
Solving a dock assignment problem as a three-stage flexible flow-shop problem

L. Berghman, R. Leus
ORSTAT, K.U.Leuven, Leuven, Belgium

Abstract - This paper presents a model for a dock assignment
problem based on the situation encountered in a practical case.
Trailers are assigned to gates during a specific period in time for
loading or unloading activities. The parking lot is used as a buffer
zone. Transportation between the parking lot and the gates is
performed by additional resources called terminal tractors. The
problem is modeled as a three-stage flexible flow shop, where
the first and the third stage share the same identical parallel
machines and besides that, all stages share a different set of
identical parallel machines. Different mathematical formulations
are given and a Lagrangian relaxation approach is examined to
solve this flexible flow-shop problem.

Keywords - dock assignment, flexible flow shop, additional
resources, Lagrangian relaxation

I. INTRODUCTION

Toyota is one of the world’s largest automobile manu-
facturers, selling over 7.5 million models (including Hino
and Daihatsu) annually on all five continents, and generating
almost 130 billion euro in net revenues. Since 1999, the total
warehouse space floor of the European Distribution Centre
TPCE (Toyota Parts Centre Europe) located in Diest (Belgium)
has been expanded to 67.700 m2. Toyota’s Distribution Centre
delivers to 28 European distributors on a daily basis.

At TPCE, the warehouse has some fifty gates, each with
a capacity of one trailer, where goods can either be loaded
on an empty trailer or be unloaded from a loaded trailer.
Besides the warehouse with the gates, the site also contains
two parking lots, which can be seen as a buffer where trailers
can be temporarily parked, both before and after the loading
and unloading. All transportation activities of trailers between
these parking lots and the gates are done by two terminal
tractors, which are tractors designed for use in ports, termi-
nals and heavy industry. Because of the numerous loading,
unloading and transportation activities, TPCE needs a schedule
specifying the starting time and the assigned gate or terminal
tractor for each activity.

The remainder of this paper is structured as follows: the sit-
uation at TPCE will be modeled as a three-stage flexible flow
shop. This is described in detail in Section II. A brief review
of the relevant literature is given in Section III. In Section
IV, some mathematical formulations are given. And finally, a
Lagrangian relaxation approach is discussed in Section V.

II. FLEXIBLE FLOW-SHOP SCHEDULING

Each job is composed of three tasks, one for each stage.
The fist stage consists of one of the terminal tractors moving

the trailer to the gate, while the second stage consists of the
loading and unloading activities. The different gates at TPCE
are considered to be identical parallel machines and every task
of stage two has to be assigned to one of the parallel machines.
The third stage is one of the terminal tractors that moves the
trailer back to the parking lot. Two identical parallel machines
execute both the first and the third stage. For safety reasons,
we consider the gate on which the corresponding loading or
unloading activity of stage two is planned as being unavailable
during the execution of the transportation activity. In these
stages, the processing times are not dependent on the distance
because the actual driving time of the terminal tractors is small
compared to the time it takes the driver to follow the safety
instructions and attach the trailer to the tractor. Some fifty
identical parallel machines execute the second stage, so the
processing time depends only on the job and is independent
of the machine.

For a given job, stage two always starts immediately after
stage one finishes; the same does not hold for stage three. After
loading or unloading, a trailer cannot be transported to the
parking lot by a terminal tractor if both tractors are busy. The
trailer must remain on the gate until a terminal tractor becomes
available, which makes it impossible for another trailer to be
loaded or unloaded there.

The facilities are disjunctive, in the sense that each machine
may process only one task at a time. Preemption of a task is
not allowed and no machine has buffer storage for work-in-
process.

A. Definition and detailed problem statement

T , the set of all tasks t with |T | = 3n, can be partitioned
into different subsets. A first partition of T is T1, T2, T3. T1 =
{t(1)1 , t

(1)
2 , . . . , t

(1)
n } ⊂ T contains all transportation activities

from the parking lot to a gate, T2 = {t(2)1 , t
(2)
2 , . . . , t

(2)
n } ⊂

T contains all loading and unloading activities and T3 =
{t(3)1 , t

(3)
2 , . . . , t

(3)
n } ⊂ T contains all transportation activities

from a gate to the parking lot. TU
i , TL

i is a partition of Ti for
i = 1, 2, 3. TU = TU

1 ∪ TU
2 ∪ TU

3 is the set of tasks related to
an unloading activity, while TL = TL

1 ∪ TL
2 ∪ TL

3 is the set
of tasks related to a loading activity.

All tasks t ∈ T have a ready time rt. For the unloading
tasks t ∈ TU , this ready time equals the planned arrival time
of the trailer. For the loading tasks t ∈ TL, rt = 0 because
we assume that all the goods to be loaded on the trailers are
available in the warehouse and the empty trailer is standing
at the parking lot. All tasks t ∈ T have a weight wt. All

978-1-4244-4870-8/09/$26.00 ©2009 IEEE 320

unloading tasks t ∈ TU have a due date dt equal to the
ready time because the aim is to avoid tardiness. All loading
tasks t ∈ TL have a deadline dt based on the driving time
to the customer and the agreed arrival time at the customer.
All transportation activities between the parking lot and the
gates have a constant duration C, independent of the distance.
There are two machines available for both the first and the
third stage. G is the set of all identical parallel machines g of
stage two, with |G| = m < n. Each machine can process at
most one job at a time. The processing time pt of a job t ∈ T
is the time needed to load or unload the trailer at the gate.

Our problem consists of scheduling the tasks in such a way
that the total weighted lateness (or tardiness, since dt = rt)
of the unloading tasks is minimized and the total weighted
earliness of the transportation activities back to the gate that
are related to a loading task is maximized.

In Table I, data for a problem with ten jobs, four gates and
one terminal tractor are given. A feasible schedule for this
problem is presented in Fig. 1. The colored blocks represent
the transportation activities by the terminal tractor and the
white blocks represent the loading or unloading activities at
the gates.

Task wt rt pt dt dt type
t1 3 0 110 0 U
t2 1 0 140 0 U
t3 1 10 150 10 U
t4 3 20 130 20 U
t5 2 50 120 50 U
t6 1 0 120 250 L
t7 3 0 100 200 L
t8 2 0 130 320 L
t9 1 0 120 130 L
t10 3 0 130 130 L

TABLE I
A PROBLEM WITH TEN TASKS, FOUR GATES AND ONE TERMINAL TRACTOR

Fig. 1. A feasible schedule

III. LITERATURE REVIEW

The goal of this article is to examine mathematical pro-
gramming formulations for the practical problem and to im-
plement a Lagrangian relaxation approach to obtain high-
quality solutions in reasonable computation time. We briefly
survey related work on mathematical formulations for machine
scheduling problems. Subsequently, we review the application
of Lagrangian relaxation in machine scheduling problems.

A. Mathematical formulations

A review of parallel machine scheduling literature is given
in Cheng and Sin [1] and a survey of mathematical program-
ming formulations for machine scheduling, including parallel
machine scheduling, can be found in Blazewicz et al. [2].
Different examples of continuous-time formulations can be
found. For uniform parallel machine scheduling, Dessouky
[3] examines an assignment-based integer non-linear program-
ming formulation where jobs are assigned to positions on
machines and Jain and Grossmann [4] propose an assignment-
based integer linear programming formulation where jobs are
assigned to machines and additional variables are used to
determine the sequence on each machine. Bard and Rojana-
soonthon [5] present a flow formulation for identical parallel
machine scheduling while Mellouli et al. [6] study different
models including a flow formulation, a sequence-based for-
mulation and an assignment-based formulation. Time-indexed
formulations have also received a great deal of attention
because the linear programming relaxations provide strong
lower bounds. Luh et al. [7], Sousa and Wolsey [8] and Kedad-
Sidhoum et al. [9] examine formulations for a single machine
problem that can easily be extended to a parallel machine
scheduling problem. The binary decision variables assign each
job to a certain starting period.

A survey of flexible flow-shop literature can be found in
Linn and Zhang [10]. Most studies deal with two-stage flow
shops with parallel machines either in the first or in the second
stage, but not in both. To the best of our knowledge, very
few examples of tight continuous-time formulations can be
found in literature. Riane et al. [11] propose a sequence-based
formulation, while Paternina-Arboleda et al. [12] present an
assignment-based formulation and Jungwattanakit et al. [13]
describe a flow formulation. Concerning the time-indexed for-
mulations, Chen and Luh [14] consider a job shop scheduling
problem consisting of scheduling different parts on different
types of machines where each machine type has different
identical machines and the completion of each part requires a
series of different operations. Tang et al. [15] and Tang and
Xuan [16] study mathematical formulations for the scheduling
problem with multiple identical parallel machines available for
processing jobs at each stage.

B. Lagrangian relaxation for machine scheduling problems

Most articles in the machine-scheduling literature that make
use of Lagrangian relaxation, relax the capacity constraints on
machines of their time-indexed integer programming formula-
tion by using Lagrange multipliers and decompose the relaxed
problem into independent job level subproblems (parallel
machine scheduling: Luh et al. [7]. Kedad-Sidhoum et al. [9];
job-shop or flow-shop scheduling: Chen et al. [17] and Tang
and Xuan [16]), although in flow-shop or job-shop scheduling
it might be that the precedence constraints are relaxed (Chen
and Luh [14], Tang et al. [15]). Kedad-Sidhoum et al. [9]
also relax the number of occurrences, such that a job can be
processed several times. The Lagrange multipliers are updated
by a (surrogate) subgradient method. When the dual solution

Proceedings of the 2009 IEEE IEEM

 321

at the end of the algorithm is infeasible, a feasible schedule
is most of the time constructed by a heuristic list-scheduling
approach.

IV. MATHEMATICAL FORMULATIONS

Since the available literature does no contain much informa-
tion dedicated to mathematical formulations for flexible flow-
shop problems, we start by testing formulations for only part
of our problem. When we only look at the gate assignment
part of the problem and do not take the terminal tractors into
account, the problem at hand is close to Pm|rj , dj |

∑
wjTj

in the standard three-field notation, although some tasks have
deadlines rather than due dates.

Based on preliminary experiments, we have found that
out of different formulations, the time-indexed formulation
described in Subsection C gives the best results. Therefore, this
formulation is extended to the flexible flow-shop scheduling
problem in Subsection D.

A. Assignment-based formulation for the parallel machine

scheduling problem

The decision variables of this first formulation are the
following. For all tasks t ∈ T and for every gate g ∈ G,

x
(2)
tg =

{
1 if task t is scheduled at gate g,

0 otherwise.
(1)

For all tasks t, u ∈ T ,

ztu =

⎧⎪⎨
⎪⎩

1 if task t is scheduled before task u when both
tasks are executed at the same gate,

0 otherwise.
(2)

For every task t ∈ T we also have a starting time st.
A mathematical formulation of our problem is the following:

min
∑

t∈T U

wt(st + pt − dt) +
∑

t∈T L

wt(st + pt − dt) (3)

subject to ∑
g∈G

x
(2)
tg = 1 ∀t ∈ T (4)

x
(2)
tg + x(2)

ug − ztu − zut ≤ 1 ∀{t, u} ∈ T ;∀g ∈ G (5)

st + pt − (1 − ztu)M ≤ su ∀{t, u} ∈ T (6)
rt ≤ st ∀t ∈ T (7)

st + pt ≤ dt ∀t ∈ TL (8)

x
(2)
tg ∈ {0, 1} ∀t ∈ T ;∀g ∈ G (9)

ztu ∈ {0, 1} ∀t, u ∈ T (10)
st ≥ 0 ∀t ∈ T (11)

The objective function (3) minimizes for all unloading tasks
t ∈ TU

2 the total time between the finishing time st + pt of
the unloading task and the due date dt and for all loading
tasks t ∈ TL

2 the total time between the the finishing time
st + pt of the loading task and the deadline dt. Constraint

(4) limits each loading or unloading task to be assigned to
exactly one gate, while constraint (5) ensures that if task t
and task u are assigned to the same gate g, then one must
be processed before the other. Constraint (6) ensures that the
ending time of a certain task is smaller than the starting time
of the following task on that same gate, where M stands for
a large value. A possible value for M , which will be used
in the implementations, is maxt rt +

∑
t∈T2

pt. Constraints
(7) and (8) enforce the time windows: no tasks can start
before its ready time and all loading tasks have to be finished
before their deadline. Finally, constraints (9) and (10) state
that our decision variables x

(2)
tg and ztu are binary variables

and constraint (11) states that all starting times have to be
positive.

For a scheduling problem on identical parallel machines,
permuting the machine indices does not affect the structure
of the problem. For example, switching the assignment of
all jobs assigned to machine 1 and those assigned to ma-
chine 2 will result in essentially the same solution. Due to
this structure, branching becomes ineffective because many
assignments of values to variables represent the same solution.
For this reason, different symmetry-breaking constraints have
been implemented and compared. Moreover, different valid
inequalities have been tested to tighten and speed-up the
formulation. Preliminary experiments show that adding the
following constraints results in less computational effort.

t∑
g=1

x
(2)
tg = 1 ∀t ∈ {1, ...,m} (12)

ztu + zut ≤ 1 ∀{t, u} ∈ T (13)

x
(2)
tg + x

(2)
uh + ztu + zut ≤ 2 ∀{t, u} ∈ T ;∀{g, h} ∈ G

(14)

Constraint (12) is a symmetry-breaking constraint that states
that for t ≤ m, task t is scheduled on one of the machines
1, . . . , t. Constraints (13) and (14) are valid inequalities. The
first one states that for every pair of tasks, either they are not
scheduled on the same gate, or one task comes before the other
or the other way around. The second one guarantees that the
sequencing variables ztu and zut are both zero if tasks t and
u are assigned to different gates.

This formulation has much in common with the ones pre-
sented in Jain and Grossman [4] although in those formulations
the parallel machines are not identical such that the processing
times depend on the machine and the objective is to minimize
the sum of the processing costs cm

j of assigning task j to
machine m. Constraint (14) stems from Zhu and Heady [18].

B. Flow-based formulation for the parallel machine schedul-

ing problem

The second mathematical formulation is based on Bard and
Rojanasoonthon [5]. The main differences with our setting are
the non-identical parallel machines, the two time windows per
task, the setup times, the priority classes containing the tasks
and the corresponding contributions. The decision variables of

Proceedings of the 2009 IEEE IEEM

 322

this formulation are the following. For all tasks t, u ∈ T ,

x
(2)
tu =

{
1 if task t is scheduled immediately before task u,

0 otherwise.
(15)

A mathematical formulation of our problem is the
following:

min
∑

t∈T U

wt(st + pt − dt) +
∑

t∈T L

wt(st + pt − dt) (16)

subject to ∑
u∈T 0\{t}

x
(2)
tu = 1 ∀t ∈ T (17)

∑
t∈T

x
(2)
0t = m (18)

∑
u∈T 0\{t}

x
(2)
ut −

∑
u∈T 0\{t}

x
(2)
tu = 0 ∀t ∈ T 0 (19)

st + pt − (1 − x
(2)
tu)M ≤ su ∀{t, u} ∈ T (20)

rt ≤ st ∀t ∈ T (21)

st + pt ≤ dt ∀t ∈ TL (22)

x
(2)
tu ∈ {0, 1} ∀t, u ∈ T 0 (23)

st ≥ 0 ∀t ∈ T (24)

Constraint (17) limits each task to be processed exactly
once. It also ensures that, if a task is scheduled, it has no
more than one successor, which might be the dummy task
t0. Constraint (18) limits the number of initial tasks. These
constraints (17) and (18) indirectly specify that each machine
can process at most one task at a time. Constraint (19) ensures
the conservation of flow. If task t is assigned to gate g, both
its predecessor and successor must be processed by gate g.
Constraint (20) ensures that for a given gate, the ending time
of a certain task is not longer than the starting time of the
following task. As before, M stands for a large value, and
a possible value for M equals maxt rt +

∑
t∈T pt. This is

the value we will use in the implementation. Constraints (21)
and (22) enforce the time windows. Finally, constraint (23)
states that our decision variables x

(2)
tu are binary variables and

constraint (24) states that all starting times have to be positive.
The symmetry problem is solved by producing a set of

m schedules instead of assigning particular schedules to
particular gates.

C. Time-indexed formulation for the parallel machine schedul-

ing problem

This type of formulation is based on time-discretization
where time is divided into periods. Let H denote the schedul-
ing horizon, thus we consider the time periods 0, . . . , Hmax

with Hmax = maxt rt +
∑

t∈T pt. This mathematical formu-
lation is based on Sousa and Wolsey [8] and Kedad-Sidhoum

et al. [9]. For all tasks t ∈ T and for all periods u ∈ H
(2)
t ,

x
(2)
tu =

{
1 if task t starts in time period u,

0 otherwise.
(25)

with H
(2)
t = rt, . . . , Hmax if t ∈ TU and H

(2)
t = rt, . . . , dt −

pt if t ∈ TL.
A mathematical formulation of our problem is the

following:

min
∑

t∈T U

wt(
∑

u∈Ht

(ux
(2)
tu) + pt − dt)

+
∑

t∈T L

wt(
∑

u∈Ht

(ux
(2)
tu) + pt − dt)

(26)

subject to ∑
u∈[rt,Hmax−pt]

x
(2)
tu = 1 ∀t ∈ T (27)

∑
t∈T2

∑
v∈[max{rt,u−pt},u]

x
(2)
tv ≤ m ∀u ∈ Ht (28)

x
(2)
tu ∈ {0, 1} ∀t ∈ T ;∀u ∈ Ht (29)

The objective function (26) minimizes for all unloading
tasks t ∈ TU the total time between the finishing time∑

u∈H
(2)
t

ux
(2)
tu + pt of the unloading task and the due date

dt and for all loading tasks t ∈ TL the total time between
the finishing time

∑
u∈H

(2)
t

ux
(2)
tu + pt of the loading task

and the deadline dt. Constraint (27) limits each task to be
processed exactly once. Constraint (28) ensures that for a given
time interval u, only m unloading or loading activities can
be executed. Finally, constraint (29) states that our decision
variables x

(2)
tu are binary variables.

As in Section IV-B, the symmetry problem is solved by
producing a set of m schedules.

D. Time-indexed formulation for the flexible flow-shop prob-

lem

When extending the above formulation to our flexible flow-
shop problem, Hmax = maxt rt +

∑
t∈T pt + 2nC. The

decision variables are the following. For all task t ∈ Ti (for
i = 1, 2, 3) and for all moments in time u ∈ H

(i)
t ,

x
(i)
tu =

{
1 if task t starts in time period u,

0 otherwise.
(30)

with H
(1)
t = {rt, . . . , T − pt − 2C} (with T =

maxt rt +
∑

t∈T2
pt +2nC), H

(2)
t = {rt +C, . . . , T −pt−C}

and H
(3)
t = {rt + C + pt, . . . , T −C} if t ∈ TU and H

(1)
t =

{rt, . . . , dt −pt −2C}, H
(2)
t = {rt +C, . . . , dt −pt −C} and

H
(3)
t = {rt + C + pt, . . . , dt −C} if t ∈ TL. A mathematical

formulation of our problem is the following:

Proceedings of the 2009 IEEE IEEM

 323

min
∑

t∈T U

wt

⎛
⎜⎝

⎛
⎜⎝ ∑

u∈H
(2)
t

ux
(2)
tu

⎞
⎟⎠ + pt − dt

⎞
⎟⎠

+
∑

t∈T L

wt

⎛
⎜⎝

⎛
⎜⎝ ∑

u∈H
(3)
t

ux
(3)
tu

⎞
⎟⎠ + C − dt

⎞
⎟⎠

(31)

subject to ∑
u∈H

(k)
t

x
(k)
tu = 1 ∀t ∈ Tk; k = 1, 2, 3 (32)

∑
t∈T

⎛
⎝x

(1)
tu + x

(3)
tu +

∑
v≤u

(
x

(2)
tv − x

(3)
tv

)⎞
⎠ ≤ m ∀u ∈ H

(33)∑
t∈T

(
x

(1)
tu + x

(3)
tu

)
≤ 2 ∀u ∈ H (34)

x
(1)
tu = x

(2)
t,u+C ∀t; ∀u ∈ H (35)

x
(2)
tu ≤

T∑
v=u+pt

x
(3)
t,v ∀t; ∀u ∈ H (36)

x
(i)
tu ∈ {0, 1} for i = 1, 2, 3;∀t ∈ Ti; ∀u ∈ H

(i)
t (37)

The objective function (31) minimizes for all unloading
tasks t ∈ TU the total time between the finishing time∑

u∈Ht
ux

(2)
tu + pt of the unloading task and the due date dt

and for all loading tasks t ∈ TL the total time between the
the finishing time

∑
u∈Ht

ux
(3)
tu +C of the transportation task

back to the parking lot and the deadline dt. In this way, we
achieve that all import goods are as early as possible in the
warehouse and all export trailers are ready as early as possible.
Constraint (32) limits each task to be processed exactly once
either on a gate or by a terminal tractor. Constraint (33) ensures
that for a given time interval, only m unloading, loading
or transportation activities can be executed. Constraint (34)
ensures the capacity of the terminal tractors. Constraints (35)
and (36) ensure that for each job the first task has to be finished
before the second task can start and the second task has to
be finished before the third task can start. Finally, constraint
(37) states that our decision variables x

(i)
tu (for i = 1, 2, 3) are

binary variables.

V. LAGRANGIAN RELAXATION

For some instances with 34 tasks, nine gates and one
terminal tractor, the computation times for the time-indexed
formulation exceed two hours. Note that a higher number
of terminal tractors (even two) significantly decreases the
required computational effort. In order to produce near-optimal
solutions within reasonable running time for practical-size
instances, we resort to Lagrangian relaxation.

Both the resource constraints of the time-indexed formu-
lation (constraints (33) and (34)) are relaxed using Lagrange
multipliers, such that easily solvable, independent job-level
subproblems are obtained. The Lagrange multipliers act as

prices to regulate the use of the machines. For each task, the
starting time to strike the best balance between these machine
prices and the tardiness / earliness of the job is selected. The
Lagrange multipliers are updated according to the demand of
the machines, by a subgradient method.

When the dual solution at the end of the algorithm is
infeasible, a feasible schedule is constructed by a two-phase
heuristic approach based on list scheduling, which uses the
dual solution, and a heuristic to take the deadlines into account
(see [16], for example).

REFERENCES

[1] T. Cheng and C. Sin, “A state-of-the-art review of parallel-machine
scheduling research,” European Journal of Operational Research,
vol. 47, pp. 271–292, 1990.

[2] J. Blazewicz, M. Dror, and J. Weglarz, “Mathematical programming
formulations for machinery scheduling: A survey,” European Journal of
Operational Research, vol. 51, pp. 283–300, 1991.

[3] M. Dessouky, “Scheduling identical jobs with unequal ready times
on uniform parallel machines to minimize the maximum lateness,”
Computers and Industrial Engineering, vol. 34 (4), pp. 793–806, 1998.

[4] V. Jain and I. Grossmann, “Algorithms for hybrid MILP/CP models for
a class of optimization problems,” INFORMS Journal on Computing,
vol. 13 (4), pp. 258–276, 2001.

[5] J. Bard and S. Rojanasoonthon, “A branch-and-price algorithm for
parallel machine scheduling with time windows and job priorities,”
Naval Research Logistics, vol. 53, pp. 24–44, 2006.

[6] R. Mellouli, C. Sadfi, C. Chu, and I. Kacem, “Identical parallel-
machine scheduling under availability constraints to minimize the sum
of completion times,” European Journal of Operational Research, vol.
197, pp. 1150–1165, 2009.

[7] P. Luh, D. Hoitomt, E. Max, and K. Pattipati, “Schedule generation and
reconfiguration for parallel machines,” IEEE Transactions on Robotics
and Automation, vol. 6, pp. 687–696, 1990.

[8] J. Sousa and L. Wolsey, “A time indexed formulation of non-preemptive
single machine scheduling problems,” Mathematical Programming,
vol. 54, pp. 353–367, 1992.

[9] S. Kedad-Sidhoum, Y. R. Solis, and F. Sourd, “Lower bounds for the
earliness-tardiness scheduling problem on parallel machines with distinct
due dates,” European Jounal of Operational Research, vol. 189, pp.
1305–1316, 2008.

[10] R. Linn and W. Zhang, “Hybrid flow shop scheduling: a survey,”
Computers and Industrial Engineering, vol. 37, pp. 57–61, 1999.

[11] F. Riane, A. Artiba, and S. Elmaghraby, “A hybrid three-stage flexible
flowshop problem: efficient heuristics to minimize makespan,” European
Journal of Operational Research, vol. 109, pp. 321–329, 1998.

[12] C. Paternina-Arboleda, J. Montoya-Torres, M. Acero-Dominguez, and
M. Herrera-Hernandez, “Scheduling jobs on a k-stage flexible flow-
shop,” Annals of Operations Research, vol. 164, pp. 29–40, 2008.

[13] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, and F. Werner,
“A comparison of scheduling algorithms for flexible flow shop prob-
lems with unrelated parallel machines, setup times, and dual criteria,”
Computers and Operations Research, vol. 36, pp. 358–378, 2009.

[14] H. Chen and P. Luh, “An alternative framework to Lagrangian relaxation
approach for job shop scheduling,” European Journal of Operational
Research, vol. 149, pp. 499–512, 2003.

[15] L. Tang, H. Xuan, and J. Liu, “A new Lagrangian relaxation algorithm
for hybrid flowshop scheduling to minimize total weighted completion
time,” Computers and Operations Research, vol. 33, pp. 3344–3359,
2006.

[16] L. Tang and H. Xuan, “Lagrangian relaxation algorithms for real-time
hybrid flowshop scheduling with finite intermediate buffers,” Journal of
the Operational Research Society, vol. 57, pp. 316–324, 2006.

[17] H. Chen, C. Chu, and J.-M. Proth, “An improvement of the Lagrangian
relaxation approach for job shop scheduling: a dynamic programming
method,” IEEE Transactions on Robotics and Automation, vol. 14 (5),
pp. 786–795, 1998.

[18] Z. Zhu and R. Heady, “Minimizing the sum of earliness/tardiness in
multi-machine scheduling: a mixed integer programming approach,”
Computers and Industrial Engineering, vol. 38, pp. 297–305, 2000.

Proceedings of the 2009 IEEE IEEM

 324

