
They have also garnered interest from a variety of perspectives, having connections
to algebraic geometry (Schubert calculus [3], Segre varieties [22], Gröbner bases
[68]), tropical geometry (tropical convexity [30], tropical hyperplane arrangements
and oriented matroids [4, 16]), and optimization (dual transportation polytopes
[26]).

The vertices of ∆a × ∆b are of the form (ei, ej), where 1 ≤ i ≤ a + 1 and
1 ≤ j ≤ b + 1. They can be associated with the lattice points in the rectangular
region determined by (0, 0) and (a, b) by mapping the vertex (ei, ej) to the point
(i − 1, j − 1). With this identification, we can describe a triangulation of ∆a ×∆b

known as the staircase triangulation, which is given by the following theorem.

Theorem 5.0.1 ([27, Theorem 6.2.13]). The lattice points in a lattice path from
(0, 0) to (a, b) give a full-dimensional simplex in ∆a ×∆b. Furthermore, the set of
all such lattice paths give a triangulation of ∆a × ∆b. The volume of ∆a × ∆b is
thus given by

(
a+b
a

)
=
(
a+b
b

)
.

0 1 2 3

0

1

2

1

2 3 4

5 6

1. (e1, e1) 2. (e1, e2) 3. (e2, e2)

4. (e3, e2) 5. (e3, e3) 6. (e4, e3)

Figure 5.1: A lattice path encoding a simplex in the staircase triangulation
of ∆3 × ∆2. The six vertices of the simplex (right) are given by the six
lattice points on the lattice path.

Theorem 5.0.1 does not depend on the identification of the vertex (ei, ej) with
the point (i − i, j − 1). In fact, given any permutation pair (π1, π2) ∈ Sa+1 ×
Sb+1, we can choose to identify (ei, ej) with the lattice point (π1(i)− 1, π2(j)− 1),
thereby obtaining a (possibly) different staircase triangulation. In this way, the
permutations give rise to a symmetry class of triangulations, collectively known as
the staircase triangulations of ∆a×∆b. However, not all permutation pairs give
unique triangulations. If a permutation pair (π1, π2) is obtained from another pair
(π′

1, π
′
2) by reversing both permutations, then paths given by the identification using
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s 1 2 3 4 5 t1 2 3

G4,3 G

Figure 5.2: The flow polytopes of the above graphs are integrally equivalent.
In particular FG ≡ FG4,3 = ∆4 ×∆3.

(π1, π2) are a 180◦ rotation of those using (π′
1, π

′
2). The two staircase triangulations

are therefore identical. As such permutation pairs are the only ones giving rise to
identical staircase triangulations, ∆a × ∆b has exactly 1

2
(a + 1)!(b + 1)! staircase

triangulations [27, Proposition 6.2.16].
Having studied the subpolytope UI,J ⊆ ∆a × ∆b from the perspective of flow

polytopes in Chapter 4, we now extend this perspective to ∆a × ∆b. As a result,
we obtain a subdivision of ∆a×∆b into flow polytopes (up to integral equivalence),
allowing for an extension of Mészáros’ subdivision algebra to ∆a ×∆b.

The product of simplices ∆a × ∆b can be viewed as the flow polytope over
the graph Ga,b with vertex set [3] and a + 1 copies of the edge (1, 2) and b + 1
copies of the edge (2, 3). For example, the flow polytope over the left graph in
Figure 5.2 is ∆4 ×∆3. At first glance, the flow polytope perspective does not seem
to yield anything new in regards to triangulations of ∆a × ∆b. In particular, any
Danilov–Karzanov–Koshevoy triangulation (Theorem 2.3.10) or Stanley–Postnikov
triangulation (see [51]) of FGa,b

is a staircase triangulation of ∆a × ∆b. To obtain
more triangulations, we will slightly expand the definition of a flow polytope in
Section 5.1 by allowing negative flows and letting the underlying graph G have
bidirectional edges. This lets us generates a large class of flow polytopes which are
integrally equivalent to ∆a ×∆b.

5.1 Flow polytopes and negative flows

The traditional definition of a flow polytope given in the introduction does not
allow negative flows or bidirectional edges. In this section, we remedy the situation
by giving a slightly modified definition. We will see that flow polytopes with the
modified definition are integrally equivalent to traditional flow polytopes, which
might suggest that the new definition given is unnecessary. However, the extended
definition proves to be pivotal for our purposes in the remainder of the chapter.

Let G be a connected directed acyclic graph with vertex set V (G) = {1, 2, . . . , n}
and edge multiset E(G) with m directed edges. An edge (i, j) with i < j can be
of three possible types: a forward edge (i, j,+) directed toward j, a backward
edge (i, j,−) directed toward i, or a bidirectional edge (i, j,±). For a vertex j,
we divide the edges incident to j into smaller and larger edges, that is, sets S(j)
and L(j), where S(j) denotes the set of edges (i, j) with i < j, and let L(j) denote
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the set of edges (j, k) with j < k. At each vertex i ∈ V (G) we assign a netflow
ai ∈ Z satisfying the balance condition

∑n
i=1 ai = 0, and hence an = −

∑n−1
i=1 ai. For

a = (a0, . . . , an,−
∑n−1

i=1 ai) ∈ Zn, an a-flow on G is a tuple (xe)e∈E ∈ Rm satisfying∑
e∈L(j)

xe −
∑

e∈S(j)

xe = aj (5.1)

with xe ≥ 0 if e is a forward edge, xe ≤ 0 if e is a backward edge, and xe ∈ R if e is
bidirectional. We think of xe as the amount of flow in the edge e. If a bidirectional
edge has positive flow, we treat it as a forward edge, and if it has negative flow, we
treat it as a backward edge.

As in previous chapters, we denote the set of all a-flows on G by FG(a). Here
we also consider only the unit flow case FG(u) with u = e1−en, and so we suppress
the notation to FG := FG(u). We prove in Proposition 5.1.1 that FG is a convex
polytope, which justfies calling FG the flow polytope of G. When all edges in G
are forward edges, G is necessarily acyclic, and in this case our definition of a flow
polytope here agrees with Definition 2.3.1. The terminology for flow polytopes from
Section 2.3 naturally extends to this slightly more general setting.

Recall that a route in G is a maximal path from the source to the sink, and
the set of all routes in G is denoted RG. An edge in G which is not in a route
cannot have non-zero flow, so we can assume that all edges in G belong to some
route in RG. Furthermore, since G is acyclic, the source and sink vertex are each
incident to at most one edge in a route. We can therefore also assume that all edges
incident to the source and sink are forward edges. To each route R ∈ RG we now
associate a signed characteristic vector xR = (xe)e∈E(G) as follows. If e = (i, j) ∈ R
with i < j, we set xe = 1 if the path traverses e from i to j, and we set xe = −1 if
the path traverses e from j to i, and if e /∈ R, we set xe = 0. We can now give a
V-description of FG as the convex hull of routes in G, which also serves to justify
the fact that FG is a polytope.

Proposition 5.1.1. The set of all u-flows FG is a polytope if and only if G is
acyclic. Furthermore, when G is acyclic, the vertex description of FG is given by

FG = conv{xR | R ∈ RG}.

Proof. First, if G is not acyclic, then it has a cycle C. Given any unit flow, one
can arbitrarily change the flow in C while preserving the conservation of flow con-
dition (2.1). Thus the set of unit flows is not bounded and hence not a polytope.

If G is acyclic, we show that FG = conv{xR | R ∈ RG} and hence a polytope.
We can label the routes in RG such that RG = {R1, . . . , Rk} for some positive
integer k, and we let xi denote the signed characteristic vector for Ri. Letting
p ∈ conv{xR | R ∈ RG}, we can now write p =

∑k
i=1 λixi where λi ∈ R≥0 and∑k

i=1 λi = 1. Note that the netflow at vertex 1 is given by the sum
∑
λi where

the sum is taken over only the indices of routes using an edge in L(1). However,
since every route in RG must begin with an edge in L(1), the netflow at vertex 1 is∑k

i=1 λi = 1. Similarly we obtain that the netflow at vertex n is −1. Furthermore,

74



since each xi adds no netflow at any inner vertex we see that any linear combination∑k
i=1 λixi also has netflow 0 at each inner vertex. Thus p ∈ FG.
Let q1 be a u-flow in FG, and let q1,e denote the coordinate of q1 corresponding

to the edge e. We construct q1 as a linear combination of routes in an iterative
fashion. Consider an edge e1 ∈ R1 such that |q1,e1| is minimal, and let λ1 = |q1,e1|.
Then q1−λ1x1 is a ((1−λ1)u)-flow. Let q2 = q1−λ1x1 and consider an edge e2 ∈ R2

such that |q2,e2| is minimal and let λ2 = |q2,e2|. We obtain that q1−λ1x1−λ2x2 is a
((1−λ1−λ2)u)-flow. We continue this process, constructing a ((1−

∑j
i=1 λi)u)-flow

qj for each Rj ∈ RG by removing the maximal amount of flow from all edges in Rj.
At each step the netflow of inner vertices is unaffected, while the netflow at the
source decreases by λi and the netflow at the sink increases by λi. This process can
be continued until we obtain that q1−

∑k
i=1 λixi is a ((1−

∑k
i=1 λi)u)-flow. If there

remains an edge e in G with non-zero flow in the ((1 −
∑k

i=1 λi)u)-flow, then by
conservation of flow e is either in a cycle or a route. Since G is acyclic, e must be in
a route Rj with non-zero flow in the ((1 −

∑k
i=1 λi)u)-flow on G. This contradicts

the fact that the largest possible flow in Rj was subtracted at step j. Thus all edges

in an ((1−
∑k

i=1 λi)u)-flow on G are zero. It then follows that q1 =
∑k

i=1 λixi and∑k
i=1 λi = 1, and therefore FG = conv{xR | R ∈ RG}.
It remains to show that every route in RG corresponds to a vertex of FG. Note

that since FG is a lattice polytope in [−1, 1]m not containing the origin, it cannot
have interior lattice points. It then suffices to show that no three vectors in {xR |
R ∈ RG} are colinear. Let xu = µ1xv + µ2xw for routes Ru, Rv, and Rw, and µ1,
µ2 ∈ R. We show that the vectors xu, xv and xw cannot be distinct. Let e be the
edge in Ru incident to the source. Then xu,e = 1 as source edges are forward edges.
Now xv,e and xw,e cannot both be zero since µ1xv,e + µ2xw,e = 1. If xv,e = 1 and
xw,e = 0, then µ1 = 1. In this case the equation µ1xv,f + µ2xw,f = xu,f = 0 must
also be satisfied, where f is the edge of Rw incident to the source. Since xv,f = 0, it
follows that µ2 = 0, and thus xu = xv. Similarly if xv,e = 0 and xw,e = 1, we obtain
that xu = xw. If xv,e = xw,e = 1, then µ1 + µ2 = 1. Now either Rv = Rw, or there
exists an edge g in Rv which is not in Rw. In the latter case we obtain that xv,g = 0
or xw,g = 0. Then either µ1 = 0 or µ2 = 0, respectively yielding that xu = xw or
xu = xv.

Having now shown that our notion of a flow polytope is well-defined, we proceed
by showing that a theory for flow polytopes with negative flows and bidirectional
edges is not needed.

Lemma 5.1.2. Let G be an acyclic digraph. Then FG is integrally equivalent to a
flow polytope FG∗, where all edges of G∗ are forward edges.

Proof. First we consider backward edges in G. Since G is acyclic, the vertex labels
can be permuted such that G has no backward edges. Changing the orientation of
a backward edge e amounts to reflecting the flow polytope about the hyperplane
xe = 0, which is an integral equivalence.

Next we show that the operation of contracting a bidirectional edge (i, j,±)
with i < j is an integral equivalence. If the edge (i, j,±) is the k-th edge in a fixed
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ordering of the edges of G, the integral equivalence is given by φ : Rm → Rm−1,
where

φ(x1, . . . , xk, . . . , xm) = (x1, . . . , x̂k, . . . , xm).

Let D denote the set of edges incident to i not including (i, j,±). Define a map
ψ : Rm−1 → Rm by

ψ(x1, . . . , x̂k, . . . , xm) = (x1, . . . , xk−1,

 ∑
e∈L(i)∩D

xe −
∑
e∈S(i)

xe

 , xk+1, . . . , xm).

Now restricting φ to FG gives a bijection between FG and FG/(i,j,±), with its inverse
given by restricing ψ to FG/(i,j,±). It is also easy to verify that φ restricts to a
bijection between Zm ∩ aff(FG) and Zm−1 ∩ aff(G/(i, j,±)).

5.2 The flow polytope FG̃B(ν) and its simplex subdivisions

In this section we construct a flow polytope FG̃B(ν) arising from a graph determined
by a lattice path ν with bidirectional edges. This flow polytope is integrally equiva-
lent to a product of two simplices, and we study a particular subdivision of it which
has as its dual a w-simplex, where w is the number of valleys of ν = EνN .

5.2.1 The flow polytope FG̃B(ν)

Let a and b be nonnegative integers, and let ν be a lattice path from (0, 0) to (a, b),
with steps E = (1, 0) and N = (0, 1). Let (I, J) be the canonical pair associated
with ν. We label the steps in ν according to this canonical pair (I, J), with E
steps indexed by elements of I and N steps indexed by elements of J , and ordered
according to ≺I,J . We call this the canonical indexing for the path ν. For an
example, the path ν in Figure 5.3 demonstrates this labeling for I = {1, 2, 3, 5, 6}
and J = {1, 3, 4, 6}. Note that the set of valleys of ν are indexed by elements in
I ∩ J , where J = {j | j ∈ J}.

Definition 5.2.1. Let n be the largest index in a canonical indexing of a path ν. We
define the ν-graph G(ν) to be the graph on vertex set [n] with its edge set defined
as follows. A pair (i, j) is an edge of G(ν) if and only if Ei · · ·Nj is a connected
subword of ν and its only valleys are of the form EkNk with k = i or k = j. All
edges in G(ν) are directed forward. The bidirectional ν-graph GB(ν) is the graph
G(ν), but with edges (i, j) chosen to be bidirectional whenever Ei and Nj are both
steps in valleys.

The graph G(ν) here is equal to the graph G(I, J) of Section 4.3.1 for the canoni-
cal (I, J)-pair associated with ν. Although it is possible to consider valid (I, J)-pairs
more generally in this chapter, we choose to work only with the canonical pair for
the sake of clarity. By construction, the bidirectional edges in GB(ν) form a path
of length w − 1. When ν has only one valley, there are no edges whose end points
are in I ∩ J , in which case GB(ν) = G(ν).
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1 2 3 4 5 6 s 1 2 3 4 5 6 t

ν = E1N1E2E3N3N4E5E6N6

GB(ν) ĜB(ν)

Figure 5.3: A graph GB(ν) with its partially augmented counterpart ĜB(ν).

Recall that the partial augmentation of G, denoted Ĝ, is obtained from the
full augmentation G̃ by removing edges (s, i) where i has out-degree one, and any
edges (j, t) where j has in-degree one. See Figure 5.3 for an example of a graph

GB(ν) and its partial augmentation ĜB(ν).

Lemma 5.2.2. Let ν be a lattice path from (0, 0) to (a, b). The flow polytope FĜB(ν)

is integrally equivalent to the product of simplices ∆a ×∆b.

Proof. By construction, an inner edge of Ĝ(ν) is either idle or bidirectional. Thus
contracting the idle inner edges and bidirectional edges yields the graph on vertex
set {s, 1, t} with a+1 edges of the form (s, 1) and b+1 edges of the form (1, t). The
flow polytope of this resulting graph is ∆a ×∆b.

5.2.2 The simplex subdivision

We can now subdivide FĜB(ν) into a union of w interior disjoint polytopes. Let vi
denote the index of the i-th valley in ν, which is also the i-th element in I ∩J when
read in increasing order. In Figure 5.3 for example, I ∩ J = {1, 3, 6}, so v1 = 1,
v2 = 3, and v3 = 6. For 1 ≤ i < w, let Qi denote the convex hull of the routes
in ĜB(ν) with the bidirectional edge (vi, vi+1,±) replaced with the backward edge
(vi, vi+1,−) such that if the route contains backward edges, then it contains the edge

(vi, vi+1,−). Additionally, we let Qw = Ĝ(ν).
Let Cν denote the cycle graph on I ∩ J with edges {(v1, v2,+), (v2, v3,+), . . . ,

(vw−1, vw,+), (vw, v1,−)}. Let Cν(i) denote the graph Cν without the edge beginning
at vi, and let G(ν, i) denote the graph obtained by replacing the bidirectional path
in GB(ν) with Cν(i). Note in particular that G(ν, w) = G(ν) since Cν(w) is the
directed path from v1 to vw. See Figure 5.4 for an example.

Theorem 5.2.3. The flow polytope FĜB(ν) can be written as

FĜB(ν) =
w⋃
i=1

Qi

where the polytopes Q1,Q2, . . . ,Qw have pairwise disjoint interiors, and w is the
number of valleys in ν = EνN . Furthermore, for any nonempty S ⊆ [w] we have
that ∩i∈SQi ≡ F∩i∈SĜ(ν,i).
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1 2 3 4 5

1 2 3 4 51 2 3 4 5 1 2 3 4 5 1 2 3 4 5

GB(ν)

G(ν, 4) = G(ν)G(ν, 1) G(ν, 2) G(ν, 3)

Figure 5.4: Decomposing GB(ν) into the possible G(ν, i). The flow polytope
FĜB(ν) decomposes into ∪i∈[w]Qi, where Qi ≡ FĜ(ν,i) for each i ∈ [w].

Proof. We begin by checking that FĜB(ν) =
⋃w

i=1 Qi. Let x1 ∈ FĜB(ν), we show that
it can be written as a convex combination of routes in some Qi. Let I1 denote the
indices of the entries in x1 with negative flow, i.e. I1 = {k | x1,ek < 0}. If I1 = ∅,
then x1 ∈ FĜ(ν) = Qw. If I1 ̸= ∅, we choose edges ej1 = (vh1 , vh1+1,−) and ek1 =

(vℓ1−1, vℓ1 ,−) from {ek | k ∈ I1} (not necessarily distinct) such that vh1 is minimal
and vℓ1 is maximal. Let R1 be the route with edges {(s, vℓ1 ,+), (vℓ1−1, vℓ1 ,−), . . . ,
(vh1 , vh1+1,−), (vh1 , t,+)}, which exists since the bidirectional edges form a path.
Now R1 is the shortest route containing all edges with negative flow. By conservation
of flow, the edges (s, vℓ1 ,+) and (vh1 , t,+) must have positive flow. Furthermore, the
flow in (vh1 , t,+) must be greater than or equal to |xek1 |, and the flow in (s, vℓ1 ,+)
must be greater than or equal to |xej1 |. Letting α1 = |xek1 |, we have that x2 =

x1 − α1xR1 is a (1 − α1)u-flow on ĜB(ν) in which the edge ek1 has zero flow, and
the flow in the edges (s, vℓ1 ,+) and (vh1 , t,+) is nonnegative.

Letting I2 = {k | x2,ek < 0}, we now have I2 ⊊ I1. If I2 ̸= ∅, we con-
tinue as before, choosing edges ej2 = (vh2 , vh2+1,−) and ek2 = (vℓ2−1, vℓ2 ,−) from
{ek | x2,ek < 0} with minimal vh2 and maximal vℓ2 . Taking R2 to be the route
with edges {(s, vℓ2 ,+), (vℓ2−1, vℓ2 ,−), . . . , (vh2 , vh2+1,−), (vh2 , t,+)}, we obtain the
shortest route containing all edges with negative flow. Letting α2 = |xek2 |, we have

that x3 := x2 − α2xR2 is a (1− α1 − α2)u-flow on ĜB(ν) in which the edge ek2 has
zero flow, and the flow in the edges (s, vℓ2 ,+) and (vh2 , t,+) is nonnegative.

We proceed in this fashion until we obtain a (1 −
∑r

k=1 αk)u-flow xr+1 with
no negative entries, so ∅ = Ir+1 ⊊ Ir ⊊ · · · ⊊ I1. Let i be the index in Ir−1 of
the edge (vℓr−1, vℓr ,−). Necessarily, ei is an edge with minimal flow in x1, and by
construction the routes R1, . . . , Rr all share the edge ei. As xr+1 has no negative
entries, we can write it as a convex combination of a set our routes Rr, . . . , Ru in
Ĝ(ν) \ ei. In particular, xr+1 =

∑u
k=r αkxRk

such that αk ≥ 0 for all r ≤ k ≤ u
and

∑u
k=r αk = (1 −

∑r
k=1 αk). We can thus write x1 as the convex combination

x1 =
∑u

k=1 αkxRk
, with αk ≥ 0 for all k and

∑u
k=1 αk = 1. Since all routes R1, ..., Ru
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are vertices in Qi, we have that x ∈ Qi. It follows that FĜB(ν) ⊆ ∪w
i=1Qi, and the

reverse inclusion is immediate.
To see that Qi and Qj have disjoint interiors for any i, j ∈ [w] with i ̸= j we

observe that Qi and Qj lie in the positive and negative half-spaces of the hyperplane
determined by x(vi,vi+1) = x(vj ,vj+1). If i = w and j ̸= w, then Qi and Qj are cut by
the hyperplane x(vj ,vj+1) = 0.

It remains to show that for S ⊆ [w] we have ∩i∈SQi ≡ F∩i∈SĜ(ν,i). As noted

earlier, Ĝ(ν, w) = Ĝ(ν), and so if w ∈ S, then ∩i∈SQi = F∩i∈SĜ(ν,i). In the case that

w /∈ S, we construct an integral equivalence φ as follows. First fix and ordering
e1, . . . , em+1 on the set of edges in ĜB(ν) ∪ (v1, vw) (as undirected edges) so that
ei = (vi, vi+1) for each i ∈ [w−1] and ew = (v1, vw). Then ∩i∈SQi and F∩i∈SĜ(ν,i) both

embed into Rm+1, and we define φ : Rm+1 → Rm+1 to be the linear transformation

x 7→ x+ xmin(S)ew − xmin(S)

w−1∑
i=1

ei.

By construction, a route R in ∩i∈SQi must contain all or none of the edges
(vi, vi+1,−) with i ∈ S. Thus, for a vertex xR, either xi = 0 for all i ∈ S or xi = −1
for all i ∈ S. In both cases, R is uniquely determined by its edges es and et incident to
the source and sink respectively. Now φ maps xR to the unique route in ∩i∈SĜ(ν, i)
determined by es and et. It follows that φ restricts to a bijection between aff(∩i∈SQi)

and aff(∩i∈SĜ(ν, i)), with inverse φ−1 given by φ(x) = x−xwew+xw
∑w−1

i=1 ei. This

restriction of φ is a bijection between ∩i∈SQi and ∩i∈SĜ(ν, i), while mapping lattice
points to lattice points.

For any non-empty k-subset S of [w], ∩i∈SĜ(ν, i) has k−1 less edges than Ĝ(ν, i).
In particular, F∩i∈SĜ(ν,i) is a codimension k − 1 inner face of the subdivision. Since

this holds for all non-empty k-subsets of [w] where 1 ≤ k ≤ w, we have the following
corollary.

Corollary 5.2.4. The dual to the subdivision ∪w
i=1Qi of FĜB(ν) is a w-simplex.

For this reason, we refer to the subdivision of Theorem 5.2.3 as the simplex-
subdivision of FĜB(ν). We refer to the subdivision of ∆a × ∆b induced by the
integral equivalence in Lemma 5.2.2 as the simplex-subdivision induced by ν.

Remark 5.2.5. When ν = (NE)n, projecting the simplex-subdivision of ∆n ×∆n

induced by ν along the span of the vectors {(ei, ei) | i ∈ [n]} gives Cho’s subdivision
of the full root polytope of type An in [21] (also called the Legendre polytope in
[32]).

5.3 A subdivision algebra for ∆a ×∆b

Using the simplex subdivision in the previous section, we can now extend the subdi-
vision algebra from Section 2.4 as a tool to encode subdivisions of ∆a×∆b. Relaxing
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s 1 2 3 4 5 t s 1 2 3 4 5 t
3 4 5 1 2

Ĝ(ν, 2)

ν = E1N1E2N2E3E4N4E5N5 ν(2) = E1E2N2E3N3E4N4E5N5

= E3E4N4E5N5E1N1E2N2

Figure 5.5: A reordering of the inner vertices of Ĝ(ν, 2) gives Ĝ(ν(2), w) up
to a relabeling of inner vertices.

the requirements on i, j, and k in the definition of the subdivision algebra (Defini-
tion 2.4.1), we obtain the following slight generalization.

Definition 5.3.1. The subdivision algebra S (β) is an associative and com-
mutative algebra over the ring of polynomials Z[β], generated by the elements
{xij | i ̸= j}, subject to the relation xijxjk = xikxij + xjkxik + βxik, where i ̸= k.

The terminology of reductions, reduced forms, reduction trees, basic reductions,
etc. carry over naturally to this more general setting.

Given a digraph G with forward and backward edges, we associate a forward
edge (i, j,+) and a backward edge (i, j,−) with the generators xij and xji in S (β)
respectively. The graph G can then be encoded with the monomial

M(G) :=
∏

(i,j,+)∈E(G)

xij
∏

(i,j,−)∈E(G)

xji.

Define a cyclic peak of a lattice path to be a consecutive NE pair in a cyclic
reading of the steps in the path. In particular, the only cyclic peak which is not a
peak occurs when the path begins with E and ends with N . Given a path ν, we
define ν(k) to be the path obtained by reading the steps of ν beginning at the E
step of the k-th cyclic peak. We begin counting from the first cyclic peak which
is also a peak of ν. Since ν begins with E and ends with N , the number of cyclic
peaks is the same as the number of valleys in ν, with the first and last steps of ν
forming the w-th cyclic peak.

Consider the graph G(ν(i), w), which necessarily only has forward edges. Now

Ĝ(ν(i), w) is the graph Ĝ(ν, i) up to relabeling of the inner vertices. Figure 5.5 gives
an example. We also have that FĜ(ν,i) ≡ FĜ(ν(i),w) since changing the sign of the flow

in the possible backward edge of FĜ(ν,i) is an integral equivalence (Lemma 5.1.2).
Therefore, the reduction lemma holds for FĜ(ν,i), and reductions of the monomial

M(G(ν, i)) encode subdivisions of FĜ(ν,i). By the reordering of inner vertices, it

is now also immediate that the reductions of M(∩i∈SG(ν, i)) encode subdivisions
of ∩i∈SQi for any S ⊆ [w]. Therefore, multiplying monomials encoding faces of
codimension k by βk, we obtain the following.
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Theorem 5.3.2. The simplex-subdivision of FĜB(ν) is encoded in the polynomial

pν =
∑
S⊆[w]
S ̸=∅

β|S|−1M(∩i∈SG(ν, i))

where w is the number of valleys in ν. Furthermore, reducing pν in the subdivision
algebra encodes subdivisions of FĜB(ν).

Proof. By Theorem 5.2.3, each S ⊆ [w] determines a face ∩i∈SQi in the simplex-
subdivision of FĜB(ν) which is integrally equivalent to F∩i∈SĜ(ν,i). A monomial

M(∩i∈SG(ν, i))β
|S|−1 then encodes a codimension |S| − 1 face in the subdivision. A

reduction at a pair xijxjk encodes the cutting of the simplex subdivision of FĜB(ν)

with the hyperplane determined by x(i,j) = x(j,k). Therefore, reductions of pν encode
subdivision of FĜB(ν).

By the integral equivalence in Lemma 5.2.2 we then have the following.

Corollary 5.3.3. For a lattice path ν from (0, 0) to (a, b), reducing pν encodes
subdivisions of ∆a ×∆b.

For each ν we have a simplex subdivision of ∆a × ∆b, for which reductions
of the polynomial pν encode refinements. Since all triangulations of a product of
simplices are unimodular [27, Proposition 6.2.11], the triangulations obtained via
Theorem 5.3.2 are unimodular. Triangulating each Qi separately with the subdi-
vision algebra gives regular triangulations [46, Theorem 3]. We therefore ask the
following.

Question 5.3.4. Are all the triangulations of ∆a × ∆b encoded in reduced forms
of pν regular triangulations?

We now give an example of applying the extended subdivision algebra directly
to a product of two simplices ∆a ×∆b.

Example 5.3.5. Let a = 3 and b = 2. To subdivide ∆3×∆2, we first choose a path ν
from (0, 0) to (3, 2), say ν = NEENE, and consider the canonically indexed ν =
E1N1E2E3N3E4N4. We have I = {1, 2, 3, 4} and J = {1, 3, 4}, and I ∩J = {1, 3, 4}.
Cycling the path ν to start at its cyclic peaks we have ν(1) = E2E3N3E4N4E1N1,
ν(2) = E4N4E1N1E2E3N3, and ν(3) = E1N1E2E3N3E4N4. From the resulting
graphs G(ν, i) for i ∈ [3] we read the monomials M1 = x23x34x41, M2 = x41x13x23,
and M3 = x13x23x34. The simplex-subdivision of ∆3 ×∆2 induced by ν is encoded
with

pν =
∑
S⊆[3]
S ̸=∅

β|S|−1 gcd{Mi | i ∈ S},

which expands to

pν = x23x34x41 + x41x13x23 + x13x23x34 + x23x41β + x23x34β + x13x23β + x23β
2.
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x21x31x41 x21x31x34

x21x23x41 x21x24x34

x21x23x24
x14x24x34

x14x23x24

x13x14x23

x23x41x43

x13x23x43

Figure 5.6: The dual graph of the triangulation obtained in Example 5.3.5.
The three connected components induced by the bolded red edges are dual
graphs of the triangulations of the three full dimensional cells in the simplex
subdivision.

For simplicity, we consider only simple reductions by setting β = 0, and reduce
pν(β = 0) as follows.

pν(β = 0) = x23x34x41 + x13x23x41 + x13x23x34

= x23x34x41 + x13x23x43 + x23x41x43 + x13x23x34

= x23x34x41 + x13x23x43 + x23x41x43 + x13x14x23 + x14x23x34

= x23x24x41 + x24x34x41 + x13x23x43 + x23x41x43 + x13x14x23+

x14x23x24 + x14x24x34

= x23x24x21 + x23x21x41 + x24x34x21 + x21x34x41 + x13x23x43+

x23x41x43 + x13x14x23 + x14x23x24 + x14x24x34

= x23x24x21 + x23x21x41 + x24x34x21 + x21x34x31 + x21x31x41+

x13x23x43 + x23x41x43 + x13x14x23 + x14x23x24 + x14x24x34.

Each summand in the reduced form corresponds to a simplex, where each gen-
erator xij gives the vertex (ei, ej) of the simplex, where ei and ej are the i-th
and j-th standard basis vectors in R4 and R3 respectively. The simplex corre-
sponding to the summand x23x24x21 is the convex hull of vertices (e2, e3), (e2, e4),
and (e2, e1), along with the cone points of the triangulation, which are (ek, ek) where
k ∈ I ∩ J = {1, 3, 4}. From the reduced form we also obtain the dual graph of the
triangulation, with an edge between monomials differing by a single generator. The
dual graph is shown in Figure 5.6.

We also observe the following identity.
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Proposition 5.3.6. Let ν be a lattice path from (0, 0) to (a, b) such that ν has w
cyclic peaks. Then (

a+ b

a

)
=

w∑
i=1

Cat(ν(i)).

Proof. Since the volume of FĜB(ν) is
(
a+b
a

)
=
∑w

i=1 volQi, it suffices to show that

volQi is Cat(ν(i)). However, this follows from

Qi ≡ FĜ(ν,i) ≡ FĜ(ν(i),w) = FĜ(ν(i)) ≡ Fcar(ν(i)),

since volFcar(ν(i)) = Cat(ν(i)) by Theorem 4.1.6.

Example 5.3.7. Continuing Example 5.3.5 with a = 3, b = 2, and ν being the path
NEENE, we have ν(1) = ENENE, ν(2) = NENEE, and ν(3) = NEENE. Thus
Cat(ν(1)) = 5, Cat(ν(2)) = 2, and Cat(ν(3)) = 3. Indeed,

(
2+3
2

)
= 10 = 5 + 2 + 3.

5.3.1 The ν-cyclohedral triangulations of FĜB(ν)

In this section, we use the subdivision algebra to obtain a particular interesting
triangulation of FĜB(ν), and thus also of a product of two simplices via the in-
tegral equivalence of Lemma 5.2.2. The triangulation in question is a geometric
realization of the cyclic ν-Tamari complex (see Definition 2.6.3) and is known as the
ν-cyclohedral triangulation.

We rely on the knowledge from Section 4.3.3 that the ν-Tamari complex can be
obtained with the length reduction order, which reduces longer pairs first. In the
cyclic setting we define the length of an edge (i, j) to be i + n − j (mod n). A
pair xijxjk forms a longest pair at vertex j if xij and xjk respectively correspond
with the longest incoming and outgoing edges at j. As in the non-cyclic case, the
length reduction order is the reduction order induced by successively reducing
the longest pair xijxjk with minimal j at each reduction step.

An arc (i, j) is said to be maximal if i = 1 and j = n, or j < i and there is no
k ∈ I ∪ J with j < k < i. Every cyclic (I, J)-tree has a maximal arc (i, j) where i
and j are the indices of an E step and N step of cyclic peak of ν. In this way the set
of cyclic peaks of ν naturally partition the set of cyclic (I, J)-trees into w = |I ∩ J |
disjoint sets, where each set consists of the cyclic (I, J)-trees with the same maximal
arc. Furthermore, note that these w sets of cyclic (I, J)-trees can be considered as
the sets of increasing (I, J)-trees induced by the paths ν(i) for 1 ≤ i ≤ w.

Theorem 5.3.8. The triangulation of FĜB(ν) induced by reducing pν in the length
reduction order is a geometric realization of the cyclic ν-Tamari complex.

Proof. The monomials in pν are in correspondence with the graphs G(ν, 1), G(ν, 2),
. . ., G(ν, w), along with their intersections. By Lemma 4.3.12, the reduced form
of each M(G(ν, i)) according to the length reduction order encodes the (I, J)-trees
with maximal arc determined by the i-th cyclic peak of ν. Since any reduction
order reducing longest pairs first yields the same reduced form by Lemma 4.3.13,
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ν(2) =E3 E4 N4 E5 N5 E1 N1 E2 N2

ĜM with M = x12x32x42x45

Figure 5.7: A cyclic reorientation of inner vertices corresponds with a cyclic
shift of a cyclic (I, J)-tree. A route through edges labeled Ei and Nj corre-
sponds with the arc (Ei, Nj) in the (I, J)-tree.

the simultaneous reduction of eachM(G(ν, i)) in the length reduction order encodes
all cyclic (I, J)-trees determined by ν. Thus the triangulation of FĜB(ν) encoded by

the reduced form of pν has facets given by the set of cyclic (I, J)-trees determined
by ν.

Remark 5.3.9. In the case that ν = (NE)n, Ehrenborg, Hetyei, and Readdy [32]
introduced objects closely related to (I, J)-trees, which they called valid digraphs.
The graphs corresponding to the monomials in the reduced form of pν under the
length reduction order are a generalization of their valid graphs.

Corollary 5.3.10. Reducing pν in the length reduction order gives a triangulation
of FĜB(ν) whose dual graph is the Hasse diagram of the cyclic ν-Tamari poset.

The reduction order in Example 5.3.5 was the length reduction order, and hence
the dual graph of the resulting triangulation in Figure 5.6 is the Hasse diagram of
the cyclic ν-Tamari poset for ν = NEENE.

In the case that ν = EaN b, there is only one valley in ν, and GB(ν) = G(ν).
Thus pν = M(G(ν)), and by Theorem 4.3.14 the reduced form of pν in the length
reduction order encodes the ν-Tamari complex (and also the cyclic ν-Tamari com-
plex as they are the same in this case). By Proposition 4.2.11 the dual graph of
this triangulation is the Hasse diagram of both Tam(ν) and the principal order
ideal I(ν) of Young’s lattice. The triangulation of ∆a×∆b induced by ν in this case
is a staircase triangulation of ∆a ×∆b.
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x12x23x34

x12x23x41

x12x34x41

x23x34x41
−→ −→ · · · −→

x12x13x34

x13x23x34

x13x23x41
x12x13x41

x12x34x41

x23x34x41

Figure 5.8: When ν is the staircase path (NE)n, the cylcohedron is obtained
by reducing the monomial pν in the length reduction order.

Remark 5.3.11. When ν is the path (NE)n, reductions of pν can be viewed as
successive truncations of an n-simplex. The truncation order induced by the length
reduction order yields the cyclohedron, as shown in Figure 5.8.

Copyright© Matias K. von Bell, 2022.
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Chapter 6 Future directions

There are several interesting avenues for future research which arise naturally from
the work in the previous chapters. We conclude this dissertation by identifying three
potentially fruitful future directions to explore.

6.1 Maximal clique posets

In Chapter 4 the ν-caracol flow polytope was the central object of study, with its
length-framed and planar-framed triangulations yielding interesting dual structures.
The planar framing can be described by ordering incoming edges from longest to
shortest, and ordering the outgoing edges from shortest to longest. With this de-
scription of the planar framing, it naturally extends to general graphs, as does the
length framing. Hence one can consider other flow polytopes arising from different
graphs, and investigate the dual structures obtained with these two framed trian-
gulations. The dual graphs of the two triangulations for the ν-caracol flow polytope
have natural lattice structures, although these lattice structures were not directly
induced by the triangulation in our presentation. However, it is possible to give a
poset structure on maximal cliques of routes of car(ν) which induce the ν-Tamari
lattice and the principal order ideal generated by ν. Let R1 and R2 be two routes
in a framed graph (G,≺). Let i be the smallest vertex after which the routes differ.
We order R1 < R2 if iR1 ≺O(i) iR2. This induces a linear order on the routes in
RG. We can then define a cover relation ⋖ on the set of maximal cliques of (G,≺)
as follows. Let C1 and C2 be two maximal cliques of routes which differ by a single
route, that is, the symmetric difference of C1 and C2 is {R1, R2}, where R1 ∈ C1

and R2 ∈ C2. The cover relation ⋖ is then given by C1 ⋖C2 if and only if R1 < R2.

Definition 6.1.1. The maximal clique poset of (G,≺) is the poset of maximal
cliques of routes induced by the transitive closure of the cover relation ⋖.

It would be interesting to study these maximal clique posets arising from different
graphs. In the case of car(ν) these posets were lattices, and it would be natural to
ask what properties of the underlying graph or its framing give rise to lattices. Even
in the case of car(ν), it may be possible to obtain new lattice structures on ν-Catalan
objects by considering different framings.

6.2 ν-Permutohedra

The associahedron and cyclohedron are both examples of generalized permutohedra,
which were introduced by Postnikov in [54], and can be described as polytopes whose
normal fan refine the braid fan [55]. Having encountered ν-generalizations of both
associahedra and cyclohedra in this work, one can ask the following.
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Question 6.2.1. Are ν-associahedra and ν-cyclohedra captured by a general theory
of ν-permutohedra?

Both the associahedron and cyclohedron are also examples of graph associahe-
dra intoduced by Carr and Devadoss [14], which arise from collections of tubings
on graphs. The classical associahedron is obtained from tubings on the path graph,
while the cyclohedron is obtained from tubings of the cycle graph. In the setting of
graph associahedra, the ν-generalizations of the classical associahedron and cyclo-
hedron can be interpreted as arising from colorful tubings on the path graph and
cycle graph respectively. This gives an avenue for considering ν-generalizations of
the permutohedron, namely, as colorful tubings of the complete graph.

6.3 Applications of the subdivision algebra for ∆a ×∆b

As we saw in Chapter 5, the subdivision algebra can be used to obtain triangulations
of a product of two simplices. The use of this new tool for the study of products of
simplices has not yet been explored. It would be interesting to know which classes
of triangulations are obtainable in this way, and which ones cannot. As discussed
in Section 5.3, the triangulation given by a reduced forms of pν restricts to regular
triangulations of the subpolytopes Qi, however, the regularity of the triangulation
obtained as their union remains unknown. It would be interesting to know the
answer to Question 5.3.4, namely, whether the triangulations of ∆a × ∆b encoded
in reduced forms of pν in the subdivision algebra are regular triangulations. The
regularity of the triangulations of each Qi obtained by the subdivision algebra hinge
on the fact that they are framed triangulations of flow polytopes. It may be possible
to extend the notion of framings to the graph GB(ν) with bidirectional edges, and
then extend the regularity results of [24] to this larger setting.

Since the dual graph structure of the triangulations can easily be obtained from
the monomials in a basic reductions of pν , the subdivision algebra provides a way
to generate dual graphs of these triangulations. It could be interesting to study the
class of graphs which arise as dual graphs of a product of two simplices.

As mentioned above, the associahedron and cyclohedron are both examples of
generalized permutohedra, and both can now be obtained via the subdivision algebra
by reductions of a polynomial. It is therefore natural to ask the following.

Question 6.3.1. Which generalized permutohedra can be obtained using the cyclic
subdivision algebra?

As discussed in the beginning of Chapter 5, triangulations of a product of sim-
plices have connections to algebraic geometry, optimization, and game theory, and
they serve as building blocks for triangulations of products of polytopes more gener-
ally. Applications of the subdivision algebra in these settings remains to be explored.

Copyright© Matias K. von Bell, 2022.
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[48] K. Mészáros. Pipe dream complexes and triangulations of root polytopes belong
together. SIAM Journal on Discrete Mathematics, 30(1):100–111, 2016.
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[51] K. Mészáros, A. H. Morales, and J. Striker. On flow polytopes, order poly-
topes, and certain faces of the alternating sign matrix polytope. Discrete &
Computational Geometry., 62(1):128–163, 2019.
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1. Schröder combinatorics and ν-associahedra (with M. Yip), European Journal
of Combinatorics 98 (2021): 103415.

2. On framed triangulations of flow polytopes, the ν-Tamari lattice, and Young’s
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