61,209 research outputs found

    Heuristic Solutions for Loading in Flexible Manufacturing Systems

    Get PDF
    Production planning in flexible manufacturing system deals with the efficient organization of the production resources in order to meet a given production schedule. It is a complex problem and typically leads to several hierarchical subproblems that need to be solved sequentially or simultaneously. Loading is one of the planning subproblems that has to addressed. It involves assigning the necessary operations and tools among the various machines in some optimal fashion to achieve the production of all selected part types. In this paper, we first formulate the loading problem as a 0-1 mixed integer program and then propose heuristic procedures based on Lagrangian relaxation and tabu search to solve the problem. Computational results are presented for all the algorithms and finally, conclusions drawn based on the results are discussed

    Stochastic scheduling on unrelated machines

    Get PDF
    Two important characteristics encountered in many real-world scheduling problems are heterogeneous machines/processors and a certain degree of uncertainty about the actual sizes of jobs. The first characteristic entails machine dependent processing times of jobs and is captured by the classical unrelated machine scheduling model.The second characteristic is adequately addressed by stochastic processing times of jobs as they are studied in classical stochastic scheduling models. While there is an extensive but separate literature for the two scheduling models, we study for the first time a combined model that takes both characteristics into account simultaneously. Here, the processing time of job jj on machine ii is governed by random variable PijP_{ij}, and its actual realization becomes known only upon job completion. With wjw_j being the given weight of job jj, we study the classical objective to minimize the expected total weighted completion time E[jwjCj]E[\sum_j w_jC_j], where CjC_j is the completion time of job jj. By means of a novel time-indexed linear programming relaxation, we compute in polynomial time a scheduling policy with performance guarantee (3+Δ)/2+ϵ(3+\Delta)/2+\epsilon. Here, ϵ>0\epsilon>0 is arbitrarily small, and Δ\Delta is an upper bound on the squared coefficient of variation of the processing times. We show that the dependence of the performance guarantee on Δ\Delta is tight, as we obtain a Δ/2\Delta/2 lower bound for the type of policies that we use. When jobs also have individual release dates rijr_{ij}, our bound is (2+Δ)+ϵ(2+\Delta)+\epsilon. Via Δ=0\Delta=0, currently best known bounds for deterministic scheduling are contained as a special case
    corecore