18 research outputs found

    Duality of equations and coequations via contravariant adjunctions

    Get PDF
    In this paper we show duality results between categories of equations and categories of coequations. These dualities are obtained as restrictions of dualities between categories of algebras and coalgebras, which arise by lifting contravariant adjunctions on the base categories. By extending this approach to (co)algebras for (co)monads, we retrieve th

    Minimisation in Logical Form

    Get PDF
    Stone-type dualities provide a powerful mathematical framework for studying properties of logical systems. They have recently been fruitfully explored in understanding minimisation of various types of automata. In Bezhanishvili et al. (2012), a dual equivalence between a category of coalgebras and a category of algebras was used to explain minimisation. The algebraic semantics is dual to a coalgebraic semantics in which logical equivalence coincides with trace equivalence. It follows that maximal quotients of coalgebras correspond to minimal subobjects of algebras. Examples include partially observable deterministic finite automata, linear weighted automata viewed as coalgebras over finite-dimensional vector spaces, and belief automata, which are coalgebras on compact Hausdorff spaces. In Bonchi et al. (2014), Brzozowski's double-reversal minimisation algorithm for deterministic finite automata was described categorically and its correctness explained via the duality between reachability and observability. This work includes generalisations of Brzozowski's algorithm to Moore and weighted automata over commutative semirings. In this paper we propose a general categorical framework within which such minimisation algorithms can be understood. The goal is to provide a unifying perspective based on duality. Our framework consists of a stack of three interconnected adjunctions: a base dual adjunction that can be lifted to a dual adjunction between coalgebras and algebras and also to a dual adjunction between automata. The approach provides an abstract understanding of reachability and observability. We illustrate the general framework on range of concrete examples, including deterministic Kripke frames, weighted automata, topological automata (belief automata), and alternating automata

    An Eilenberg-like theorem for algebras on a monad

    Get PDF
    An Eilenberg–like theorem is shown for algebras on a given monad. The main idea is to explore the approach given by Bojan´czyk that defines, for a given monad T on a category D, pseudovarieties of T–algebras as classes of finite T–algebras closed under homomorphic images, subalgebras, and finite products. To define pseudovarieties of recognizable languages, which is the other main concept for an Eilenberg–like theorem, we use a category C that is dual to D and a recent duality result between Eilenberg–Moore categories of algebras and coalgebras by Salamanca, Bonsangue, and Rot. Using this duality we define the concept of a pseudovariety o

    How to write a coequation

    Get PDF
    There is a large amount of literature on the topic of covarieties, coequations and coequational specifications, dating back to the early seventies. Nevertheless, coequations have not (yet) emerged as an everyday practical specification formalism for computer scientists. In this review paper, we argue that this is partly due to the multitude of syntaxes for writing down coequations, which seems to have led to some confusion about what coequations are and what they are for. By surveying the literature, we identify four types of syntaxes: coequations-as-corelations, coequations-as-predicates, coequations-as-equations, and coequations-as-modal-formulas. We present each of these in a tutorial fashion, relate them to each other, and discuss their respective uses

    Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness

    Get PDF
    Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs performing different actions, by omitting the so-called early termination axiom. We develop an operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that captures the covariety of automata corresponding to these behaviors. Finally, we prove that the axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this result to recover a semantics that is sound and complete w.r.t. the full set of axioms

    Guarded Kleene Algebra with Tests: Coequations, Coinduction, and Completeness

    Get PDF
    Guarded Kleene Algebra with Tests (GKAT) is an efficient fragment of KAT, as it allows for almost linear decidability of equivalence. In this paper, we study the (co)algebraic properties of GKAT. Our initial focus is on the fragment that can distinguish between unsuccessful programs performing different actions, by omitting the so-called early termination axiom. We develop an operational (coalgebraic) and denotational (algebraic) semantics and show that they coincide. We then characterize the behaviors of GKAT expressions in this semantics, leading to a coequation that captures the covariety of automata corresponding to these behaviors. Finally, we prove that the axioms of the reduced fragment are sound and complete w.r.t. the semantics, and then build on this result to recover a semantics that is sound and complete w.r.t. the full set of axioms
    corecore