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Introduction

The notion of an equation is one of the basic concepts that allows us to classify
algebraic structures, also called algebras, which are nonempty sets with finitary
operations (finitary operations may be constants, unary operations, binary opera-
tions, ternary operations and so on). For example, an equation such as x · y = y ·x,
which formally stands for the formula ∀x∀y(x·y = y ·x), is satisfied by the structure
(N, ·) of the natural numbers with the usual multiplication, but it is not satisfied by
the structure (M2×2(Z), ·) of 2 × 2 matrices with entries on the integers with the
usual multiplication of matrices. In spite of its simplicity, there is a whole research
area which focuses on the study of (equationally defined) algebras and which is
called universal algebra. Commonly known texbooks in this area include [27, 45]
and also a specialized journal: Algebra Universalis.

Algebras of the same type, i.e., having the same kind of finitary operations,
that are equationally defined are called equational classes. Classical algebras that
form an equational class include: semigroups, monoids, groups, lattices, vector
spaces and Boolean algebras. A nonexample is the case of fields, since the axiom of
existence of a multiplicative inverse, ∀x(x 6= 0⇒ ∃y(x · y = 1)), is not an equation
(we are restricting the domain of x and we are using an existencial quantifier,
or, in other words, the multiplicative inverse operation is not total since 0 has no
multiplicative inverse), even though all the remaining axioms that define a field
are equations.

Another important concept for algebras, and mathematical structures in gen-
eral, is the notion of homomorphism. A homomorphism between two algebras is a
function that preserves all the operations, e.g., a homomorphism between (N,+1)
and (Z,+2) is a function h : N→ Z that preserves +, i.e., h(x+1 y) = h(x) +2 h(y)
for all x, y ∈ N (e.g., h(x) = 2x defines a homomorphism but h(x) = 2x does not).
This notion of a homomorphism, together with the notion of an algebra, allows us
to use categorical methods for the study of algebras.

In order to define a category, two ingredients are needed: its objects and its
morphisms. Additionally, certain axioms are needed in order to have a category,
such as compositionality of morphisms, associativity of composition and existence
of an identity morphism for each object which works as an identity element with
respect to composition. This branch of mathematics whose main purpose is the
study of categories is called category theory. Books in which its general theory is
studied include [9, 66].

9



10 Introduction

The main advantage of categorical methods is their generality. There are cat-
egorical concepts that allow us to define a category of algebras of the same type
together with its homomorphisms. This can be done by considering the algebras
for the monad (or the polynomial functor) associated to a given type. The study
of the concept of an equation can also be made from a categorical point of view
[52, 65, 50, 54, 38, 25].

Categorical concepts usually come in pairs, once a concept is defined we have
its dual concept which is obtained by reversing the direction of the morphisms, and
therefore we reverse the order in which compositions are made. For instance, the
concept of a monomorphism, which is that of an injective function in the category
Set of sets and functions, is defined as follows:

- f : X → Y is a monomorphism if for every g, h : Z → X, the equality f ◦g = f ◦h
implies g = h.

Now, if we reverse the arrows, and therefore the order of composition, we get the
dual concept of a monomorphism, which is called an epimorphism and it is defined
as follows:

- f : Y → X is an epimorphism if for every g, h : X → Z, the equality g ◦ f = h ◦ f
implies g = h.

Epimorphisms in the category Set are exactly surjective functions. That is, injective
and surjective are dual concepts in the category Set. In this thesis we will mainly
study the concepts of algebras and equations and their duals, which are called
coalgebras and coequations, respectively.

Coalgebras and coequations

The study of coalgebras has been a very active field during the last two decades.
Some of the main subjects studied in this area include: automata theory, dynamical
systems, labeled transition systems, modal logic, language semantics, coequations
and covarieties. Some references for the general theory include [76, 61]. As in the
case of equations and algebras where equations allow us to classify and study alge-
braic structures, coequations allow us to classify and study coalgebraic structures.
The use of coequations is less known.

When we study algebras we are mainly interested in “constructing” new ele-
ments from other elements, e.g., we can construct 4 from 1 and 3 by using the
binary operation + as 4 = 1 + 3. Here the algebraic operation is a binary operation
+ : X × X → X. Now if we reverse the arrow of the operation and we think of
a pair (X, f) where f : X → X × X we get a dual concept, i.e., a specific kind
of coalgebra. Such pair (X, f), where f : X → X × X is a particular instance of
an automaton on the alphabet 2 = {0, 1}, since X × X = X2. In this case, given
x ∈ X, the element f(x)(0) ∈ X is the state we reach from x by processing the
symbol 0, similarly, f(x)(1) is the state we reach from x by processing the symbol
1.
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More generally, we can consider any alphabet A and consider coalgebras given
by pairs (X, 〈c, f〉), where 〈c, f〉 : X → 2 ×XA is the pairing of the two functions
c : X → 2 and f : X → XA which is defined as 〈c, f〉(x) = (c(x), f(x)). This kind
of coalgebra is an automaton on A whose function c represents the accepting states
of the automaton. Categorical methods allow us, for each such pair (X, 〈c, f〉), to
define a map o : X → 2A

∗
such that for each x ∈ X the function o(x) : A∗ → 2

is the language accepted by the state x [13]. This element o(x) is also called the
behaviour of x. In this particular case, the concept of a coequation is a specific kind
of subset S of 2A

∗
and a coalgebra (X, 〈c, f〉) satisfies S if for every x ∈ X the

element o(x) is in S. That is, (X, 〈c, f〉) satisfies S if S contains all the behaviours
of the states in (X, 〈c, f〉).

The general notion of a coequation and that of a coalgebra satisfying a co-
equation comes from what is done on the algebraic side by using duality. On
the algebraic side there is a well–known theorem, Birkhoff’s theorem [18], that
characterizes equational classes as classes of algebras of the same type that satisfy
three closure properties. By duality, a similar result is obtained in the coalge-
braic case, usually called coBirkhoff’s theorem. That is, we define the concept of
a coequational class as a class of coalgebras of the same type that is defined by
some coequations. Then, coBirkhoff’s theorem characterizes coequational classes
as classes of coalgebras of the same type that satisfy three closure properties, see,
e.g., [76, Theorem 17.5].

Birkhoff’s theorem and its dual

The study of mathematical structures that share common properties, such as satis-
fying a given family of equations in our case of interest, allows us to classify and
study the structures of interest by proving properties they have in common. An
important question in this respect is if there are equivalent ways of knowing when
a class of algebraic structures is equational. That is, given a class of algebraic struc-
tures, do they all satisfy a common family of identities and those identities exactly
describe the given class? An answer to this question is given by Birkhoff’s theorem.
Birkhoff’s theorem [18] is a celebrated theorem in universal algebra that charac-
terizes classes of algebras of the same type that are equational. In order to state
this, we need to describe three different ways of obtaining new algebras from old
ones.

i) The product of a family of algebras is defined by taking its cartesian product
and operations defined componentwise, e.g., the product (N,+1) × (Z,+2)
between (N,+1) and (Z,+2) is defined as (N×Z,+) where the operation + is
defined componentwise, i.e., (a, b) + (x, y) := (a +1 x, b +2 y). Note that the
example we just showed is the case of the product of two algebraic structures,
but infinite products can also be considered. A class of algebras K of the same
type is closed under products if for every family of algebras in K their product
is also in K.
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ii) An algebra B is a homomorphic image of the algebra A if there exists a sur-
jective homomorphism from A to B. For example, for any n ≥ 1, the algebra
(Zn,+n), where +n is the usual addition modulo n, is a homomorphic image
of (Z,+), which can be witnessed by the surjective homomorphism h : Z→ Zn
such that h(x) = x (mod n). Homomorphic images are also called quotients.
A class of algebras K of the same type is closed under homomorphic images if
homomorphic images of elements in K are also in K.

iii) An algebra B is a subalgebra of the algebra A if there exists an injective ho-
momorphism from B to A. For example, for any n ≥ 1, the algebra (nZ,+),
where nZ = {nx | x ∈ Z} and + is the usual addition, is a subalgebra of
(Z,+), which can be witnessed by the injective homomorphism h : nZ → Z
such that h(nx) = nx, x ∈ Z. A class of algebras K of the same type is closed
under subalgebras if subalgebras of elements in K are also in K.

A class of algebras of the same type is a variety if it is closed under homomor-
phic images, subalgebras and products. Now, Birkhoff’s theorem states that a class
of algebras of the same type is a variety if and only it it is an equational class
[18]. A similar version for Birkhoff’s theorem is also obtained for the finite case
[14, 73, 37]. That is, for varieties of finite algebras, also called pseudovarieties.
A pseudovariety is a class of finite algebras of the same type that is closed under
homomorphic images, subalgebras and finite products. In this case, the kind of
“equations” that define a pseudovariety are of a more general kind by using topo-
logical methods. This finite version is also known as Reiterman’s theorem.

There are also coalgebraic versions of Birkhoff’s theorem [10, 2, 46]. In this
case, the definition of a covariety is that of a class of coalgebras of the same type
that are closed under homomorphic images, subcoalgebras and sums. The coal-
gebraic construction for a sum is, in most classical cases, the disjoint union of
coalgebras. By duality, the dual of Birkhoff’s theorem, also called coBirkhoff ’s the-
orem, states that a class of coalgebras of the same type is a covariety if and only if
it is a coequational class.

Birkhoff’s theorem states that, for a class of algebras of the same type, the
“semantic” property of being closed under subalgebras, quotients and products is
equivalent to the “syntactic” property of being defined by equations. As a con-
sequence, satisfaction of equations is preserved under subalgebras, quotients and
products, and any class of algebras of the same type closed under subalgebras,
quotients and products has an axiomatization by means of equations. A similar
but less explored argument applies for the case of coalgebras of the same type, by
coBirkhoff’s theorem, where coequations (also called “behaviours”) are considered
instead of equations and the construction of sums is considered instead of products.

Eilenberg–type correspondences

There exist other kinds of variety theorems in the literature, most of them for fi-
nite algebras, that are known as Eilenberg–type correspondences. They are stated
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as one–to–one correspondences between varieties of algebras and varieties of lan-
guages. The cases of varieties of finite monoids and varieties of finite semigroups
was proved by Eilenberg [36].

Other kinds of Eilenberg–type correspondences have been proved, e.g., [70]
for pseudovarieties of ordered monoids and ordered semigroups, the one in [74]
for pseudovarieties of finite dimensional K–algebras, [72] for pseudovarieties of
idempotent semirings and [13, Theorem 39] for varieties of monoids. In each of
those cases, the definition of a variety of languages had to be modified in order
to prove the desired result. Most of them followed the same recipe and proof
idea as the one used by Eilenberg, which was by means of syntactic algebras. For
instance, for the case of monoids, the syntactic algebra of a language L on Σ is a
homomorphic image of Σ∗ that satisfies a universal property described in terms of
L.

What are varieties of languages?

A language on an alphabet Σ is a subset of L ⊆ Σ∗. This concept of a language,
which is usualy studied by using automata, can be also studied from an algebraic
point of view. In fact, we have the following notion of a language recognized by a
monoid:

- A language L ⊆ Σ∗ is recognized by a monoid M if there exists a monoid homo-
morphism h : Σ∗ → M and a subset N ⊆ M such that L = h−1(N). We say that
L is recognizable if it is recognized by a finite monoid.

A well–known fact is that recognizable languages are the same as languages
accepted by finite automata.

Now, varieties of languages are usually defined as operators L on a certain
collection of objects, finite sets in most cases, satisfying certain properties. For
instance, the definition of a variety of languages that corresponds to the case of
varieties of finite monoids is the following:

- A variety of languages is an operator L on finite sets, such that for every finite
set Σ:

i) L (Σ) is a Boolean algebra where each element is a recognizable language
on Σ (here the operations for the Boolean algebra are the union, intersection
and complement),

ii) L (Σ) is closed under left and right derivatives. That is, aL,La ∈ L (Σ)
for every L ∈ L (Σ) and a ∈ Σ, where aL = {w ∈ Σ∗ | wa ∈ L} and
La = {w ∈ Σ∗ | aw ∈ L}, and

iii) L is closed under morphic preimages. That is, for every finite set Γ, homo-
morphism of monoids h : Γ∗ → Σ∗ and L ∈ L (Σ), we have that the inverse
image h−1(L) of L under h is in L (Γ).
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From the previous definition other kinds of varieties of languages were similarly
defined. For instance:

a) For the case of varieties of finite semigroups we only need to replace Σ∗ by Σ+

and change property iii) above for the case of homomorphisms of semigroups.

b) For the case or varieties of monoids we only need to change “Boolean algebra”
in i) above by “complete atomic Boolean algebra” and omit the word “recogniz-
able”.

c) For the case of varieties of finite ordered monoids we only need to change
“Boolean algebra” in i) above by “(distributive) lattice”, that is, L (Σ) is not
necessarily closed under complements.

d) For the case of varieties of finite groups we have to replace Σ∗ by the free group
on Σ, add a new special kind of derivative in ii) above, and change property iii)
above for the case of homomorphisms of groups.

Most of the known Eilenberg–type correspondences have been proved sepa-
rately in which the corresponding definition for a variety of languages has been an
ad hoc definition without fully explaining where it comes from. Many questions
can emerge in this respect for which there has been no formal explanation, such
as:

1. Why do we get a Boolean algebra in i) above and why is each language recog-
nizable?

2. Where do derivatives come from? How many kinds of derivatives are needed?

3. Why closure under homomorphic images?

4. What should be the conditions if one wants an Eilenberg–type correspondence
for varieties of finite distributive lattices? And more generally...

5. What is a variety of languages?

One of the main purposes of this thesis is to give an answer to this kind of questions
and to fully explain what Eilenberg–type correspondences are. The main idea is to
understand the relation between equational classes, i.e., varieties of algebras, and
its dual, i.e., coequational classes. Varieties and equations are related by Birkhoff’s
theorem, each variety is defined by some equations and each family of equations
define a variety. The previous fact can be stated as a one–to–one correspondence
if we require that the family of equations is deductively closed, i.e., if we have an
equational theory. Now, by duality, each equational theory will define a coequa-
tional theory and it turns out that this coequational theory is exactly the variety of
languages that defines a given variety of algebras. In this sense, we will explain
and justify the fact that “varieties of languages = coequational theories".

It is worth mentioning that the concept of variety of languages has been studied
for varieties of algebras and also for pseudovarieties of algebras, in the first case we
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call them varieties of languages and in the latter case we call them pseudovarieties
of languages. In this sense, we will also explain and justify that “pseudovarieties of
languages = pseudocoequational theories”.

Approach

Eilenberg–type correspondences are one–to–one correspondences between vari-
eties of algebras and varieties of languages, the latter being a particular instance of
coequations. The concept of a coequation is a rather less known concept than that
of an equation. In this thesis we will start by studying particular cases of coequa-
tions and its relationship with equations. We will do this for the case of determin-
istic automata and weighted automata. Then we develop the general categorical
approach of coequations and equations and a general duality result between them
which will help us to understand how coequations are one of the main ingredients
in Eilenberg–type correspondences.

In Chapter 1, we introduce some preliminaries to fix the notation used in this
thesis and most of the main general concepts that we need in subsequent chap-
ters. Here we recall some categorical definitions such as covariant and contravari-
ant functors, particularly the covariant and contravariant hom–set functors, natu-
ral transformations, initial and final object, free and cofree objects, algebras and
coalgebras for an endofunctor, adjunctions, contravariant adjunctions and duality.
Classical Birkhoff’s theorem will also be stated in this chapter.

In Chapter 2, we study equations and coequations for deterministic automata.
Here we recall the basic definitions of equations and coequations for deterministic
automata given in [13]. We illustrate satisfaction of equations and coequations
with some examples and explain what exactly means that a deterministic automa-
ton satisfies some given (co)equations. We illustrate how those concepts can be
captured categorically by using arrows and commutative diagrams. Based on that,
we illustrate how this categorical approach allows us to obtain the duality result
between equations and coequations in [13] and show some applications. Based on
this duality, we show that regular varieties of automata can be defined either by
equations or coequations.

In Chapter 3, we study equations and coequations for weighted automata. Here
we introduce some concepts that are needed to define weighted automata such
as semirings and semimodules. Then we introduce equations and coequations for
weighted automata and a duality result between them. All of this was motivated by
the case of deterministic automata. We also study a more general kind of equations
called linear equations.

Chapter 4 is one of the most important chapters in this work where we introduce
the abstract theory of equations and coequations from a categorical point of view.
We show the basic definitions of equations and coequations over a given object for a
given endofunctor. Equations are defined on the algebraic side and coequations are
defined on the coalgebraic side. We show how a contravariant adjunction between
two categories can be lifted to a contravariant adjunction between a category of
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algebras and a category of coalgebras on the base categories. This fact is obtained
from [51]. From this, we add still another layer and establish results that allow
us to lift a duality to a duality between categories of equations and coequations.
We show how satisfaction of equations on one side is equivalent to satisfaction of
coequations on the other side if we assume that the contravariant adjunction is
a duality. This is a key fact to understand the interaction between equations and
coequations. We do a similar work by considering monads and comonads instead
of endofunctors, i.e., by considering Eilenberg–Moore categories.

In Chapter 5, we summarize and present a categorical version of Birkhoff’s the-
orem. The main purpose is to apply and use the categorical definition of equations
in order to obtain a categorical version of Birkhoff’s theorem for algebras over a
monad. Birkhoff’s theorem is a well–known theorem for which some categorical
versions are already proved in the literature, such as [10, 15, 17], but we present
a different version which takes into account algebras over a monad and a new
concept of an equational theory. We include this chapter for the following reasons:

- To make this thesis self–contained.

- To show a version of Birkhoff’s theorem for algebras over a monad.

- To show a version of Birkhoff’s theorem as a one–to–one correspondence between
varieties of algebras and equational theories. The latter is a new categorical
concept introduced in this work, which is based on the classical definition of an
equational theory [27, Definition II.14.16] and some ideas in the paper [78]. A
similar work is made for pseudovarieties of algebras and also for local varieties
and local pseudovarieties. (A local variety is a class of algebras in which all the
algebras are a quotient of a given free algebra on a fixed set of generators, say
X, and it is closed under quotients, subalgebras that are quotients of the free
algebra on X and subdirect products, which is a special subalgebra of a product.
Local pseudovarieties are defined in a similar way by considering finite algebras
and finite subdirect products).

- To derive Eilenberg–type correspondences in subsequent chapters.

From this version of Birkhoff’s theorem, we will easily obtain Eilenberg–type cor-
respondences in the subsequent chapters. The main contributions and differences
with other categorical approaches are:

- A definition of an equational theory and a pseudoequational theory.

- A version of Birkhoff’s theorem for algebras for a monad as a one–to–one cor-
respondence between varieties of algebras and equational theories. Similar ver-
sions are also proved for pseudovarieties, local varieties and local pseudovari-
eties.

- A proof of Birkhoff’s theorem for finite algebras without using topology and profi-
nite methods.
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Most of the proofs and the idea on how to prove the finite version are obtained
from [15, 14].

In Chapter 6, we unveil Eilenberg–type correspondences. That is, we show that:

- Eilenberg–type correspondences = Birkhoff’s theorem for (finite) algebras + du-
ality.

- “Varieties of languages” = duals of equational theories.

To this end, we use the theory that was developed in Chapters 4 and 5. We obtain
general categorical versions of Eilenberg–type correspondences for the following
cases: varieties of algebras, pseudovarieties of algebras, local varieties of algebras
and local pseudovarieties of algebras. Additionally, we also discuss the subject
of syntacic algebras, which is a common concept that has been used for classical
proofs of Eilenberg–type correspondences. There are some important contributions
in this respect:

- Syntactic algebras are not needed to obtain Eilenberg–type correspondences.

- Syntactic algebras are generalized pushouts.

- The syntactic algebra of a language is the dual of the least coalgebra generated
by the language.

We also derive, as an example, an Eilenberg–type correspondence for varieties of
monoids, which is an Eilenberg–type correspondence that has been established
in [13], but in our case, we obtain a more simplified definition of a variety of lan-
guages compared to the one in [13]. We show that the two versions are equivalent.

In Chapter 7, we show applications of the categorical Eilenberg–type correspon-
dence theorems to derive specific Eilenberg–type correspondences for some vari-
eties and pseudovarieties. Some of them were already proved in the literature and
some others appear to be new, especially the ones where finiteness of algebras is
not required, i.e., the case of varieties of algebras.

Main results and contributions

Eilenberg–type correspondences have been studied in the literature during the last
forty years since its first version due Eilenberg [36, Theorem 34]. Even though
its popularity, which can be witnessed by the numerous Eilenberg–type correspon-
dences shown in the literature such as [70, 74, 72, 13], and besides some categori-
cal generalizations, such as [22, 1, 5, 89, 78], Eilenberg–type correspondences had
not been fully understood. The main contribution of this thesis is to fully explain
how Eilenberg–type correspondences are obtained.

Historically, one of the key concepts used to obtain Eilenberg–type correspon-
dences was the concept of a syntactic algebra for a language. Syntactic algebras
were used by Eilenberg himself in order to prove his theorem and similar strate-
gies were used in [70, 74, 72, 22, 89, 78]. This could possibly mean that in order
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to get an Eilenberg–type correspondence one needs to use syntactic algebras. An
important observation and contribution in this thesis is that syntactic algebras are
not needed in order to get Eilenberg–type correspondences. In fact, syntactic alge-
bras can work as the building blocks to generate a variety of algebras but there is
a more direct way to build a variety, namely, via equations by Birkhoff’s theorem
[18]. In this thesis, we establish Eilenberg–type correspondences without the use
of syntactic algebras, but we show categorical properties of syntactic algebras and
its relationship with known concepts in Section 6.4.

The two main concepts that are involved in an Eilenberg–type correspondence
are: varieties of algebras and varieties of languages. The study and definition of
a variety of algebras is fully understood and has been broadly studied in universal
algebra. On the other hand, the concept of a variety of languages had not been
fully understood and the different definitions of a variety of languages given in
the literature do not fully explain where its defining properties come from and
they are usually defined to each particular case without any explanaition. In this
thesis we fully explain what a variety of languages is and give a simple and easy to
understand picture on how Eilenberg–type correspondences are obtained. In fact,
varieties of languages are duals of equational theories.

Our main result for Eilenberg–type correspondences is shown in Chapter 6:
Proposition 143, 153, 158 and 161. In order to obtain this result, which we called
an abstract Eilenberg–type correspondence, we needed to obtain a categorical ver-
sion of Birkhoff’s theorem as a one–to–one correspondence. For this purpose, a
categorical approach to equations and coequations is given by focusing in their
relationship via duality. From this, the notion of an equational theory is defined
which will be one of the key concepts that will lead us to establish our main result
and derive new and known Eilenberg–type correspondences.

Published work

Here we summarize the published work made by the author during his PhD period
and relate it with the contents of this thesis. The following is the list of papers
published by the autor in chronological order:

[79] Julian Salamanca, Adolfo Ballester-Bolinches, Marcello Bonsangue, Enric Cos-
me-Llópez, and Jan Rutten. Regular Varieties of Automata and Coequations,
pages 224–237. Springer International Publishing, 2015.

[81] Julian Salamanca, Marcello Bonsangue, and Jan Rutten. Equations and Co-
equations for Weighted Automata, pages 444–456. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2015.

[80] Julian Salamanca, Marcello Bonsangue, and Jurriaan Rot. Duality of Equa-
tions and Coequations via Contravariant Adjunctions, pages 73–93. Springer
International Publishing, Cham, 2016.
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[78] Julian Salamanca. An Eilenberg–like theorem for algebras on a monad. CWI
Technical Report, (FM–1602), March 2016.

[82] Julian Salamanca Tellez. Unveiling Eilenberg–type correspondences: Birkhoff ’s
theorem for (finite) algebras + duality. CWI Technical Report, (FM–1604),
December 2016. (submitted to a journal)

Chapter 2 is based on the results given in [79], which is based on the work on
equations and coequations initiated by Rutten et al. [13], whose main contribution
is how equations and coequations can equivalently describe regular varieties of
automata.

Chapter 3 is based on the paper [81] which is the study of equations and co-
equations for weighted automata and a duality result between them.

Chapter 4 is based on the paper [80] about presenting duality results between
equations and coequations. The paper is based on results that allow liftings of con-
travariant adjunctions to categories of algebras and coalgebras and then liftings to
categories of equations and coequations are added for the case that the contravari-
ant adjunction is a duality. Definitions of categories of equations and coequations
are given. Liftings of adjunctions to categories of algebras is made in [51] and a
similar version is proved for the case of Eilenberg–Moore categories in [80].

Chapters 5, 6 and 7 are based on the papers [78, 82] whose main idea is to ob-
tain categorical versions for general Eilenberg–type correspondences. Early ideas
of this work appear in [78] while a complete and improved version is presented in
[82]. Particular versions of Birkhoff’s theorem were needed for this purpose, which
are presented in Chapter 5. General and abstract Eilenberg–type correspondences
are presented in Chapter 6 and applications are shown in Chapter 7.

Related work

Here we summarize some of the main related work for this thesis. We will make a
brief discussion here, but a more detailed discussion that includes more references
will be made through the thesis and especially at the end of each chapter.

Equations and coequations for deterministic automata have been studied in
[13], from which most of the concepts for Chapter 2 are obtained. In the same
chapter, we study the connection between equations, coequations and regular va-
rieties. Regular varieties and their defining equations were already studied in
[71, 88, 44]. In Chapter 3, we imitate what it is done in Chapter 2 in order to
obtain similar results for the case of weighted automata.

With respect to the study of equations and coequations from a categorical point
of view, one of the starting points in this direction was inspired in obtaining cat-
egorical versions of Birkhoff’s theorem such as [10, 15, 17] and its first version
for coalgebras in [76] in which the concept of coequations is not mentioned but
used under the name of a subsystem. In [15], subcategories that are in some sense
equational are defined and the role of equations is played by regular epimorphisms
with regular–projective domain. From this, dual versions can be easily obtained
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and hence the idea of defining coequations as a special kind of monomorphisms.
In [10], coequations are defined as regular subobjects of a cofree coalgebra, i.e.,
a special kind of monomorphism. In [61], coequations are called modal rules or
modal formulas, and they are represented by morphisms in M , usually monomor-
phisms, for a given (E ,M)–category [61, Definition 2.4.1]. In [25], equations are
presented as pairs of arrows, left–hand side and right–hand side, and the definition
of satisfaction is in terms of coequalizing those two arrows, this property can be
presented in terms of their coequalizer, when it exists, and hence equations are a
special kind of epimorphism. A similar idea of defining equations with left–hand
side and right–hand side is explored in [38]. Lifting adjunctions to categories of
algebras was studied in [51].

The study of Birkhoff’s theorem [18] has been an important research area, es-
pecially their categorical versions and dual versions such as [10, 15, 17, 76]. The
first categorical approach in this direction is in [15] and a first coalgebraic version
is in [76].

Eilenberg–type correspondences have been widely studied since Eilenberg’s va-
riety theorem in [36]. Some of the particular instances include the work in [70]
for pseudovarieties of ordered monoids and ordered semigroups, the one in [74]
for pseudovarieties of finite dimensional K–algebras, [72] for pseudovarieties of
idempotent semirings and [13, Theorem 39] for varieties of monoids. General cat-
egorical approaches, in which neither the coalgebraic nor the coequational points
of view are explored, include [22, 1, 5, 89]



Chapter 1

Preliminaries

In this chapter, we introduce some notation, some definitions and some general
facts that will be used. In this thesis, we assume that the reader is familiar with
basic concepts from category theory, see, e.g., [9, 66].

We denote arbitrary categories by calligraphic letters such as C, D, etc. We use
the notation X ∈ C to say that X is an object of the category C. If X,Y ∈ C,
we denote the collection of morphisms in C with domain X and codomain Y as
C(X,Y ). Collections of morphisms of the form C(X,Y ) are called hom–sets. If the
category C is clear from the context we use the notation f : X → Y for a morphism
f ∈ C(X,Y ). If f ∈ C(X,Y ) and g ∈ C(Y,Z), we denote their composition as g ◦ f ,
which is an element in C(X,Z). For every object X ∈ C we denote the identity
morphism on X as idX , which is an element in C(X,X).

Given a category C, we denote by Cop its dual category which has the same
objects as C and whose arrows are reversed, that is, f ∈ Cop(X,Y ) if and only if
f ∈ C(Y,X). In this case, given f ∈ Cop(X,Y ) and g ∈ Cop(Y,Z), their composition
g ◦op f in Cop is defined as f ◦ g ∈ C(Z,X) in C, which is an element in Cop(X,Z).

We denote functors by capital letters F , G, etc. A covariant functor F from a
category C to a category D, denoted as F : C → D, is an assignment on objects
and morphisms of C which satisfies the following properties, for every X,Y, Z ∈ C,
f ∈ C(X,Y ) and g ∈ C(Y,Z):

F (X) ∈ D, F (f) ∈ D(F (X), F (Y )), F (idX) = idF (X) and F (g◦f) = F (g)◦F (f).

Functors in which the domain and codomain are the same category, say C, are
called endofunctors on C. Let F : C → D be a functor. We say that F is faithful if
for every X,Y ∈ C and f, g ∈ C(X,Y ), F (f) = F (g) implies f = g. We say that F
is full if for every X,Y ∈ C and g ∈ D(F (X), F (Y )) there exists f ∈ C(X,Y ) such
that F (f) = g.

Another kind of functors we will consider are the contravariant ones, which
reverse the direction of the arrows in the following sense. A contravariant functor
F from a category C to a category D, denoted as F : C ×−→D, is a functor F : C →
Dop.

21
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We say that a category C is locally small if for every X,Y ∈ C the collection
C(X,Y ) of morphisms with domain X and codomain Y is a set. We say that C is
small if it is locally small and the collection of objects in C is a set. If C is a locally
small category then we can define the following hom–set functors from C into the
category Set of sets and functions:

i) The covariant hom–set functor for an object X ∈ C is the functor C(X, ) :
C → Set which is defined as C(X, )(Y ) := C(X,Y ) for any Y ∈ C and
C(X, )(f) := C(X, f) : C(X,Y ) → C(X,Z) for f ∈ C(Y,Z), where C(X, f)
is defined as C(X, f)(g) = f ◦ g for every g ∈ C(X,Y ).

ii) The contravariant hom–set functor for an object X ∈ C is the functor C( , X) :
C ×−→ Set which is defined as C( , X)(Y ) := C(Y,X) for any Y ∈ C and
C( , X)(f) := C(f,X) : C(Z,X) → C(Y,X) for f ∈ C(Y, Z), where C(f,X) is
defined as C(X, f)(g) = g ◦ f for every g ∈ C(Z,X).

A concrete category is a pair (C, U) where C is a category and U : C → Set is a
faithful functor. We also say that a category C is concrete if there exists a faithful
functor U : C → Set such that (C, U) is a concrete category.

Let F,G : C → D be functors. A natural transformation ϑ from F to G, denoted
as ϑ : F ⇒ G, is an assignment on objects of C to morphisms of D such that ϑX ∈
D(F (X), G(X)) for each object X in C, and for every X,Y ∈ C and f ∈ C(X,Y )
the following diagram commutes1:

F (Y ) G(Y )

F (X) G(X)

ϑY

ϑX

F (f) G(f)

that is, G(f) ◦ ϑX = ϑY ◦ F (f).
An object X ∈ C is an initial object if for any object Y ∈ C there is a unique

morphism in C(X,Y ), which we denote as !Y . Dually, an object X ∈ C is a final
object if for any object Y ∈ C there is a unique morphism in C(Y,X), which we also
denote as !Y . It will be clear from the context to which !Y we are refering to.

Definition 1. Let C,D be categories, U : C → D a functor and X ∈ D. The
free U–object over X is an object F(X) ∈ C together with a morphism ηX ∈
D(X,U(F(X))), called the unit morphism on X, that satisfies the following (uni-
versal) property:

(UP) For every A ∈ C and every morphism f ∈ D(X,U(A)) there exists a unique
morphism f ] ∈ C(F(X), A) such that the following diagram commutes:

1A commutative diagram is a diagram such that any two paths, with same sourse and target, their
compositions are the same.
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U(A)U(F(X))

X
f

ηX

U(f ])

The morphism f ] is called the extension of f .

The most common cases of free U–objects we deal with are the cases in which
U is a faithful (forgetful) functor. For example, if U : Mon → Set denotes the
forgetful functor from the category Mon of monoids and monoid homomorphisms
into the category Set of sets and functions, which sends every monoid (M, ·, e) ∈
Mon to its underlying set U(M, ·, e) = M ∈ Set and U acts as the identity on
morphisms, then, for every X ∈ Set, the free U–object over X is the free monoid
on X generators which is given by X∗ = (X∗, ·, ε), where X∗ is the set of all words
with symbols on X, · is the concatenation operation defined as u · v = uv, and ε is
the empty word.

By dualizing the previous concept we obtain the following definition.

Definition 2. Let C,D be categories, U : C → D a functor and Y ∈ D. The cofree U–
object over Y is an object C(Y ) ∈ C together with a morphism εY ∈ D(U(C(Y )), Y )
that satisfies the following (universal) property:

(UP) For every A ∈ C and every morphism f ∈ D(U(A), Y ) there exists a unique
morphism f [ ∈ C(A,C(Y )) such that the following diagram commutes:

U(A) U(C(Y ))

Y
f

εY

U(f [)

We assume that the reader is familiar with different kinds of morphisms in a
category including the following: epimorphisms (also known as epis), monomor-
phisms (also known as monos), isomorphisms (also known as isos). We also as-
sume the knowledge of limits and colimits, especially products and coproducts in
a category. See, e.g., [66, 4].

Let f : X → Y be a function. Define the kernel ker(f) of f and the image Im(f)
of f as follows:

ker(f) = {(x1, x2) ∈ X×X | f(x1) = f(x2)} Im(f) = {y ∈ Y | ∃x ∈ X f(x) = y}.

1.1 Algebras for an endofunctor

In this section, we define the general notion of algebras for an endofunctor. We
will fix some notation and show some examples. See, e.g., [9] for more details and
examples on this subject.
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We start by defining the key concept of algebras for an endofunctor and its
corresponding category, which can be seen as the categorical generalization of al-
gebraic structures.

Definition 3. Let D be a category and F : D → D an endofunctor on D. We define
the category alg(F ) of F– algebras as the category whose objects are pairs X =
(X,αX) such that X ∈ D and αX ∈ D(F (X), X) and a morphism alg(F )(X,Y),
with Y = (Y, αY ), is a morphism f ∈ D(X,Y ) such that the following diagram
commutes:

X Y

F (X) F (Y )

f

F (f)

αX αY

Pairs (X,αX) as above are called F–algebras.

As examples of algebras for an endofunctor we have the following.

Example 4 (Deterministic automata as F–algebras). Let A be a set of symbols, i.e.,
an alphabet. Consider the functor F : Set → Set defined on objects as F (X) :=
A × X and on morphisms as F (f) := idA × f , i.e., for any f ∈ Set(X,Y ), a ∈
A and x ∈ X we have F (f)(a, x) = (idA, f)(a, x) = (a, f(x)). A deterministic
automaton on A is an F–algebra, that is, a pair (X,αX) such that X ∈ Set and
αX ∈ Set(A ×X,X). The function αX is called the transition function of (X,αX)
and X its states. In this case, αX(a, x) is the state we reach from x ∈ X with the
symbol a ∈ A. A homomorphism of automata is an F–algebra morphism, that is,
a homomorphism from (X,αX) to (Y, αY ) is a function f : X → Y such that for
every a ∈ A and x ∈ X we have that f(αX(a, x)) = αY (a, f(x)). That is, the state
we reach from f(x) ∈ Y with the symbol a ∈ A is the image under f of the state
we reach from x ∈ X with the symbol a.

Example 5. Let τ be a type of algebras, also called a signature, i.e., τ is a set of
function symbols such that for every f ∈ τ there is nf ∈ N which is called the arity of
f . An algebra of type τ is a pair (A, {fA : Anf → A}f∈τ ). An algebra homomorphism
from an algebra (A, {fA : Anf → A}f∈τ ) to an algebra (B, {fB : Bnf → B}f∈τ ) is
a function h : A → B such that for every f ∈ τ and a1, . . . , anf ∈ A we have that
h(fA(a1, . . . , anf )) = fB(h(a1), . . . h(anf )).

Now, for a given type τ , define the functor Fτ : Set → Set as Fτ ( ) =∐
f∈τ Set(nf , ). Then we have that Fτ–algebras are exactly algebras of type τ

and algebra homomorphisms are exactly Fτ–algebra morphisms2. For instance, if

2If we consider τ as a discrete category, i.e., its objects are the elements in τ and its only morphisms
are the identity morphisms, then, if we consider the functor ar : τ → Set such that ar(f) = nf and
the functor i : τ → Set such that i(f) = {f}, then we have that Fτ is the left Kan extension Lanar(i)
of i along ar.
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τ = {·, e}, where · is a binary function symbol and e is a nullary function symbol,
then an Fτ algebra is a pair (A,αA) where αA : {·}×A2+{e}×1→ A is a function.
From αA we can define the functions ·A : A2 → A and eA : 1 → A as ·A(a1, a2) =
αA(·, a1, a2) and eA(0) = αA(e, 0) to obtain the algebra (A, {fA : Anf → A}f∈τ )
of type τ . Conversely, given an algebra (A, {fA : Anf → A}f∈τ ) of type τ we can
define the function αA : {·} × A2 + {e} × 1 → A as αA(·, a1, a2) = ·A(a1, a2) and
αA(e, 0) = eA(0) to obtain the Fτ–algebra (A,αA). Examples of such algebras in-
clude monoids, but not every such algebra is a monoid since we do not necessarily
have that the operation · is associative or that e is the neutral element for ·. Note
that the notions of algebra homomorphism and Fτ–algebra morphism coincide un-
der the previous correspondence. Also note that deterministic automata on a set
A are the same as algebras of the type τ = A, where each symbol in A is a unary
function symbol.

If D is a category that has a final object X ∈ D, then also alg(F ) has a final ob-
ject, namely (X, !F (X)). In the case of the previous example, the final deterministic
automaton on A is the automaton (1, !A×1) where 1 = {0} and !A×1 : A × 1 → 1
is defined as !A×1(a, 0) = 0 for every a ∈ A. We now define the concept of a free
algebra.

Definition 6. Let D be a category, F : D → D an endofunctor on D and X ∈ D.
The free F–algebra over X generators is the free U–object over X (see, Definition
1), where U : alg(F )→ D is the forgetful functor defined on objects as U(X,αX) =
X for every (X,αX) ∈ alg(F ) and U(f) = f for every morphism f in alg(F ).

The following illustrates the free deterministic automaton over 1 generator,
which will be a key concept for defining equations for deterministic automata in
the next chapter.

Example 7 (Example 4 continued). For a given set A, let F : Set → Set be the
functor defined as F (X) = A ×X on objects and F (f) = idA × f on morphisms.
The free F–algebra over the set 1 = {0} is given by the F–algebra A∗ = (A∗, %)
where % : A × A∗ → A∗ is defined as %(a,w) = aw, for every a ∈ A and w ∈ A∗,
and the function η1 ∈ Set(1, A∗) is defined as η1(0) = ε. Now, given an F–algebra
X = (X,αX) and a function f ∈ Set(1, X), there is a unique F–algebra morphism
f ] ∈ alg(F )(A∗,X) such that f ] ◦ η1 = f , which is inductively defined as:

f ](w) =

{
f(0), if w = ε

αX(a, f ](u)) if w = au.

That is, f ](w) is the state we reach in the automaton X from the state f(0) by
processing the word w from right to left.

Note that the F–algebra (A∗, %′) where %′ : A×A∗ → A∗ is defined as %′(a,w) =
wa for every a ∈ A and w ∈ A∗ is also a free F–algebra over 1. In this case,
for any deterministic automaton X = (X,αX) and f ∈ Set(1, X), the function
f ] ∈ alg(F )((A∗, %′),X) is the function such that for every w ∈ A∗, f ](w) is the
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state we reach from the state f(0) by processing the word w from left to right. Also,
we have that (A∗, %) and (A∗, %′) are isomorphic under the function ϕ : A∗ → A∗

which sends every word w ∈ A∗ to its reversal wR =: ϕ(w).

Note that, in general, for any endofunctor F : Set → Set, the free F–algebra
over X ∈ Set is essentially the same as the initial FX–algebra, where FX is the
functor FX( ) := X + F ( ). For instance, in the setting of the previous example,
(A∗, [η1, %]) is the initial F1–algebra, where [η1, %] : 1 + A∗ → A∗ is obtained from
η1 and % from the universal property of the coproduct 1 +A∗.

Another observation regarding the previous example is how the induction prin-
ciple is related with free algebras. In fact, the definition of the f ] above is an
inductive one. The previous fact is represented by the slogan “induction=use of
initiality for algebras”, see [55].

1.2 Birkhoff’s theorem

In this section, we recall some basic definitions and state Birkhoff’s theorem, see,
e.g., [18, 27]. The study of algebras and classes of algebras is a main subject of
study in universal algebra. A well–known theorem in this area is Birkhoff’s variety
theorem, which states that a class of algebras of a given type is defined by a set of
equations if and only if it is a variety, i.e., it is closed under homomorphic images,
subalgebras, and products.

We already defined type of algebras (also called a signature), algebras of a
given type and algebra homomorphism in Example 5. Now we proceed to define
the concepts of homomorphic image (also called quotient), subalgebra, product,
terms and equations.

Given two algebras A = (A, {fA : Anf → A}f∈τ ) and B = (B, {fB : Bnf →
B}f∈τ ) of type τ , a homomorphism from A to B is a function h : A → B such
that for every f ∈ τ and a1, . . . , anf ∈ A we have that h(fA(a1, . . . , anf )) =
fB(h(a1), . . . , h(anf )). The algebra A is a subalgebra of B if there exists an in-
jective homomorphism from A to B. The algebra B is a homomorphic image of
A, or B is a quotient of A, if there exists a surjective homomorphism from A to
B. The algebra A is isomorphic to B if there exists a bijective homomorphism
h : A → B. Finally, given a set I and algebras Ai = (Ai, {fAi : A

nf
i → Ai}f∈τ )

of type τ , we define the product A =
∏
i∈I Ai as the algebra A = (

∏
i∈I A, {fA :

Anf → A}f∈τ ) such that for each i ∈ I, f ∈ τ and a1, . . . , anf ∈ A we have that
fA(a1, . . . , anf )(i) = fAi(a1(i), . . . , anf (i)), i.e., operations in A =

∏
i∈I Ai are

defined componentwise. We say that the product is finite if the index set I is finite.
One way of restricting the kind of algebras we want to study is by using equa-

tions. Given a set X of variables, we define the set Tτ (X) of terms of type τ over X
as the least set, with respect to inclusion, such that:

i) X ⊆ Tτ (X).

ii) f ∈ Tτ (X) for every nullary function symbol f ∈ τ .
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iii) f(t1, . . . , tnf ) ∈ Tτ (X) for every function symbol f ∈ τ or arity nf ≥ 1 and
t1, . . . tnf ∈ Tτ (X).

Note that the set Tτ (X) of terms of type τ over X it is an algebra of type τ in
which each operation fTτ (X) = f . Furthermore, we have that the algebra Tτ (X) is
the free U–object over X, where U : alg(Fτ )→ Set is the forgetful functor. In fact,
given any Fτ–algebra A = (A, {fA : Anf → A}f∈τ ) and a function g : X → A, the
unique extension g] : Tτ (X)→ A in alg(Fτ )(Tτ (X),A) is defined by induction as:

i) g](x) = g(x) for every x ∈ X.

ii) g](f) = fA for every nullary function symbol f ∈ τ .

iii) g](f(t1, . . . , tnf )) = fA(g](t1), . . . , g](tnf )) for every function symbol f ∈ τ of
arity nf ≥ 1 and t1, . . . , tnf ∈ Tτ (X).

An equation of type τ over X is a pair (t1, t2) ∈ Tτ (X) × Tτ (X). The equation
(t1, t2) is also denoted as t1 ≈ t2. An algebra A = (A, {fA : Anf → A}f∈τ ) of
type τ satisfies the equation t1 ≈ t2, denoted as A |= t1 ≈ t2, if for every function
g ∈ Set(X,A) we have that (t1, t2) ∈ ker(g]), i.e., g](t1) = g](t2). If E is a set of
equations we say that A satisfies E, denoted as A |= E, if for every t1 ≈ t2 ∈ E we
have that A |= t1 ≈ t2.

Example 8. Let τ = {·, e} be the type of algebras such that · is a binary function
symbol and e is a nullary function symbol, then the set of identities E = {x · e ≈
x, e · x ≈ x, x · (y · z) ≈ (x · y) · z} of type τ over X ⊇ {x, y, z} defines the class of
algebras of type τ that are monoids, i.e., an algebra A = (A, {·A, eA}) of type τ is
a monoid if and only if A |= E.

A class of algebras K of the same type is an equational class if there exists a
family of equations E such that for every algebra A of type τ we have that A ∈ K
if and only if A |= E.

Let K be a class of algebras of the same type. We say that K is closed under
subalgebras if for every A ∈ K and every subalgebra B of A we have B ∈ K.
We say that K is closed under homomorphic images, or closed under quotients, if
for every A ∈ K and every homomorphic image B of A we have B ∈ K. We
say that K is closed under products if for every set I and {Ai}i∈I ⊆ K we have
that

∏
i∈I Ai ∈ K. Similarly, K is closed under finite products if it is closed under

products for every finite index set I. Classes of algebras of the same type that are
closed under homomorphic images, subalgebras and products are called varieties
of algebras.

We have that equational classes are closed under homomorphic images, sub-
algebras and products. By celebrated Birkhoff’s theorem, see, e.g., [18] and [27,
Theorem II.11.9], we also have the converse. That is.

Theorem 9 (Birkhoff). Let K be a class of algebras of the same type τ . Then K is an
equational class if and only if K is a variety.
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Proof. (Sketch) If K is an equational class then K is a variety since equations
are preserved by subalgebras, homomorphic images and products [27, Lemma
II.11.3.].

Conversely, assume that K is a variety. Then for any infinite set X of vari-
ables let {Tτ (X)

ei−→→Ai}i∈I be the set of all surjective homomorphisms, up to
isomorphism, with codomain in K. Consider the product A =

∏
i∈I Ai and let

e : Tτ (X) → A be the unique homomorphism such that πi ◦ e = ei, where
πi : A → Ai is the projection homomorphism, i ∈ I. Then we have that K is an
equational class with ker(e) as a set of defining equations [27, Lemma II.11.8.].

Furthermore, each variety is defined by a unique set of equations if we restrict
our attention to sets of equations that are equational theories, cf. [27, Definition
II.14.6].

An equational theory for a type τ is a class of equations E such that for every set
of variables X we have:

i) (t, t) ∈ E for every t ∈ Tτ (X).

ii) (t1, t2) ∈ E implies (t2, t1) ∈ E for every t1, t2 ∈ Tτ (X).

iii) (t1, t2), (t2, t3) ∈ E implies (t1, t3) ∈ E for every t1, t2, t3 ∈ Tτ (X).

iv) For every f ∈ τ of arity nf ≥ 1 and (ti, t
′
i) ∈ E, 1 ≤ i ≤ nf , we have that

(f(t1, . . . , tnf ), f(t′1, . . . , t
′
nf

)) ∈ E.

v) For every (t1(x1, . . . , xn), t2(x1, . . . , xn)) ∈ E and every ri ∈ Tτ (Y ), 1 ≤ i ≤ n,
we have that (t1(r1, . . . , rn), t2(r1, . . . , rn)) ∈ E.

Properties i), ii) and iii) are the properties of an equivalence relation, i.e., reflexive,
symmetric and transitive, respectively. Property iv) is the congruence property, and
property v) is the substitution property.

According to this, by Birkhoff’s theorem, we have a one–to–one correspondence
between classes of algebras of the same type that are varieties and equational the-
ories. A similar result can be obtained for the case of pseudovarieties of algebras,
which are classes of finite algebras closed under homomorphic images, subalge-
bras and finite products. Pseudovarieties of algebras, also known as varieties of
finite algebras, are exactly directed unions of equational classes of finite algebras
[12, 14, 37]. Categorical versions of Birkhoff’s theorem for varieties of algebras
and pseudovarieties of algebras, together with their local versions, will be proved
in Chapter 5.

1.3 Coalgebras for an endofunctor

This section is similar (dual) to Section 1.1. We define the general notion of coal-
gebras for an endofunctor, fix some notation and show some examples. See [76]
for more details and examples on this subject. We start by defining the category of
coalgebras for an endofunctor.
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Definition 10. Let C be a category and G : C → C an endofunctor on C. We define
the category coalg(G) ofG–coalgebras as the category whose objects are pairs X =
(X,βX) such that X ∈ C and βX ∈ C(X,G(X)) and a morphism coalg(G)(X,Y),
with Y = (Y, βY ), is a morphism f ∈ C(X,Y ) such that the following diagram
commutes:

G(X) G(Y )

X Y

G(f)

f

βX βY

Pairs (X,βX) as above are called G–coalgebras.

By using the following lemma, we can equivalently define deterministic au-
tomata as coalgebras for an endofunctor.

Lemma 11. Let X, Y and A be sets, f ∈ Set(X,Y ), g1 ∈ Set(X,XA) and g2 ∈
Set(Y, Y A) then the commutativity of the following two diagrams are equivalent:

Y A

Y

XA

X

Set(A, f)

g2 g1

f

Y

A× Y

X

A×X

f

g′2 g′1

idA × f

where g′i(a, s) = gi(s)(a).

Proof. Let x ∈ X and a ∈ A, then we have:

(Set(A, f) ◦ g1)(x)(a) = (g2 ◦ f)(x)(a)⇔ Set(A, f)(g1(x))(a) = g2(f(x))(a)

⇔ (f ◦ g1(x))(a) = g′2(a, f(x))

⇔ f(g1(x)(a)) = g′2((idA × f)(a, x))

⇔ f(g′1(a, x)) = g′2((idA × f)(a, x))

⇔ (f ◦ g′1)(a, x) = (g′2 ◦ (idA × f))(a, x)

The previous lemma also follows from the general fact that the functor A× is
left adjoint to the functor Set(A, ) (see Example 18).

Now we show some examples of coalgebras for an endofunctor.

Example 12 (Deterministic automata as coalgebras). Let A be a set of symbols,
i.e., an alphabet. Consider the functor G : Set → Set given by G( ) = Set(A, ).
By the previous lemma, we have that deterministic automata are the same as G–
coalgebras.
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Example 13 (Transition systems with output). Let A be a set of symbols and
consider the functor G : Set → Set defined on objects as G(X) = A × X and
G(f) = idA × f on morphisms. A G–coalgebra is a transition system with outputs
on A, i.e., a pair (X,βX) such that βX ∈ Set(X,A ×X). If βX(x1) = (a, x2) then
a is considered as the output from the state x1, and x2 is the next state, this is
usually depicted as x1

a−→ x2. If (X,βX) and (Y, βY ) are two transition systems
with outputs on A then a morphism f ∈ coalg(G)((X,βX), (Y, βY )) is a function
f ∈ Set(X,Y ) such that for every x1, x2 ∈ X and a ∈ A with x1

a−→ x2, i.e.,
βX(x1) = (a, x2), we have that f(x1)

a−→ f(x2), i.e., βY (f(x1)) = (a, f(x2)).

If C is a category that has an initial object Y ∈ C, then also coalg(F ) has an
initial object, namely (Y, !GY ). In the case of the previous example, the initial
transition system with outputs on A is the transition system (∅, !A×∅).

Similarly to the previous section, we now define the dual concept of a free
algebra, that is, a cofree coalgebra.

Definition 14. Let C be a category, G : C → C an endofunctor on C and Y ∈
C. The cofree G–coalgebra over Y generators is the cofree U–object over Y (see,
Definition 2), where U : coalg(G) → C is the forgetful functor defined on objects
as U(Y, βY ) = Y for every (Y, βY ) ∈ coalg(G) and U(f) = f for every morphism
f in coalg(F ).

As examples of cofree coalgebras we have the following.

Example 15 (Example 12 continued). Let A be a set of symbols, i.e., an alphabet.
Consider the functor G : Set → Set given by G( ) = Set(A, ) and the set 2 =
{0, 1}. Then we have that the cofree G–coalgebra over 2 is given by (2A

∗
, ς), where

ς : 2A
∗ → Set(A, 2A

∗
) is defined as ς(L)(a)(w) = L(aw). In this case the morphism

ε2 : 2A
∗ → 2 is defined as ε2(L) = L(ε).

Let X = (X,βX) be a deterministic automaton on A, where βX : X → XA, and
let c : X → 2 be a function, which we think of as a two–colouring of the states.
Then, by cofreeness of (2A

∗
, ς), the unique morphism c[ ∈ coalg(G)(X, (2A

∗
, ς))

such that ε2 ◦ c[ = c is defined as:

c[(x)(w) =

{
c(x) if w = ε

c[(βX(x)(a))(u) if w = au.

In this case, c[(x) is exactly the language the automaton X accepts from the state
x with the colouring c.

Note that the G–algebra (2A
∗
, ς ′), where ς ′ : 2A

∗ → Set(A, 2A
∗
) is defined as

ς ′(L)(a)(w) = L(wa), is also a cofree G–coalgebra over 2, which is isomorphic in
coalg(G) to (2A

∗
, ς).

Example 16 (Example 13 continued). Let A be a set of symbols and consider
the functor G : Set → Set defined on objects as G(X) = A × X and G(f) =
idA × f on morphisms. The cofree G–coalgebra on 1 generator is the G–coalgebra
(Aω, 〈head, tail〉) such that 〈head, tail〉 : Aω → A×Aω is defined as 〈head, tail〉(f) =
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(head(f), tail(f)), where head(f) = f(0) and tail(f)(n) = f(n+ 1), n ∈ ω. In this
case the morphism ε1 is the trivial function in Set(Aω, 1). Elements in Aw are
called streams on A.

Let X = (X,βX) be a G–coalgebra, where βX : X → A × X, and let c ∈
Set(X, 1) be the unique morphism into 1. Then, by cofreeness of (Aω, 〈head, tail〉),
the unique morphism c[ ∈ coalg(G)(X, (Aω, 〈head, tail〉)) such that ε1 ◦ c[ = c is
given by:

c[(x)(0) = π1(βX(x)) and c[(x)(n+ 1) = c[(π2(βX(x)))(n).

That is, c[(x) is the stream on A we obtain from the state x.
In general, the cofree G–coalgebra on Y generators is the G–coalgebra ((Y ×

A)ω, 〈h, t〉) such that 〈h, t〉 : (Y × A)ω → A × (Y × A)ω is given by 〈h, t〉(f) =
(h(f), t(f)), where h(f) = π2(f(0)) and t(f)(n) = f(n + 1), n ∈ ω, and the mor-
phism εY ∈ Set((Y × A)ω, Y ) is given by εY (f) = π1(f(0)). Here π1 : Y × A→ Y
and π2 : Y ×A→ A are the projection maps.

Note that, in general, for any endofunctor G : Set → Set, the cofree G–
coalgebra over X ∈ Set is essentially the same as the final XG–coalgebra, where
XG is the functor XG( ) := X ×G( ). For instance, in the setting of the previous
example, (2A

∗
, 〈ε2, ς〉) is the final 2G–coalgebra, where 〈ε2, ς〉 : 2A

∗ → 2 × 2A
∗

is
obtained from ε2 and ς from the universal property of the product 2× 2A

∗
.

Another observation regarding the previous examples is how the coinduction
principle is related with cofree coalgebras (this notion comes from the observation
that the induction principle is related with free algebras). In fact, the definition of
the c[ above is a coinductive one. The previous fact is represented by the slogan
“coinduction=use of finality for coalgebras”, see [55].

1.4 Adjunctions, contravariant adjunctions and du-
ality

In this section, we define the concepts of an adjunction, a contravariant adjunction
(also called a dual adjunction) and a duality between two categories. We start by
defining the concept of an adjunction.

Definition 17. Given two functors F : C → D and G : D → C, we say that F is left
adjoint of G or that G is right adjoint of F , denoted as F a G, if for every X ∈ C
and Y ∈ D, there is a bijection ΦX,Y : D(F (X), Y )→ C(X,G(Y )) which is natural
in both X and Y . The latter means that for every morphism f ∈ C(X,X ′) and
g ∈ D(Y, Y ′) the following two diagrams commute:
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D(F (X ′), Y ) C(X ′, G(Y ))

D(F (X), Y ) C(X,G(Y ))

ΦX′,Y

D(F (f), Y ) C(f,G(Y ))

ΦX,Y

D(F (X), Y ′) C(X,G(Y ′))

D(F (X), Y ) C(X,G(Y ))

ΦX,Y ′

D(F (X), g) C(X,G(g))

ΦX,Y

Note that the functor F on the expression D(F (X), Y ) is on the left and the
functor G on the expression C(X,G(Y )) is on the right, which helps to remember
that F is left adjoint of G and that G is right adjoint of F .

For functors F : C → D and G : D → C, the following properties are equivalent
to the property of F a G (see, e.g., [4, 66]):

i) There exist natural transformations η : IdC ⇒ GF and ε : FG ⇒ IdD such
that Gε◦ηG = IdG and εF ◦Fη = IdF . That is, for every X ∈ C and Y ∈ D we
have that G(εY ) ◦ ηG(Y ) = IdG(Y ) and εF (X) ◦ F (ηX) = IdF (X). The previous
two equalities are known as the triangle identities.

ii) There exists a natural transformation η : IdC ⇒ GF that satisfies the following
universal property (cf. Definition 1):

(UP) For every X ∈ C, Y ∈ D and every morphism f ∈ C(X,G(Y )) there
exists a unique morphism f ] ∈ D(F (X), Y ) such that the following dia-
gram commutes:

G(Y )GF (X)

X
f

ηX

G(f ])

The morphism f ] is called the extension of f .

iii) There exists a natural transformation ε : FG⇒ IdD that satisfies the following
universal property (cf. Definition 2):

(UP) For every X ∈ C, Y ∈ D and every morphism f ∈ D(F (X), Y ) there
exists a unique morphism f [ ∈ C(X,G(Y )) such that the following dia-
gram commutes:

F (X) FG(Y )

Y
f

εY

F (f [)
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The natural transformations η and ε above are called unit and counit of the
adjunction, respectively. As examples of adjunctions we have the following.

Example 18. Let C = D = Set, A ∈ Set and consider the functors F : Set→ Set

and G : Set → Set given by F (X) = A ×X and G(Y ) = Y A. Then we have that
F a G which can be verified by any of the following facts:

i) The bijective correspondence ΦX,Y : Set(A×X,Y )→ Set(X,Y A) defined as
ΦX,Y (f) = f̂ , where f̂(x)(a) := f(a, x), which is natural in both X and Y .

ii) The natural transformation η : IdSet ⇒ GF such that every ηX : X → (A ×
X)A is defined as ηX(x)(a) = (a, x), which satisfies the universal property
above.

iii) The natural transformation ε : FG⇒ IdSet such that every εY : A× Y A → Y
is defined as εY (a, f) = f(a), which satisfies the universal property above.

Example 19. For a given type of algebras τ , let Fτ : Set → Set be its cor-
responding polynomial functor (see Example 5). Let C = Set, D = alg(Fτ ),
U : alg(Fτ )→ Set be the forgetful functor and Tτ : Set→ alg(Fτ ) be the functor
such that Tτ (X) is the τ–algebra of τ–terms on X. Then Tτ a U which can be
easily verified by considering the natural transformation η : IdSet ⇒ UTτ such that
every ηX : X ⇒ UTτ (X) is the inclusion function, which satisfies the universal
property above.

Now we turn to define the concept of a contravariant adjunction which is the
special case of an adjunction in which we replace the category D by Dop. Given
two contravariant functors F : C ×−→D and G : D×−→C, we say that they form a
contravariant adjunction, also called a dual adjunction, between F and G, denoted
by F a`G or Ga`F , if for every X ∈ C and Y ∈ D there is a bijective correspon-
dence ΦX,Y : D(Y, F (X)) → C(X,G(Y )) which is natural in both X and Y , i.e.,
for every morphism f ∈ C(X,X ′) and g ∈ D(Y, Y ′) the following two diagrams
commute:

D(Y, F (X ′)) C(X ′, G(Y ))

D(Y, F (X)) C(X,G(Y ))

ΦX′,Y

D(Y, F (f)) C(f,G(Y ))

ΦX,Y

D(Y ′, F (X)) C(X,G(Y ′))

D(Y, F (X)) C(X,G(Y ))

ΦX,Y ′

D(g, F (X)) C(X,G(g))

ΦX,Y

Observe that both F and G are on the right side, i.e., on the codomain of the
hom-sets. Such a contravariant adjunction can be equivalently defined by two
units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that satisfy the triangle identities
GηFG ◦ ηGFG = IdG and FηGF ◦ ηFGF = IdF .

The following are examples of contravariant adjunctions.
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Example 20. Consider the case D = C = Set and the contravariant functors F,G :
Set×−→ Set such that F (X) = G(X) = Set(X,A), where A is a fixed set. Then we
have that F a`G since the bijective correspondence ΦX,Y : Set(Y, Set(X,A)) →
Set(X, Set(Y,A)) given by ΦX,Y (f)(x)(y) := f(y)(x), x ∈ X and y ∈ Y , is natural
in both X and Y .

Example 21. Consider the case D = C = VecK, where VecK is the category of
vector spaces over the field K and linear maps, and the contravariant functors F,G :
VecK×−→ VecK such that F (X) = G(X) = VecK(X,K). That is, F (X) = G(X) is
the dual space of X. Then we have that F a`G since the bijective correspondence
ΦX,Y : VecK(Y, VecK(X,K)) → VecK(X, VecK(Y,K)) given by ΦX,Y (f)(x)(y) :=
f(y)(x), x ∈ X and y ∈ Y , is natural in both X and Y .

Example 22. Consider the category D = BA of Boolean algebras and Boolean alge-
bra homomorphisms (see, e.g., [27]), C = Set and the contravariant functors F :
Set×−→ BA and G : BA×−→ Set such that F (X) = Set(X, 2) and G(Y ) = BA(Y, 2).
That is, F (X) is the Boolean algebra of subsets of X with the usual set theoretic
operations and G(Y ) is the set of ultrafilters of Y . Then we have that F a`G since
the bijective correspondence ΦX,Y : BA(Y, Set(X, 2)) → Set(X, BA(Y, 2)) given by
ΦX,Y (f)(x)(y) := f(y)(x), x ∈ X and y ∈ Y , is natural in both X and Y . We can
also justify that F a`G by defining the units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF
for every X ∈ Set and Y ∈ BA as the morphisms ηFGY ∈ BA(Y, Set(BA(Y, 2), 2)
and ηGFX ∈ Set(X, BA(Set(X, 2), 2)) such that ηFGY (y)(u) = u(b) and ηGFX (x)(f) =
f(x).

We close this section by studying the concept of a duality between two cate-
gories, which is a special case of a contravariant adjunction. Given two categories
C and D, we say that they are dual categories if there exists contravariant functors
F : C ×−→D and G : D×−→C and natural isomorphisms ηFG : IdD ⇒ FG and
ηGF : IdC ⇒ GF such that GηFG ◦ ηGFG = IdG and FηGF ◦ ηFGF = IdF . We now
illustrate the dualities we will mention in this thesis.

Example 23 (Duality between Set and CABA). We have that the category Set

is dual to the category CABA of complete atomic Boolean algebras and complete
Boolean algebra morphisms.

Recall that a Boolean algebra B is complete if any subset S of B has a join
∨
S.

An element a ∈ B is an atom if b < a implies b = 0 or, equivalently, if a = b ∨ c
implies a = b or a = c. We say that B is atomic if every element in B is the
join of atoms (not necessarily a finite join). We denote the set of atoms of B as
At(B). Note that At(B) is isomorphic, as a set, to CABA(B, 2). We have that every
object B ∈ CABA is isomorphic to P(X) for X = At(B), where P(X) denotes the
power set of X, i.e., the set of all subsets of X, which is an object in CABA with the
operations of union, intersection and complement with respect to X. Note that the
atoms of P(X) are the singleton sets {x}, x ∈ X.

We have that the category Set and CABA are dual categories. In fact, the pair
of contravariant functors that define the duality between Set and CABA are given
by Set( , 2) : Set×−→ CABA and CABA( , 2) : CABA×−→ Set. Note that Set(X, 2) is
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isomorphic in CABA to 2X ∼= P(X), where 2 is the two–element set, and CABA(B, 2)
is isomorphic in Set to the set At(B) of atoms of B, where 2 is the two–element
Boolean algebra.

Basic facts about Boolean algebras can be found in [27, IV.1] and facts for the
duality between Set and CABA can be found in [33, 10.24 Theorem.].

Example 24 (Stone duality between BA and St). The category BA of Boolean al-
gebras with Boolean algebra morphisms is dual to the category St of Stone spaces
with continuous functions. A Stone space, also called a Boolean space, is a topolog-
ical space which is Hausdorff, compact and has a basis of clopen sets.

The duality between BA and St is given by the contravariant functors BA( , 2) :
BA×−→ St and St( , 2) : St×−→ BA, where 2 represents the two–element Boolean
algebra in BA and the two–element discrete space in St, respectively. In this case,
topology BA(A, 2), for a given A ∈ BA, is the subspace topology of the product 2X ,
where 2 has the discrete topology, and the Boolean algebra operations in St(X, 2),
for a given X ∈ St, are the usual set theoretic operations of union, intersection
and complement. Note that BA(A, 2) is the set of ultrafilters of B and that St(X, 2)
is the set of clopens of X. More details of this duality can be found in, e.g., [27,
IV.4].

Example 25 (Duality between Poset and AlgCDL). We have that the category
Poset of partially ordered sets with order preserving functions is dual to the cate-
gory AlgCDL of algebraic completely distributive lattices with complete lattice ho-
momorphisms.

Recall that, see [33], an element k in a complete lattice L is compact if k ≤
∨
S

implies that k ≤
∨
T for some finite subset T of S. A complete lattice L is algebraic

if every element in L is the join of compact elements. Hence, objects in AlgCDL are
complete distributive lattices that are algebraic and satisfy the infinite distributive
laws.

The duality between Poset and AlgCDL is given by the contravariant functors
Poset( ,2c) : Poset×−→ AlgCDL and AlgCDL( ,2c) : AlgCDL×−→ Poset, where
2c is the two–element chain (which is an object in Poset as well as an object in
AlgCDL). Note that for any X ∈ Poset we have that Poset(X,2c) is (isomorphic
to) the object in AlgCDL that consists of all downsets of X, with the usual opera-
tions of intersection and union, and that for any object L in AlgCDL we have that
AlgCDL(L,2c) is (isomorphic to) the object in Poset that consists of all completely
join–prime elements in L with the order inherited from L. An element p ∈ L is
completely join–prime if p ≤

∨
S implies p ≤ s for some s ∈ S.

Basic facts about partially ordered sets and (algebraic completely distributive)
lattices can be found in [33]. Facts about the duality between Poset and AlgCDL

are mentioned in [33, 10.29 Theorem.].

Example 26 (Duality between JSL and StJSL). The category JSL of join semilat-
tices with 0 and join preserving functions that also preserve 0 is dual to the category
of StJSL of join semilattices with 0 that have a Stone topology (also called Boolean
topology in [27, IV Definition 4.1.]) and join preserving continuous functions that
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preserve 0. A topological space has a Stone topology if it is Hausdorff, compact and
has a basis of clopen subsets.

The duality between JSL and StJSL is given by the contravariant functors
JSL( ,2) : JSL → StJSL and StJSL( ,2) : StJSL → JSL, where 2 is the two–
element join semilattice (which is an element in JSL as well as an element in
StJSL). For any object L in JSL, the object JSL(L,2) has its structure inherited by
the product

∏
l∈L 2, i.e., the join operation is componentwise and the topology is

the subspace topology of the product
∏
l∈L 2. Similarly, for every object T in StJSL,

the object StJSL(T,2) has the operation of join defined componetwise. Elements
in JSL(L,2) and StJSL(T,2) are called in [53] characters of L and T , respectively.

Facts and general properties of this duality can be found in [53, 32].

Example 27 (Duality between VecK and StVecK). For a finite field K, denote by
VecK the category of vector spaces over K with linear maps and denote by StVecK
the category of topological vector spaces over K with a Stone topology with linear
maps that are continuous.

The duality between VecK and StVecK is given by the contravariant functors
VecK( ,K) : VecK → StVecK and StVecK( ,K) : StVecK → VecK, where K is the
one dimentional space over K (which is an element in VecK as well as an element in
StVecK). For any object S in VecK, the object VecK(S,K) has its structure inherited
by the product

∏
s∈S K, i.e., the operations are componentwise and the topology

is the subspace topology of the product
∏
s∈S K. Similarly, for every object T in

StVecK, the object StVecK(T,K) has componentwise operations.
Facts and general properties of this duality can be found in [16, 32].

For more (general) dualities that will lead to more applications of the results
presented in this thesis the reader is referred to, e.g., [32, 29].



Chapter 2

Equations and coequations for
deterministic automata

The concept of a deterministic automaton has been broadly studied in computer
science as a model or machine which allows us to classify finite sequences of sym-
bols, called words, from a given set considered as an alphabet [64, 77, 35, 36]. A
deterministic automaton on a set A, where A is called its alphabet, is a pair (X,αX)
such that X is a set, whose elements are called states, and αX : A × X → X is
a function, called its transition function. According to this, if the automaton is at
the state x ∈ X and we input the symbol a ∈ A, then the automaton makes a
transition to the state αX(a, x). The main purpose of studying deterministic au-
tomata is to classify languages (sets of words on A) that can be “recognized” by
finite deterministic automata, i.e., deterministic automata with a finite set of states.

It is worth mentioning that in our definition of deterministic automata we do
not consider accepting/final states nor an initial state, contrary to classical defini-
tions such as in [64]. The main reason for this is to consider deterministic automata
as algebras as well as coalgebras. Nevertheless, accepting states can be consider-
ing when cofree automata on 2 generators are studied and initial states can be
considered when free automata on 1 generator are studied.

Deterministic automata can be studied by using categorical and algebraic ap-
proaches [35, 36, 13, 79], from which many of the classical concepts defined in
automata theory have a mathematical and equivalent counterpart. This not only
allows us to formalize and understand all the concepts from a different perspec-
tive, but also to study mathematical concepts for the case of deterministic automata
such as equations and coequations.

The study of equations is a subject that has been studied in logic and more
specifically in universal algebra [27, 18]. As every deterministic automaton on an
alphabet A is an algebra of a certain type (namely, an algebra of type τ = A in
which every function symbol a ∈ A is a unary function symbol), we get a canonical
definition of equations for deterministic automata. In this chapter, we mainly focus

37
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on equations with only one variable as in [13, 79].
Categorical approaches generalize the notion of equations, which is a concept

that is studied for algebras for a functor and particularly it can be studied for de-
terministic automata. From this approach, a categorical dual notion of equations,
which are called coequations, is naturally obtained for coalgebras for an endofunc-
tor, which is another equivalent point of view for deterministic automata.

Intuitively, coequations allow us to classify coalgebras by restricting their be-
haviour, which in case of deterministic automata is given by the set of languages
that can be accepted. This is an interesting notion, because it will allow us the
study of classes of automata by restricting the languages they can accept. Which is
a similar but different phenomenon as in the case of equations.

In this chapter, we focus on the study of equations and coequations for deter-
ministic automata. Equations and coequations for deterministic automata have
been studied in, e.g., [13, 79]. We will provide the necessary (categorical) defini-
tions, illustrate both concepts with some examples and some basic facts. Then
we show a correspondence between equations and coequations for determinis-
tic automata and obtain the duality result between equations and coequations in
[13], whose generalization will be shown in Chapter 4. This duality result follows
from the duality between Set and CABA by suitable restrictions on each category,
namely, by considering surjective monoid homomorphisms with free domain on
the Set side. Such monoid homomorphisms come from surjective maps A∗ →
trans(X,αX) between the monoid A∗ and the transition monoid trans(X,αX) of
a deterministic automaton (X,αX) on A. Additionally, we will study classes of de-
terministic automata that can be represented by equations as well as coequations,
which are the regular varieties of deterministic automata [79].

We defined deterministic automata on A, see Example 4, as F–algebras for the
functor F : Set→ Set defined as F (X) = A×X on objects and F (f) = idA×f on
morphisms. In the case that A and X are finite sets, we can draw the diagram of
the automaton (X,αX) which is the diagram with nodes in X and an arrow from a
node x1 to a node x2 with label a, as in x1

a−→ x2, for every a ∈ A and x1, x2 ∈ X
such that αX(a, x1) = x2. The following is an example of this notation.

Example 28. If A = {a, b} and X = {x1, x2, x3}, then the following diagram

x1 x2 x3
a, b

b

aa
b

represents the automaton (X,αX) such that its transition function is given by
αX(a, x1) = αX(b, x1) = x2, αX(a, x2) = x2, αX(b, x2) = x3, αX(a, x3) = x3
and αX(b, x3) = x2.

We denote by A∗ the set of all words with symbols in A. That is, every element
w ∈ A∗ is of the form w = a1 · · · an, n ∈ N, where each ai ∈ A, 1 ≤ i ≤ n. In the
particular case that n = 0, we obtain the empty word which we denote by ε.
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Notation. Given a deterministic automaton (X,αX) on A, w ∈ A∗ and x ∈ X, we
define the state w(x) ∈ X by induction as follows:

w(x) =

{
x if w = ε,
αX(a, u(x)) if w = au, u ∈ A∗, a ∈ A

thus w(x) is the state we reach from x by processing the word w from right to left,
cf. Example 7.

Example 29 (Example 28 continued). If we consider the automaton (X,αX) given
in Example 28, then we have the following:

aab(x1) = x2, aaaba(x1) = x3, bab8(x3) = x2, ε(x2) = x2, a3ba7b3(x1) = x3.

An easy way to remember how to do the previous calculations is by introducing
parenthesis for each symbol in A. For example:

aab(x1) = aa(b(x1)) = aa(x2) = a(a(x2)) = a(x2) = x2.

Remark. Using the previous notation, a homomorphism of automata h : (X,αX)→
(Y, αY ) is a function h : X → Y such that for every a ∈ A and x ∈ X we have
h(a(x)) = a(h(x)). This notation coincides with the notation used for algebras of
type τ = A where each symbol in A is a unary function symbol (see Example 5).
In fact, automata on A are exactly algebras of the type τ just described.

2.1 Equations for deterministic automata

Now we turn our attention to the study of equations for deterministic automata,
as defined in [13], which, informally, are pairs of words (u, v) ∈ A∗ × A∗. This
notion of equations as pairs of words in A∗ × A∗ correspond exactly to equations
on one variable for algebras of the type τ = A in which every element in τ = A
is a unary function symbol. That is, a pair (u, v) ∈ A∗ × A∗ corresponds to the
equation ∀x u(x) = v(x), also denoted as u(x) ≈ v(x), studied in universal algebra
[27, Definition II.11.1]. An automaton satisfies the equation (u, v) ∈ A∗×A∗ if the
automaton cannot distinguish between processing the word u and processing the
word v from any given state. This is defined as follows.

Definition 30 (cf. [13, Definition 1]). Let A be an alphabet, an equation on A is a
pair (u, v) ∈ A∗×A∗. We say that the automaton (X,αX) onA satisfies the equation
(u, v), denoted as (X,αX) |= (u, v), if for every x ∈ X we have u(x) = v(x). We
denote by Eq(X,αX) the set of equations that (X,αX) satisfies, that is

Eq(X,αX) = {(u, v) ∈ A∗ ×A∗ | (X,αX) |= (u, v)}.
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As (X,αX) |= (u, v) if and only if (X,αX) |= (v, u), for u, v ∈ A∗, we can denote
the equation (u, v) as u = v and then we have:

(X,αX) |= u = v ⇔ ∀ x ∈ X u(x) = v(x).

Given a set E of equations on A, we say that (X,αX) satisfies E, denoted as
(X,αX) |= E, if (X,αX) |= u = v for every u = v ∈ E.

Remark. Note that an equation (u, v) is exactly the equation ∀x ∈ X u(x) = v(x),
also denoted as u(x) ≈ v(x) (cf. [27, Definition II.11.1]).

The next example illustrates some particular cases of equations satisfied by a
deterministic automaton and it describes how to obtain a generator set for the set
Eq(X,αX) in the case that X and A are finite sets. The general case for obtaining a
generator set for Eq(X,αX), where X and A are finite sets, can be easily obtained
from what it is described in the example.

Example 31. Let A = {a, b}, X = {x1, x2} and consider the automaton (X,αX)
on A given by the following diagram:

x1 x2

a
b a

b

Then (X,αX) satisfies equations such as a = aaa, baa = bb and bab = bb, but it
does not satisfy the equation ab = ba nor the equation ε = b, since ab(x1) = x2 6=
x1 = ba(x1) and ε(x2) = x2 6= x1 = b(x2).

Now, how can we find all the equations that (X,αX) satisfies? This is in general
a nontrivial task since there could be infinitely many of them. For example, since
(X,αX) satisfies a = aaa then it also satisfies any equation of the form a = a2n+1

for n ≥ 1, but all of them are obtained from a = aaa by replacing a by aaa, since
a = aaa, as follows:

a = aaa = aaaaa = aaaaaaa = a7 = a9 = a11 = · · ·

In this sense, each equation a = a2n+1, n ≥ 1, is generated (i.e., can be deduced
by using substitution and transitivity) by the single equation a = aaa. In the cases
that A and X are finite sets we can find a finite set of equations that generates all
the equations satisfied by (X,αX). We will illustrate how to obtain a generator set
of equations for the automaton given above, whose general algorithm can be easily
described.

By Definition 30 above we have that (X,αX) |= u = v iff ∀ x ∈ X u(x) =
v(x), so we are going to consider all the states of (X,αX) at the same time and
make transitions for all the symbols in A to find when the state we reach with two
different words is the same. That is, we put all the states of (X,αX) in the tuple
(x1, x2) and start to make transitions, according to (X,αX), for each symbol in A.
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In fact, if we make an a transition and a b transition from the tuple (x1, x2) we get
the tuples (x2, x2) and (x1, x1), respectively, which is illustrated in the following
picture:

(x1, x2)

(x2, x2) (x1, x1)

a b

Until now, there are no different words, starting from (x1, x2), that will take us to
the same tuple, hence we have not found any nontrivial equations yet. But, as we
have new tuples, namely (x2, x2) and (x1, x1), we need to do the transitions from
those states for every symbol in A. We can start with (x2, x2) by making all the
transitions for every symbol in A to obtain the following:

(x1, x2)

(x2, x2) (x1, x1)

a b

a

b

In each of those transitions, we found two different words (paths starting from
(x1, x2)) that will take us to the same tuple. In fact,

i) The words a and aa take us from (x1, x2) to the same tuple (x2, x2), which
means that the equation a = aa is satisfied by (X,αX).

ii) The words b and ba take us from (x1, x2) to the same tuple (x1, x1), which
means that the equation b = ba is satisfied by (X,αX).

Note that in i) and ii) we always start from the tuple (x1, x2) which is the tuple
that represents all the states of the automaton. This process terminates since there
are at most |X||X| tuples.

Also, the equations obtained in i) and ii) above are given by the two shortest
paths that take us to the same tuple, which in some sense is the minimum infor-
mation we want to capture in an equation. For example, the words baaa and b will
take us to the same tuple, i.e., the automaton satisfies the equation baaa = b, but
baaa = b can be deduced from a = aa and b = ba. Therefore, the equations in i)
and ii) above are enough to deduce every equation that comes from the previous
diagram, i.e., to deduce by using reflexivity, symmetry, transitivity, substitution and
concatenation.

Now, we still have to do the transitions from the tuple (x1, x1) to find new
equations and/or new tuples. By making all the transitions from the tuple (x1, x1)
we obtain the following:
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(x1, x2)

(x2, x2) (x1, x1)

a b

a

b

b

a

Again, in each of those transitions we found two different words that will take us
to the same tuple. In fact,

iii) The words a and ab take us from (x1, x2) to the same tuple (x2, x2), which
means that the equation a = ab is satisfied (X,αX).

iv) The words b and bb take us from (x1, x2) to the same tuple (x2, x2), which
means that the equation b = bb is satisfied (X,αX).

Finally, as every tuple in the previous diagram has all the transitions for each sym-
bol in A, we have finished the process for finding a generating set for the equations
that the automaton (X,αX) satisfies. Hence, a generating set for Eq(X,αX) is
given by the equations:

a = aa, ba = b, a = ab, b = bb

That is, every equation in Eq(X,αX) can be deduced from the four equations above
by using reflexivity, symmetry, transitivity, substitution and concatenation.

We will now study some properties of equations for deterministic automata
and show their relation to mathematical concepts such as (free) monoids, monoid
congruence, and illustrate this with a categorical approach by using (commutative)
diagrams.

For any given set A, let A∗ = (A∗, ·, ε) be the free monoid on A, i.e., the free
U–object over A (see Definition 1) where U : Mon → Set is the forgetful functor
from the category Mon of monoids and monoid homomorphisms into Set. Here, A∗

is the set of words with symbols on A and · is given by the concatenation of words.
The function ηA : A → A∗ is given by ηA(a) = a, a ∈ A. For any monoid (M, ·, e)
and any function f : A→M the unique monoid homomorphism f ] from (A∗, ·, ε)
to (M, ·, e) such that U(f ]) ◦ ηA = f is canonically defined for any w = a1 · · · an,
n ≥ 1, ai ∈ A as:

f ](w) = f ](a1 · · · an) = f(a1) · · · · · f(an).

This (universal) property says that in order to get a monoid homomorphism from
(A∗, ·, ε) to (M, ·, e) it is enough to define a function f : A → M . We now define
the concept of a monoid congruence.

Definition 32. Let M = (M, ·, e) be a monoid. A monoid congruence of M is
an equivalence relation θ on M such that for every (m,n), (x, y) ∈ θ we have
that (m · x, n · y) ∈ θ. The previous condition is equivalent to the condition that
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(m,n) ∈ θ and x ∈M implies (m · x, n · x), (x ·m,x · n) ∈ θ. The equivalence class
of an element m ∈ M with respect to θ is denoted by m/θ. Note that (e, e) ∈ θ for
every monoid congruence θ since θ is a reflexive relation.

From the adjunction ( )×X a ( )X we have that there is a one–to–one corre-
spondence between functions f : A × X → Y and functions f̂ : A → Y X which
is given by the equation f(a, x) = f̂(a)(x). Hence, for an automaton (X,αX)
on A we have the function α̂X : A → XX from which, by the universal prop-
erty of the free monoid A∗ on A, we get a unique monoid homomorphism α̂X

]

from the free monoid A∗ = (A∗, ·, ε) to the monoid XX = (XX , ◦, idX) such that
U(α̂X

]
) ◦ ηA = α̂X . From this, we have the following result.

Lemma 33. Let (X,αX) be a deterministic automaton on A. Then for every x ∈ X
and w ∈ A∗ we have that α̂X

]
(w)(x) = w(x).

Proof. We proof this by induction on the length of w. In fact,

i) If w = ε, then α̂X
]
(ε) = idX , which implies that α̂X

]
(ε)(x) = idX(x) = x =

ε(x).

ii) If w = au with a ∈ A and u ∈ A∗, then we have:

α̂X
]
(au)(x) =

(
α̂X

]
(a) ◦ α̂X](u)

)
(x) = α̂X

]
(a)
(
α̂X

]
(u)(x)

)
= α̂X(a)(u(x)) = αX(a, u(x)) = au(x).

where the first equality follows from the fact that α̂X
] is a monoid homomorphism,

the second one from definition of composition ◦, the third one from the induction
hypothesis and the fact that a ∈ A, the fourth one from the definition of α̂X , and
the last one is the notation we defined.

From the previous lemma, we get the following corollary that describes the set
Eq(X,αX) as a kernel of a monoid homomorphism.

Corollary 34. Let (X,αX) be a deterministic automaton on A. Then Eq(X,αX) =

ker(α̂X
]
). In particular, Eq(X,αX) is a congruence of the monoid A∗.

Another relevant concept is that of the transition monoid of a deterministic
automaton which is defined as follows.

Definition 35. Let (X,αX) be a deterministic automaton on A. The transition
monoid trans(X,αX) of (X,αX) is the monoid defined as:

trans(X,αX) := (Im(α̂X
]
), ◦, idX).

Note that, by the first isomorphism theorem [27, Theorem II.6.12], we have
that trans(X,αX) is isomorphic to A∗/ Eq(X,αX) (cf. [13, Theorem 28]).
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Example 36 (Example 31 continued). For A = {a, b} and X = {x1, x2} we con-
sidered the automaton (X,αX) on A given by the diagram:

x1 x2

a
b a

b

In order to get a generating set for the equations of (X,αX) we constructed the
diagram:

(x1, x2)

(x2, x2) (x1, x1)

a b

a

b

b

a

From this diagram we can obtain the function α̂X
]
(w) for each w ∈ A∗. In fact, the

function α̂X
]
(w) is the function that maps each element in the tuple (x1, x2), which

is the tuple containing all the different elements in X, to its corresponding element
in the tuple we reach from (x1, x2) by processing the word w from right to left in the
diagram above. For instance, with the word abbab we reach the tuple (x2, x2) from
the tuple (x1, x2). This means that α̂X

]
(abbab) maps each element in (x1, x2) to

its corresponding element in (x2, x2), i.e., α̂X
]
(abbab)(x1) = α̂X

]
(abbab)(x2) = x2.

According to this, since trans(X,αX) := (Im(α̂X
]
), ◦, idX) and it is isomorphic

to A∗/ Eq(X,αX), we obtain the equations Eq(X,αX) of (X,αX) by looking at
the pairs of words (u, v) such that from the tuple (x1, x2) we get the same tuple
by processing the word u and by processing the word v from right to left. This
is what we did in Example 31 but we restricted our attention to the equations
that generated the congruence Eq(X,αX). In this case, we have that Eq(X,αX) =
〈(a, aa), (ba, b), (a, ab), (b, bb)〉, where the right–hand side denotes the least congru-
ence on A∗ that contains {(a, aa), (ba, b), (a, ab), (b, bb)}.

From Corollary 34 we have that Eq(X,αX) is a congruence of the monoid A∗

for every (X,αX). On the other hand, for every congruence θ of A∗ there exists
an automaton (X,αX) on A such that Eq(X,αX) = θ, namely, the automaton
(A∗/θ, fθ) where fθ(a,w/θ) = aw/θ. The automaton A∗/ Eq(X,αX) is what in
[13, 79] is called free(X,αX). Additionally, if E is a set of equations on A then we
have that (X,αX) |= E if and only if (X,αX) |= 〈E〉, where 〈E〉 denotes the least
congruence of A∗ containing E.

We have the following categorical characterization of satisfaction of equations
for deterministic automata.

Proposition 37. Let (X,αX) be a deterministic automaton on A and let E be a set
of equations on A. Denote by 〈E〉 the least congruence on A∗ containing E and let
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νE : A∗ → A∗/〈E〉 be the canonical homomorphism such that νE(w) = w/〈E〉. Then
(X,αX) |= E if and only if α̂X

] factors through νE , i.e., there exists g : A∗/〈E〉 →
XX such that the following diagram commutes:

A∗

A∗/〈E〉

XX

νE

α̂X
]

g

Proof. We have that α̂X
] factors through νE if and only if 〈E〉 = ker(νE) ⊆

ker(α̂X
]
) = Eq(X,αX), which holds if and only if (X,αX) |= 〈E〉.

By the previous proposition, we have that every set E of equations induces
the surjective monoid homomorphism1 νE : A∗ → A∗/〈E〉. Conversely, every
surjective monoid homomorphism h : A∗ → M defines the set of equations (in
fact, a congruence) ker(h). Therefore, we can abstractly regard equations as a
special kind of arrows in a category, e.g., regular epimorphisms with free domain.
This abstract concept of equations will be defined in Chapter 4 and studied in the
subsequent chapters. A similar characterization for satisfaction of equations in
terms of a commutative diagram, as the one in the previous proposition, is shown
in [13, Section 4] by using free (A× )–algebras on 1 generator.

In this section, we mainly focused on the study of equations for the case of one
variable, in the sense of [27, Definition II.11.1]. That is, if we consider determinis-
tic automata as algebras of type τ = A, in which every element in τ = A is a unary
function symbol, then we have two kinds of equations for each u, v ∈ A∗, namely

∀x u(x) = v(x) and ∀x∀y u(x) = v(y),

also denoted as u(x) ≈ v(x) and u(x) ≈ v(y), respectively. These are the kind of
equations studied in universal algebra. The equation u(x) ≈ v(x), in which the
variable on the left–hand side is the same as the variable on the right–hand side,
is known as a regular equation [71]. Regular equations for deterministic automata
can be identified with pairs (u, v) ∈ A∗ ×A∗ as in [13].

Our main purpose of focusing on regular equations is to relate our work with
[13, 79] to show that classes of deterministic automata defined by regular equa-
tions can be equivalently defined by sets of coequations.

2.2 Coequations for deterministic automata

Coequations for deterministic automata have been studied in [13, 79]. In this sec-
tion, we do a similar work as in the previous section, we define the concept of

1Surjective algebra homomorphisms are also known in universal algebra as algebra epimorphisms
[27, Definition II.6.1]. In the category Mon of monoids and monoid homomorphisms, surjective monoid
homomorphisms are exactly regular epimorphisms [4, 7.72. Examples].
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coequations for deterministic automata, give some examples and basic facts. All
of this will be generalized in Chapter 4 by using a general categorical approach.
In this section, deterministic automata are regarded as coalgebras (X,βX) for the
functor G( ) = Set(A, ). We start by defining coequations for deterministic au-
tomata.

Definition 38. Let A be a set. A set of coequations on A is a subset S of 2A
∗
, that

is, a set of languages on A.

Given a deterministic automaton (X,βX) on A and a function c : X → 2, which
we think of as a two–colouring of X, we define the the observability map oc : X →
2A
∗

as the function given by oc(x)(w) = c(w(x)). That is, oc(x) : A∗ → 2 is the
language that (X,βX) accepts from the state x ∈ X according to the colouring
c, cf. Example 15. We interpret a set of coequations S as the set of “behaviours”
that we are interested in. In this sense, an automaton on A will satisfy the set of
coequations S if all the languages it can accept for any two–colouring are contained
in S. This is defined as follows.

Definition 39. Let A be a set, (X,βX) an automaton on A and let S be a set of
coequations on A. We say that (X,βX) satisfies the set of coequations S, denoted
as (X,βX) ||=S, if for every c ∈ Set(X, 2) we have that Im(oc) ⊆ S. That is, S
contains all the languages the automaton (X,βX) can accept.

The following examples illustrate this concept of satisfaction of coequations.

Example 40. Let A = {a, b} and consider the following automaton (X,βX) on A:

x1 x2

a, b

a, b

Then, for every S ⊆ 2A
∗

we have (X,βX) ||=S if and only if {∅, Lodd, Leven, A
∗} ⊆ S

where Lodd and Leven are the sets of words in A∗ with an odd and even number of
symbols, respectively.

Example 41. Let A = {a} and consider the following automaton (X,βX) on A:

x1 x2

a

a

x3 x4

x5

a

aa

Then, for every S ⊆ 2A
∗

we have:

(X,βX) ||=S iff {∅, (aa)∗, a(aa)∗, (aaa)∗, a(aaa)∗, aa(aaa)∗, A∗} ⊆ S.
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As in the case of equations for deterministic automata, we can also give a char-
acterization of (X,βX) ||=S by means of a commutative diagram. In fact, if we
consider the functor G := Set(A, ) : Set → Set and we let U : coalg(G) → Set

be the forgetful functor, then we have that the cofree U–object over 2 is the ob-
ject (2A

∗
, ς) ∈ coalg(G), where ς : 2A

∗ → Set(A, 2A
∗
) is such that ς(L)(a)(w) =

L(aw), and the morphism ε2 ∈ Set(2A
∗
, 2) is given by ε2(L) = L(ε). That is, for

every (X,βX) ∈ coalg(G) and c ∈ Set(X, 2) there exists a unique morphism c[ in
coalg(G)((X,βX), (2A

∗
, ς)), namely c[ = oc, such that c = ε2 ◦ U(c[), cf. Example

15. From this, we have the following.

Proposition 42. Let A be a set, (X,βX) an automaton on A and S ⊆ 2A
∗
. Then,

(X,βX) ||=S if and only if for every c ∈ Set(X, 2) the morphism oc factors through
the inclusion iS ∈ Set(S, 2A

∗
), i.e., for every c ∈ Set(X, 2) there exists gc such that

the following diagram commutes:

X

S

2A
∗

∀c ∈ Set(X, 2)

oc

iSgc

In the setting of the previous proposition, the set given by Coeq(X,βX) :=⋃
c∈Set(X,2) Im(oc) is the minimum set of coequations that (X,βX) satisfies, i.e., for

any subset S ⊆ 2A
∗

we have (X,βX) ||=S if and only if Coeq(X,βX) ⊆ S, [13,
Proposition 6].

Note the similarity between the diagram in the previous proposition and the
diagram in Proposition 37. The two diagrams are dual to each other in the sense
that reversing the direction of the arrows of one of them will give us the same kind
of diagram as the other one. In this case, surjective functions become injective
functions and vice versa, after reversing the arrows. This is a dual relationship
between the concepts of equations and coequations.

2.3 Duality between equations and coequations

In this section, we state a duality result between equations and coequations for
deterministic automata, which is a result that is shown in [13]. We explain how
this duality follows from the duality between the category Set and the category
CABA of complete atomic Boolean algebras (see Example 23) if we ‘restrict’ it on
Set to monoid congruences and automata homomorphisms. It is worth mentioning
that we will work with special kinds of automata here. On one hand, for consid-
ering equations, we will consider quotients of the monoid A∗ as automata whose
transition structure is given by concatenation, on the other hand, for considering
coequations, we will consider subobjects of the object 2A

∗
in CABA as automata

whose transition structure is given by derivatives, this also means that the set of



48 Chapter 2. Equations and coequations for deterministic automata

states of such subobject is the carrier set of an object CABA. This will be formally
stated through this section.

Given a monoidM , we have that there is a one–to–one correspondence between
monoid congruences of M and surjective monoid homomorphisms with domain
M . In fact, if θ is a monoid congruence on M then we have that the natural map
νθ : M → M/θ defined as νθ(m) = m/θ is a surjective monoid homomorphism,
and for any surjective monoid homomorphism e : M → N we have that ker(e) is
a monoid congruence of M . In this case we have that the monoid N is isomorphic
to M/ ker(e) and that ker(νθ) = θ.

Let S ⊆ 2A
∗
. We say that S is closed under left derivatives if for every L ∈ S

and u ∈ A∗ we have that uL ∈ S, where uL(w) := L(wu), w ∈ A∗. The element
uL is called the left derivative of L with respect to u. Similarly, S is closed under
right derivatives if for every L ∈ S and u ∈ A∗ we have that Lu ∈ S, where
Lu(w) := L(uw), w ∈ A∗. The element Lu is called the right derivative of L with
respect to u.

By using the duality between CABA and Set we obtain the objects in CABA that
correspond to monoid congruences of A∗.

Proposition 43. Let θ be an equivalence relation on A∗ and let νθ : A∗ → A∗/θ be
the canonical map such that νθ(w) = w/θ. Then νθ is a monoid homomorphism if
and only if the injective function Set(νθ, 2) : Set(A∗/θ, 2) → Set(A∗, 2) is such that
the object Im(Set(νθ, 2)) ∈ CABA, which is given by

Im(Set(νθ, 2)) = {f ◦ νθ | f ∈ Set(A∗/θ, 2)},

is closed under left and right derivatives.

Proof. For every u ∈ A∗ define the functions lu, ru ∈ Set(A∗, A∗) as lu(w) = wu
and ru(w) = uw. Then we have that νθ : A∗ → A∗/θ is a monoid homomorphism
if and only if for every u ∈ A∗ there exists g, g′ ∈ Set(A∗/θ,A∗/θ) such that the
following diagrams commute:2

A∗

A∗/θ

A∗

A∗/θ

lu

νθ νθ

g

A∗

A∗/θ

A∗

A∗/θ

ru

νθ νθ

g′

which by duality, i.e., by applying the contravariant functor Set( , 2), means that
the object Im(Set(νθ, 2)) ∈ CABA is closed under left and right derivatives.

According to the previous proposition, subsets of 2A
∗

that are objects in CABA

and are closed under left and right derivatives, which in [13] are called preforma-
tions of languages, are in one–to–one correspondence with monoid congruences of

2Thanks to Henning Urbat who told me about characterizing the property of νθ being a monoid
homomorphism by means of commutative diagrams.
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A∗. Now, to obtain the duality between monoid congruences of A∗ and prefor-
mation of languages given in [13] we need to restrict the morphisms on monoid
congruences to surjective automata morphisms. That is, given a monoid congru-
ence θ on A∗ we can consider the set A∗/θ as an automaton whose transition
function fθ : A × A∗/θ → A∗/θ is given by fθ(a,w/θ) = (aw)/θ. Then, we de-
fine the category D whose objects are quotients of A∗, i.e., objects of the form
A∗/θ, where θ is a monoid congruence and whose morphisms are surjective au-
tomata morphisms, i.e., a morphism from A∗/θ1 to A∗/θ2 is a surjective function
h ∈ Set(A∗/θ1, A

∗/θ2) such that the following diagram commutes:

A×A∗/θ1

A∗/θ1

A×A∗/θ2

A∗/θ2

idA × h

fθ1 fθ2

h

By applying the contravariant functor Set( , 2) we have, by duality, that commu-
tativity of the previous diagram is equivalent to commutativity of the diagram:

Set(A×A∗/θ1, 2)

Set(A∗/θ1, 2)

Set(A×A∗/θ2, 2)

Set(A∗/θ2, 2)

Set(idA × h, 2)

Set(fθ1 , 2) Set(fθ2 , 2)

Set(h, 2)

Finally, commutativity of the previous diagram is equivalent, by Lemma 11, to
commutativity of the following diagram:

Set(A∗/θ1, 2)

Set(A∗/θ1, 2)×A

Set(A∗/θ2, 2)

Set(A∗/θ2, 2)×A

(†)

Set(h, 2)

f ′θ1 f ′θ2

Set(h, 2)× idA

where f ′θi is defined as f ′θi(L, a)(w/θ) = L((aw)/θi).
Note that the diagram (†) means that Set(h, 2) is a homomorphism between

the automaton (Set(A∗/θ2, 2), f ′θ2) and the automaton (Set(A∗/θ1, 2), f ′θ1), which
is injective since h is surjective. All in all, we have that the category D is dual
to the category C whose objects are preformations of languages and whose mor-
phisms are injective automata homomorphism. This is exactly the duality shown in
[13]. We will come back to this setting to establish a general duality between
equations and coequations in Chapter 4. Also, note that Im(Set(νθ, 2)) is the
same as cofree(A∗/θ) defined in [13] and that for a preformation of languages
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S, that is, a subset S of 2A
∗

in CABA which is closed under left and right deriva-
tives, we have that CABA(S, 2) is the same as free(S) defined in [13]. Therefore,
from the previous observation we get the identities free ◦ cofree(A∗/θ) = A∗/θ
and cofree ◦ free(S) = S, see [13, Theorem 22].

As an application of the previous facts we have the following:

Example 44. Given a family of languages L ⊆ 2A
∗
, we can construct an automaton

(X,βX) representing the family L in the following sense:

For every L ∈ L there exists x ∈ X and c ∈ 2X such that oc(x) = L.

We can construct an automaton that represents L with the minimum number of
states and moreover that satisfies the following stronger property:

There exists x ∈ X such that for every L ∈ L there exists c ∈ 2X such
that oc(x) = L.

The construction is a follows: let P (L) be the least preformation of languages
containing L, that is, the least subobject in CABA of 2A

∗
which is closed under left

and right derivatives. Then the the dual CABA(ι, 2) of the inclusion ι : P (L)→ 2A
∗

induces a surjective monoid homomorphism νθ : A∗ → A∗/θ. Now, by duality, the
automaton A∗/θ has the desired property. In fact, if L ∈ P (L) then L is the join
of atoms in P (L) and the colouring cL ∈ Set(A∗/θ, 2) that colours with colour 1
every atom below L and 0 every other atom is such that L = cL ◦ νθ which implies
that L = ocL(ε/θ).

The previous example gives us a way to construct a single program (automaton)
for a specific set of behaviours (set of languages) in an efficient way (minimum
number of states) with the property that the initial configuration (initial state) of
the program is the same for every desired behaviour. Here is a small illustration of
this fact.

Example 45. Let A = {a, b} and consider the following family of languages on A∗

L = {(a ∪ b)+, Lodd, Leven}

where Lodd and Leven are the sets of words in A∗ with an odd and even number
of symbols, respectively. We would like to construct an automaton (X,βX) with
the property that there exists x0 ∈ X such that for every L ∈ L there exists cL ∈
2X such that ocL(x0) = L. According to the previous example, we only need to
construct the least preformation of languages P (L) containing L. In this case,
P (L) is the preformation of languages (with 8 elements) whose atoms are

A1 = {ε}, A2 = Lodd, and A3 = Leven r {ε}

Clearly L ⊆ P (L) since (a ∪ b)+ = A2 ∪A3, Lodd = A2, and Leven = A1 ∪A3. Then
the automaton with the desired property is given by the atoms of P (L), which is
the following:
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A1 A2 A3

a, b

a, b

a, b

Whose initial state x0 is the atom containing the empty word ε, i.e., x0 = A1.
Clearly, for the colourings c1 = {A2, A3}, c2 = {A2}, and c3 = {A1, A3} we have
that

oc1(x0) = (a ∪ b)+, oc2(x0) = Lodd, and oc3(x0) = Leven.

Note that each colouring is obtained from the representation of the corresponding
language as a join of atoms. For instance, the colouring c1 for the language (a∪b)+
is obtained from the equation (a ∪ b)+ = A2 ∪A3.

2.4 Varieties and covarieties of automata

We conclude this chapter by studying special classes of deterministic automata:
varieties of automata and covarieties of automata. The concept of a variety and
a covariety are key concepts which are studied in universal algebra and univer-
sal coalgebra, respectively, see, e.g., [27, 76]. Varieties of algebras are defined as
classes of algebras of the same type that are closed under homomorphic images
(also called quotients), subalgebras and products. Dually, varieties of coalgebras
are defined as classes of coalgebras of the same type that are closed under homo-
morphic images, subcoalgebars and coproducts.

An important theorem that characterizes varieties of algebras is the Birkhoff
theorem, which states that a class of algebras is a variety if and only if it can
be defined by equations [18]. A similar theorem for the case of coalgebras was
proved in [76]. In this chapter, we study these concepts for the specific case of
deterministic automata, which can be seen as either algebras or coalgebras for an
endofunctor (see Example 4 and Example 12).

Let (X,αX) and (Y, αY ) be deterministic automata on A. We say that (X,αX) is
a subautomaton of (Y, αY ) if there exists an injective homomorphism of automata
from (X,αX) to (Y, αY ). We say that (X,αX) is a quotient or a homomorphic image
of (Y, αY ) if there exists a surjective homomorphism of automata from (Y, αY ) onto
(X,αX). Given a family {(Xi, αi)}i∈I of automata on A, we define the product∏
i∈I(Xi, αi) as the deterministic automaton:

∏
i∈I

(Xi, αi) :=

(∏
i∈I

Xi, α

)

such that α : A ×
∏
i∈I Xi →

∏
i∈I Xi is given by α(a, f)(i) = αi(a, f(i)), a ∈ A,

i ∈ I. We define the coproduct
∐
i∈I(Xi, αi) as the deterministic automaton:

∐
i∈I

(Xi, αi) :=

(∐
i∈I

Xi, α
′

)
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where
∐
i∈I Xi is the set

∐
i∈I Xi :=

⋃
i∈I X×{i} and α′ : A×

∐
i∈I Xi →

∐
i∈I Xi

is given by α′(a, (x, i)) = (αi(a, x), i), a ∈ A, i ∈ I and x ∈ Xi.
Let K be a class of automata on A. We say that K is closed under subautomata

if for every (Y, αY ) ∈ K and every subautomaton (X,αX) of (Y, αY ) we have that
(X,αX) ∈ K. We say that K is closed under quotients if for every (Y, αY ) ∈ K
and every quotient (X,αX) of (Y, αY ) we have that (X,αX) ∈ K. We say that
K is closed under products if for every family {(Xi, αi)}i∈I ⊆ K we have that∏
i∈I(Xi, αi) ∈ K. We say that K is closed under coproducts if for every family
{(Xi, αi)}i∈I ⊆ K we have that

∐
i∈I(Xi, αi) ∈ K. From this, we define the

concepts of a variety of automata and a covariety of automata as follows.

Definition 46. Let K be a class of automata on A. We say that K is a variety of
automata on A if K is closed under subautomata, quotients and products. We say
that K is a covariety of automata on A if K is closed under subautomata, quotients
and coproducts.

By Birkhoff’s theorem, we have that varieties of algebras are exactly classes
that are defined by equations, see, e.g., [27, 18]. Examples of varieties of alge-
bras include: deterministic automata, semigroups, monoids, groups, lattices and
Boolean algebras. In all those cases, we can axiomatize the given kind of algebras
by a set of equations, e.g., for the case of semigroups we only need the identity
x · (y · z) = (x · y) · z of associativity. Dually, covarieties of coalgebras are exactly
classes that are defined by coequations, see, e.g., [76]. Examples of covarieties
of coalgebras include: deterministic automata, transition systems with output, dy-
namical systems and labeled transition systems with eventually constant behaviour.
In all those cases, we can characterize the given class by restricting their behaviour,
e.g., eventually constant streams for the case of labeled transition systems with
eventually constant behaviour.

The next example shows a variety of automata that is not a covariety.

Example 47. Let A = {a, b}, and consider the variety V1 generated by the automa-
ton (X,αX) on A given by

x y
a, b

a, b

That is, V1 is the least variety containing (X,αX). Then, an automaton (Y, αY ) ∈ V1
if and only if there exists s ∈ Y such that for every y ∈ Y , αY (a, y) = αY (b, y) = s,
that is, an automaton is in V1 if and only if there is no difference between a and b
transitions, and there is a state, called a sink, that is reachable from any state by
inputting the letter a (or, equivalently, that is reachable from any state by inputting
the letter b).

Note that V1 is not a covariety since the coproduct (X,αX) + (X,αX) has no
sink. A set of defining equations for V1 is E = {a(x) ≈ b(y)}. Here, a(x) ≈ b(y) is
the equation ∀x∀y (a(x) = b(y)).

The next example shows a covariety of automata that is not a variety.
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Example 48. Let A = {a} and consider the following automaton (X,αX) on A:

x1 x2

a

a

x3 x4

x5

a

aa

Let C1 be the covariety generated by (X,αX). Then C1 is defined by the set of
coequations S = {∅, (aa)∗, a(aa)∗, (aaa)∗, a(aaa)∗, aa(aaa)∗, A∗}. From this, we
have that C1 is not closed under products since (X,αX) × (X,αX) recognizes the
language (aaaaaa)∗ which is not an element in S.

As closure properties of sum and products are both defined for deterministic
automata, we can ask if we can characterize classes of deterministic automata that
are varieties and also covarieties. In fact, we have the following.

Theorem 49. Let K be a class of deterministic automata on A. The following are
equivalent:

i) K is variety and a covariety of deterministic automata. That is, K is closed under
subautomata, quotients, products and coproducts.

ii) K is defined by a preformation of languages, that is, there exists S ⊆ 2A
∗

in CABA

that is closed under left and right derivatives such that K = Mod(S).

iii) K is defined by a monoid congruence on A∗. That is, there exists a monoid
congruence θ on A∗ such that K = Mod(θ).

Here Mod(S) := {(X,αX) | (X,αX) ||=S} and Mod(θ) := {(X,αX) | (X,αX) |=
θ}.

Varieties of deterministic automata that are closed under coproducts are in-
stances of regular varieties [44].

Proof. i) ⇒ iii) By Birkhoff’s theorem, if we consider automata on A as algebras
of type τ = A in which each symbol in A is a unary function symbol, we have
that K = Mod(E) for some set of equations E. Each equation in E is of the form
∀x u(x) = v(x) or ∀x, y u(x) = v(y). Consider the automata 2d := (2, d) such
that for each n ∈ 2 and a ∈ A we have d(a, n) = n, that is, 2d is the coproduct of
two copies of the trivial automaton. Note that 2d ∈ K since it is the coproduct of
two copies of the trivial automaton. Hence E cannot contain equations of the form
∀x, y u(x) = v(y) since those kind of equations are not satisfied by 2d. Therefore,
all the equations are of the form ∀x u(x) = v(x) which can be identified with
elements (u, v) ∈ A∗ and by closing E under substitution and operations in τ we
get the congruence θ of A∗ such that K = Mod(E) = Mod(θ).

iii)⇒ i) It is trivial since Mod(θ) is closed under subautomata, quotients, prod-
ucts and sums.
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ii) ⇔ iii) Let S ⊆ 2A
∗

in CABA closed under left and right derivatives. By
duality, i.e., by applying the functor CABA( , 2) to the inclusion ι : S → 2A

∗
, we get

a surjective monoid homomorphism νθ : A∗ → A∗/θ (see Proposition 43). We will
now prove that Mod(S) = Mod(θ) by using the fact that A∗ is the free U–object
over 1, where U : algτ → Set is the forgetful functor from the category algτ
of algebras of type τ = A to Set, where each operation symbol in A is a unary
function symbol. Let (X,αX) be an automaton on A, x ∈ X and c : X → 2, then
we have the following commutative diagram:

1

A∗ X 2

η1
x

x]

oc(x)

c

Assume that (X,αX) ∈ Mod(S), that is, that oc(x) ∈ S. For a fixed x ∈ X,
the previous fact defines a morphism gx : 2X → S in CABA which is given by
gx(c) = oc(x), which by duality gives us a function hx : A∗/θ → X. Note that
x] = hx ◦ νθ, which follows from duality since Set(x], 2) = ι ◦ gx. Now, for any
(u, v) ∈ θ we have that u(x) = x](u) = (hx ◦ νθ)(u) = (hx ◦ νθ)(v) = x](v) = v(x).
That is, (X,αX) ∈ Mod(θ).

Conversely, assume that (X,αX) ∈ Mod(θ). Then, for every x ∈ X the ho-
momorphism x] factors through νθ as x] = hx ◦ νθ. Then, by duality, we have
Set(x], 2) = ι◦Set(hx, 2) which means that for every colouring c : X → 2 we have
that oc(x) = c ◦ x] ∈ S. Therefore (X,αX) ∈ Mod(S).

As a corollary of the previous proof we have.

Corollary 50. Let S ⊆ 2A
∗

be a preformation of languages and θ a congruence on
A∗. Then for every automaton (X,αX) on A we have:

i) (X,αX) |= θ if and only if (X,αX) ||= Im(Set(νθ, 2)).

ii) (X,αX) ||=S if and only if (X,αX) |= CABA(S, 2).

Here νθ : A∗ → A∗/θ is the canonical map such that νθ(w) = w/θ.

Proof. The two statements follow from the previous proof as follows:

i) This follows from the fact that Mod(θ) = Mod(S) for S = Im(Set(νθ, 2)).

ii) Consider the inclusion map ι : S → 2A
∗
. Then, by using the duality between

Set and CABA and Proposition 43, we have that CABA(ι, 2) : CABA(2A
∗
, 2) ∼=

A∗ → CABA(S, 2) is a surjective monoid homomorphism. Therefore, we have
that Mod(S) = Mod(θ), where θ is the congruence given by the partition
CABA(S, 2), that is, θ is the congruence on A∗ such that A∗/θ ∼= CABA(S, 2),
which is given by θ = ker(CABA(ι, 2)).
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The following example shows how a regular variety can be described in the
three equivalent ways shown in Theorem 49.

Example 51. Let A = {a, b}, and consider the regular variety V2 generated by the
automaton (X,αX) on A given by

x y
a, b

a, b

Then, by Theorem 49, V2 can be described in three different ways, namely:

i) As the closure under subautomata, quotients, products and coproducts of the
set {(X,αX)}, which means that an automaton (Y, αY ) ∈ V2 if and only if
(Y, αY ) is the sum of elements in V1 (see Example 47).

ii) V2 = Mod(θ) where θ is the congruence generated by {a = b, aa = a}.

iii) V2 = Mod(S) where S is the preformation of languages S = {∅, {ε}, A+, A∗}
where A+ = A∗ r {ε}.

Now we discuss the kind of equations we have considered from the perspec-
tive of universal algebra. The equations for automata we considered were pairs
(u, v) such that u, v ∈ A∗. This kind of equation corresponds to the equation
∀x u(x) = v(x), also denoted as u(x) ≈ v(x), that are studied in universal algebra
[27, Definition II.11.1]. Equations in which the set of variables used in each term
are the same are called regular equations. They were first introduced by Płonka
[71], which in the case of deterministic automata on A can be identified with pairs
(u, v), u, v ∈ A∗. It is worth mentioning that a Birkhoff–type theorem for regular
varieties was formulated by Taylor in [88, p. 4] in which the algebra 2d in the
previous proof is generally defined, which is called the sup–algebra of type τ . The
importance of the algebra 2d is that an equation holds in 2d if and only if it is
regular [44, Lemma 2.1].

By using the characterization of regular varieties given by Taylor [88, p. 4], we
have that a variety of automata is closed under coproducts if and only if it contains
2d. This fact can be proved directly by noticing that 2d is the coproduct of two
copies of the trivial (one element) algebra and, conversely, that the coproduct of
a family {(Xi, αi)}i∈I can be obtained as a homomorphic image of the algebra∏
i∈I(Xi, αi) ×

∏
i∈I 2d. In fact, let φ : I →

∏
i∈I 2 be an injective function and

i0 ∈ I a fixed element, then the function h :
∏
i∈I Xi ×

∏
i∈I 2 →

∐
i∈I Xi defined

by

h(f, p) =

{
(i0, f(i0)) if p /∈ Im(φ),
(i, f(i)) if p ∈ Im(φ) and φ(i) = p,

is a surjective homomorphism onto
∐
i∈I(Xi, xi). Notice that h is well-defined

since φ is injective.
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Additionally, note that the property of the classK = Mod(S) being closed under
products can be proved directly from the fact that S is a preformation of languages
as follows: Consider a family {(Xi, αi)}i∈I ⊆ Mod(S) and let (

∏
i∈I Xi, α) be the

product of that family. Fix a colouring c :
∏
i∈I Xi → 2 and f ∈

∏
i∈I Xi, we want

to show that oc(f) ∈ S, which follows the fact that S is a complete Boolean algebra
and from the equality

oc(f) =
∨

y∈c−1(1)

(∧
i∈I

oδy(i)(x(i))

)

where δy(i) : Xi → 2 is such that δy(i)(s) = 1 if and only if s = y(i). In fact,

w ∈ oc(f)⇔ ∃y ∈ c−1(1) w(f) = y

⇔ ∃y ∈ c−1(1)∀i ∈ I w(f(i)) = y(i)

⇔ ∃y ∈ c−1(1)∀i ∈ I w ∈ oδy(i)(f(i))

⇔ w ∈
∨

y∈c−1(1)

(∧
i∈I

oδy(i)(f(i))

)
.

2.5 Discussion

The purpose of this chapter was to study equations and coequations for determin-
istic automata. Both concepts were already studied in [13], where a duality result
between them was obtained. We studied the basic definitions of equations and co-
equations for deterministic automata with the purpose of introducing both notions
and give the reader an intuitive idea abouth them. Especially for the concept of
coequations which is less known.

We showed how the duality result between equations and coequations proved
in [13] can be obtained from the duality between Set and CABA by considering
the proper restrictions and using commutative diagrams, something which was not
done in [13]. Additionally, we presented the notion of satisfaction of equations
and coequations as commutative diagrams. It is worth mentioning that in [13] a
variation of Proposition 37 is shown by using free (A× )–algebras on 1 generator
instead of monoids.

The study of regular varieties for automata and their relation with coequations
is a new contribution which is based on the paper [79]. In fact, we showed in
Theorem 49 that regular varieties of automata can be equivalently defined by co-
equations that are preformation of languages. The study of regular varieties and
their corresponding defining equations has been previously done in [71, 88, 44].
It is worth mentioning that varieties of deterministic automata that are not regular
cannot be defined by coequations, since they are not closed under sums. There-
fore, the study of varieties of deterministic automata that are not regular was not
considered for the purpose of this chapter.
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One of the main motivations in the presentation of this chapter is how equations
and coequations can be studied from a categorical point of view, i.e., by using
arrows. In this case, we showed how sets of equations for deterministic automata
can be represented as a surjective arrow from a free object and, dually, coequations
can be represented as an injective arrow into a cofree object. This approach of
capturing equations as a special kind of arrows is generally considered for proving
categorical versions of Birkhoff’s theorem such as [15] and will be studied in more
detail in Chapter 4.

We showed in Corollary 34 that the set of equations that a deterministic au-
tomaton satisfies is a monoid congruence on A∗. Also, in Theorem 49 we used a
monoid congruence on A∗ to describe regular varieties of automata. This notion of
a monoid congruence on A∗ is essentially the same as a fully invariant congruence
on the set Tτ (1) of terms of type τ = A over 1, which is the same as an equational
theory of type τ over 1 [27, II.14]. Hence, for any class K of automata closed un-
der subautomata, quotients, products and coproducts, the monoid congruence on
A∗ such that K = Mod(θ) is unique. We will study equational theories from a
categorical point of view in Chapter 5.





Chapter 3

Equations and coequations for
weighted automata

Weighted automata are a generalization of non-deterministic automata introduced
by Schützenberger [83]. Every transition is associated with an input letter from
an alphabet A and a weight expressing the cost (or probability, time, resources
needed) of its execution. This weight is typically an element of a semiring. The
multiplication of the semiring is used to accumulate the weight of a path by multi-
plying the weights of each transition in the path, while the addition of the semiring
computes the weight of a string w by summing up the weights of the paths labeled
with w [34]. In this way, the behaviour of weighted automata is given in terms of
formal power series, i.e., functions assigning a weight to each finite string w over
A.

Weighted automata may have a non-deterministic behaviour because different
transitions from the same state may be labeled by the same input letter, with pos-
sibly different weights. However, they can be determinized by assigning a linear
structure to the state-space using a generalization of the powerset construction
for non-deterministic automata [23]. Moreover, determinized weighted automata
are typically infinite-state, but determinization allows us to study weighted au-
tomata both from an algebraic and a coalgebraic perspective. From the algebraic
perspective, a (determinized) weighted automaton is just an algebra with a unary
operation for each input symbol, whereas coalgebraically, a weighted automaton is
a deterministic transition system with output weights associated to each state.

In this chapter, we study equations and coequations for weighted automata.
Similarly to the previous chapter, we will define the notion of equations and co-
equations for the case of weighted automata and then show their relationship by
showing a duality result between them. A more general case is also considered by
introducing the concept of linear equations. First, we start with some preliminaries
and concepts that are needed to define weighted automata.

59
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3.1 Preliminaries

In this section, we define some of the concepts we need in order to define the
concept of a weighted automaton. We will first introduce the concept of a semiring
and then define the concept of a semimodule over a given semiring. From this, the
category SmodS of semimodules over a semiring S with linear maps as morphisms
will be defined. We start by defining the concept of a semiring.

Definition 52. A semiring S is an algebra S = (S,+, ·, 0, 1), where + and · are
binary operations and 0 and 1 are nullary operations, such that (S,+, 0) is a com-
mutative monoid, (S, ·, 1) is a monoid, · distributes over + on the left and on the
right, and 0 · s = s · 0 = 0 for every s ∈ S.

As examples of a semiring we have the following.

Example 53. The following are some examples of a semiring:

i) The semiring N = (N,+, ·, 0, 1) of natural numbers with the usual addition
and multiplication. Similarly, the integers, (non–negative) rational numbers,
(non–negative) real numbers and complex numbers with the usual operations
are also semirings.

ii) The set of ideals of a given ring under addition and multiplication of ideals.

iii) The Boolean semiring B = (2,+, ·, 0, 1), where 2 = {0, 1}, addition is defined
as the ‘or’ operation 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1 and the multiplication
as usual.

iv) The tropical semiring (R ∪ {−∞},⊕,�,−∞, 0) where x ⊕ y = max{x, y} and
x� y = x+ y. This semiring is also known as the max–plus semiring.

v) The n× n matrices with entries on any given semiring with addition and mul-
tiplication of matrices.

vi) Every ring is a semiring if we forget the operation of additive inverse.

Now, we define the concept of a semimodule over a semiring.

Definition 54. Let S be a semiring, a semimodule over S, or S–semimodule, is a
commutative monoid R = (R,+, 0) together with an S-left-action · : S × R → R
such that

(s+ s′) · r = s · r + s′ · r 0 · r = 0 1 · r = r
s · (r + r′) = s · r + s · r′ s · 0 = 0 s · (s′ · r) = (s · s′) · r

for any s, s′ ∈ S and r, r′ ∈ R. We will often write sr instead of s · r.

A linear map between S–semimodules R1 and R2 is a function h : R1 → R2

such that for any x, y ∈ R1 and c, d ∈ S, h(cx + dy) = ch(x) + dh(y). We denote
the category of S–semimodules with linear maps as SmodS.
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Let U : SmodS → Set be the forgetful functor, then the free U–object over a set
X, which is called the free S–semimodule on the generators X and which we denote
by V (X), is the S–semimodule whose underlying set is given by V (X) = {φ ∈
SX | supp(φ) is finite}, where supp(φ), the support of φ, is defined as supp(φ) =
{x ∈ X | φ(x) 6= 0}. Addition in V (X) is componentwise, 0 ∈ V (X) is the constant
function with 0 as its value, and the action of S over V (X) is multiplication of a
constant by a function.

For φ ∈ V (X) we have the correspondence φ ⇔ s1x1 + · · · + snxn, where
supp(φ) = {x1, . . . , xn} and φ(xi) = si, i = 1, . . . , n. Note that we are using formal
sums here. According to this correspondence there is a copy of X in V (X), namely
x 7→ 1x; in this case, 1x will be simply denoted as x. According to this, the function
ηX : X → V (X) for the free U–object over X is given by ηX(x) = 1x = x and,
for a given S–semimodule R, the extension f ] ∈ SmodS(V (X), R) of a function
f ∈ Set(X,R) is the linear map given by:

f ](c1x1 + · · ·+ cnxn) = c1f(x1) + · · ·+ cnf(xn).

If A and X are sets, then the set V (X)A is the carrier set of an S–semimodule,
called the A power of the S–semimodule V (X), whose S–semimodule structure is
defined componentwise. That is, if f, g ∈ V (X)A, a ∈ A and s ∈ S, then we have:

(f + g)(a) = f(a) + g(a) and (s · f)(a) = s · f(a).

Now we define the notion of a weighted automaton.

Definition 55. Let A be a set and S a semiring. A weighted automaton with input
alphabet A and weights over a semiring S is a pair (X,βX), where X is a set (not
necessarily finite) and βX : X → V (X)A is a function.

As in the case of deterministic automata, in cases that the set A and X are finite
sets, we can represent the weighted automaton (X,βX) by drawing an arrow from
the state x to the state xi with label a : si, as in x

a:si−→ xi, for every a ∈ A and
x, xi ∈ X such that βX(x)(a) = s1x1 + · · · snxn, 1 ≤ i ≤ n, si ∈ S. The following
example illustrates this notation.

Example 56. Let A = {a, b}, X = {x1, x2} and letR be the semiring (field)R = Z3

of integers modulo 3, then the diagram:

x1 x2a : 1, b : 2

b : 1

a : 1, b : 1

b : 2

represents the weighted automaton (X,βX) such that βX(x1)(a) = x1, βX(x1)(b) =
2x1 + x2, βX(x2)(a) = x2 and βX(x2)(b) = 2x1 + x2.
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3.2 Equations for weighted automata

In this section, we study equations for weighted automata. We defined weighted
automata with input alphabet A and weights over a semiring S as pairs (X,βX)
such that βX : X → V (X)A. Now as V (X) is the free U–object over X, where
U : SmodS → Set is the forgetful functor, then we have the extension β]X : V (X)→
V (X)A of βX , i.e., we have the deterministic automaton (V (X), β]X) on A and
hence we can study and define equations for (X,βX) as equations for (V (X), β]X).

Definition 57. Let A be a set. An equation on A is a pair (u, v) ∈ A∗ × A∗.
Given a semiring S and a weighted automaton (X,βX) with input alphabet A
and weights over S, we say that (X,βX) satisfies the equation (u, v), denoted as
(X,βX) |= (u, v), if the deterministic automaton (V (x), β]X) satisfies (u, v), i.e., if
for every φ ∈ V (X) we have that u(φ) = v(φ). Note that since β]X is the linear
extension of βX , (X,βX) |= (u, v) is equivalent to the property u(x) = v(x) for
every x ∈ X.

For cases that A and X are finite sets, we can find a generating set for the
equations that a given weighted automaton satisfies. We do this in a similar way
as in the case of deterministic automata, cf. Example 31.

Example 58. Let A = {a, b}, X = {x1, x2} and letR be the semiring (field)R = Z3

of integers modulo 3 and consider the weighted automaton (X,βX) with diagram:

x1 x2a : 1, b : 2

b : 1

a : 1, b : 1

b : 2

Then, to find a generating set for the equations (X,βX) satisfies we start from the
tuple (x1, x2) that contains all the states in X and we make all the possible transi-
tions to get deterministic automaton generated by (x1, x2) which is the following
one:

(x1, x2) (2x1 + x2, 2x1 + x2) (0, 0)

a a a, b

b b

Therefore, a generating set for the equations (X,βX) satisfies is {a = ε, bb = bbb}.

3.3 Coequations for weighted automata

In this section, we study coequations for weighted automata. For an alphabet A
and a semiring S, elements in SA

∗
are called power series. If we colour the states
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of a weighted automaton (X,βX), with input alphabet A and weights over S, by
elements in S then we can associate to every element φ in V (X) a power series, the
behaviour of φ with respect to the given colouring. In fact, given an S–colouring
f : X → S of the states of X we get the S–colouring f ] : V (X) → S of V (X)
and hence, for every φ ∈ V (X), we define the behaviour of (φ) ∈ SA∗ as the power
series defined by of (φ)(w) = f ](w(φ)), w ∈ A∗. The map of : V (X) → SA

∗
just

defined is the observability map of (X,βX) associated to f . The following example
shows how the observability map is defined for the weighted automaton given in
Example 58.

Example 59. Consider the weighted automaton given in Example 58 and the Z3–
colouring f : X → Z3 such that f(x1) = 2 and f(x2) = 0. Then we have that for
any s1, s2 ∈ Z3:

of (s1x1 + s2x2)(w) =


2s1 if nb(w) = 0

s1 + s2 if nb(w) = 1

0 if nb(w) ≥ 2

where nb(w) denotes the number of b’s in w. Note that the previous calculation
easily follows from the deterministic automaton we drew in Example 58 to get the
equations of (X,βX). In general, for the same weighted automaton, we have that
for any S–colouring g : X → S the function og is such that:

og(s1x1 + s2x2)(w) =


s1g(x1) + s2g(x2) if nb(w) = 0

s1 (2g(x1) + g(x2)) + s2 (2g(x1) + g(x2)) if nb(w) = 1

0 if nb(w) ≥ 2

We now define coequations for weighted automata as follows.

Definition 60. Let A be an alphabet and S be a semiring. A set of coequations for
A over S is a subset Q ⊆ SA∗ , that is, a set of power series. We say that a weighted
automaton (X,βX) satisfies Q, denoted as (X,βX) ||=Q, if for every f ∈ Set(X,S)
we have Im(of ) ⊆ Q.

From the previous definition and the previous example we have the following.

Example 61. Consider the weighted automaton (X,βX) given in Example 58.
Then (X,βX) ||=Q if and only if Q contains the set

{og(s1x1 + s2x2) | g ∈ Set(X,S), s1, s2 ∈ S},

where og(s1x1 + s2x2) is defined as in the previous example.
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3.4 Duality between equations and coequations

In this section, we provide a duality for equations and coequations for weighted
automata. For this purpose, similar to the case of deterministic automata, we will
make use of the duality between the category Set and a category C whose objects
are isomorphic to objects of the form SX , X ∈ Set, where S is a set with at least
two elements, and whose morphisms are isomorphic to morphisms of the form
Set(f, S) : SY → SX for f ∈ Set(X,Y ). We will avoid the formal definition
of the category C but we will use the description just given and the fact that the
contravariant functor Set( , S) : Set×−→C is part of the duality.

As in the case of deterministic automata, we define the category D whose ob-
jects are quotients of the deterministic automaton A∗, i.e., objects of the form
A∗/θ, where θ is a monoid congruence and its transition function fθ : A×A∗/θ →
A∗/θ is given by fθ(a,w/θ) = (aw)/θ, and whose morphisms are surjective au-
tomata morphisms, i.e., a morphism from A∗/θ1 to A∗/θ2 is a surjective function
h ∈ Set(A∗/θ1, A

∗/θ2) such that fθ2 ◦ (idA × h) = h ◦ fθ1 .
Now, every quotient νθ : A∗ → A∗/θ induces the injective map Set(νθ, S) in C

which we identify with the subset Im(Set(νθ, S)) of SA
∗
. In order to establish the

duality, we need to characterize the properties of Im(Set(νθ, S)) = {f ◦ νθ | f ∈
Set(A∗/θ, S)}.

Lemma 62. Let A be a set, θ a monoid congruence on A∗ and νθ : A∗ → A∗/θ the
canonical map given by νθ(w) = w/θ. Then the subset Q = Im(Set(νθ, S)) of SA

∗

satisfies the following properties:

i) Q is closed under left and right derivatives. That is, if g ∈ Q and u ∈ A∗ then
ug, gu ∈ Q, where ug(v) = g(vu) and gu(v) = g(uv), v ∈ A∗.

ii) B(Q)
def
= {supp(g) | g ∈ Q} ⊆ Set(A∗, 2) is an object in CABA with the usual

set–theoretic operations.

iii) The set Q is determined by the atoms CABA(B(Q), 2) of B(Q) in the sense that

Q =

g ∈ SA∗
∣∣∣∣ g =

∨
k∈CABA(B(Q),2)

skk, sk ∈ S

 ,

where in the expression above, g(w) = sk if and only if w ∈ k.

Conversely, every subset Q of SA
∗

satisfying the three properties above defines the
congruence quotient of A∗ given by CABA(B(Q), 2). Additionally, the previous cor-
respondence between congruences of A∗ and subsets Q of SA

∗
satisfying the three

properties above is bijective.

Proof. For every u ∈ A∗ define the functions lu, ru ∈ Set(A∗, A∗) as lu(w) = wu
and ru(w) = uw. Then we have that νθ : A∗ → A∗/θ is a monoid homomorphism
if and only if for every u ∈ A∗ there exists g, g′ ∈ Set(A∗/θ,A∗/θ) such that the
following diagrams commute:
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A∗

A∗/θ

A∗

A∗/θ

lu

νθ νθ

g

A∗

A∗/θ

A∗

A∗/θ

ru

νθ νθ

g′

which by duality, i.e., by applying the contravariant functor Set( , S), means that
the object Q = Im(Set(νθ, S)) is closed under left and right derivatives, which
proves i).

To prove ii), note that {supp(g) | g ∈ Q} = {f ◦ νθ | f ∈ Set(A∗/θ, 2)} =
Im(Set(νθ, 2)) ∈ CABA.

To prove iii), let g ∈ Q = Im(Set(νθ, S)) = {f ◦ νθ | f ∈ Set(A∗/θ, S)}, i.e.,
put g = fg ◦ νθ. As supp(g) ∈ B(Q) ∈ CABA then it is the join of atoms, i.e.,
elements in CABA(B(Q), 2), and for each such atom k ∈ CABA(B(Q), 2) define sk as
sk = (fg ◦ νθ)(w) for some w ∈ k. Conversely, each

∨
k∈CABA(B(Q),2) skk is equal to

f ◦ vθ ∈ Q, where f ∈ Set(A∗/θ, S) is defined as f(w/θ) = sk and k is the unique
atom that contains w.

Note that such subsets Q of SA
∗

satisfying the three properties above are com-
pletely determined by B(Q) and they are in one–to–one correspondence. Hence,
the lemma follows from what was proved in Proposition 43.

Subsets Q of SA
∗

that satisfy the three properties above are called closed sub-
systems of SA

∗
, see [81, Section 4]. Since closed subsystems are closed under

right derivatives, we can consider every closed subsystem Q as a deterministic au-
tomaton (Q, fQ) where fQ : Q → QA is defined as fQ(g)(a) = ga. It is worth
mentioning that Im(Set(νθ, S)) is the same as cofree(A∗/θ) defined in [81] and
that CABA(B(Q), 2) is the same as free(Q) defined in [81]. Therefore, from the
previous lemma and duality we get the identities free ◦ cofree(A∗/θ) = A∗/θ and
cofree ◦ free(Q) = Q, see [81, Theorem 5 and Corollary 8].

The next two examples illustrate the previous relationship between closed sub-
systems and monoid congruences.

Example 63. Let A = {a, b} and let S be a semiring. Let Q ⊆ SA∗ be the set

Q =
{
g ∈ SA

∗ ∣∣ ∀w ∈ A∗g(w) = g
(
bnb(w)

)}
,

where nb(w) is the number of b’s in the word w. Then one can verify that Q
is a closed subsystem, i.e., it satisfies the three properties of the lemma above.
Note that the set CABA(B(Q), 2) is given by {a∗, a∗ba∗, a∗(ba∗)2, a∗(ba∗)3, . . .} and
that Q = Im(Set(νθ, S)), if we take for θ the monoid congruence generated by
{a = ε}.
Example 64. Let A = {a, b} and let θ be the monoid congruence on A∗ generated
by {a = ε, bb = bbb}. Then we have that A∗/θ = {ε/θ, b/θ, bb/θ}. If S = Z3, then
by the previous lemma we know that

Im(Set(νθ, S)) = {s1(ε/θ) + s2(b/θ) + s3(bb/θ) | si ∈ Z3} ,



66 Chapter 3. Equations and coequations for weighted automata

that is, Im(Set(νθ, S)) has 27 elements. For instance, we can verify that the set
Im(Set(νθ, S)) is closed under left derivatives by noticing that:

a (s1(ε/θ) + s2(b/θ) + s3(bb/θ)) = s1(ε/θ) + s2(b/θ) + s3(bb/θ)

b (s1(ε/θ) + s2(b/θ) + s3(bb/θ)) = s2(ε/θ) + s3(b/θ + bb/θ).

We now define the categories of monoid congruences on A∗ and of closed sub-
systems of SA

∗
which will be dual categories. In fact, we define the categories D

and K as follows:

objects(D) = {(A∗/θ, fθ) | θ is a monoid congruence on A∗}
arrows(D) = {e : A∗/θ1 → A∗/θ2 | e is a surjective automata homomorphism}
objects(K) = {(Q, fQ) | Q is a closed subsystem of SA

∗
}

arrows(K) = {m : Q→ Q′ | m is an injective automata homomorphism}

Using a similar argument as for the case of deterministic automata, we have
that the categories D and K are dual, [81, Theorem 10]. We illustrate this duality
with the following example.

Example 65. Let A = {a, b} and let S be a semiring. Let θ1 be the monoid congru-
ence on A∗ generated by {a = ε, bb = bbb} and let θ2 be the monoid congruence
on A∗ generated by {a = ε, b = bb}. Clearly we have that θ1 ⊆ θ2 and hence,
we have the surjective automata homomorphism e : A∗/θ1 → A∗/θ2 given by
e(w/θ1) = w/θ2. By the duality just described, we have the following situation:

ε/θ1 b/θ1 bb/θ1

a a a, b

b b

ε/θ2 b/θ2

a a, b

b

e

{s1(ε/θ1) + s2(b/θ1) + s3(bb/θ1) | si ∈ S}

{s1(ε/θ2) + s2(b/θ2) | si ∈ S}

m

Set( , S)

CABA(B( ), 2)

where the homomorphism m : Set(A∗/θ2, S)→ Set(A∗/θ1, S) is given by

m(s1(ε/θ2) + s2(b/θ2)) = s1(ε/θ1) + s2(b/θ1) + s2(bb/θ1).
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Similar to the case of deterministic automata, given a set of equations E on
A, we can define the class of weighted automata on A that satisfy E. We can
also do the same for the case of coequations, i.e., define the class of weighted
automata that satisfy a given set of coequations on A. Now, we have that classes
of weighted automata defined by monoid congruences are the same as classes of
weighted automata defined by closed subsystems.

Theorem 66. Let A be a set and let S be a semiring. Let Q ⊆ SA
∗

be a closed
subsystem, θ a monoid congruence on A∗, and (X,βX) a weighted automaton with
input symbols in A and weights in S. Then

i) (X,βX) |= θ if and only if (X,βX) ||= Im(Set(νθ, S)).

ii) (X,βX) ||=Q if and only if (X,βX) |= CABA(B(Q), 2).

Proof. i) Let ι : Im(Set(νθ, S)) → SA
∗

be the inclusion homomorphism, i.e., ι ∼=
Set(νθ, S) and let P := Im(Set(νθ, S)). For every φ ∈ V (X) and f ∈ Set(X,S) we
have the following commutative diagram:

1

A∗ V (X)

X

S

η1
φ

φ]

ηX
f

f ]

of (φ)

Assume that (X,βX) |= θ. Then, for every φ ∈ V (X) the homomorphism φ] factors
through νθ as φ] = hs ◦ νθ. Then, by duality, we have Set(φ], S) = ι ◦ Set(hs, S)
which means that for every colouring f : X → S we have that of (φ) = f ] ◦φ] ∈ P .
Therefore (X,βX) ||=P .

Conversely, assume that (X,βX) ||=P , that is, that of (φ) ∈ P . Fix (u, v) ∈ θ, if
(X,βX) 6|= (u, v) then there exists x ∈ X such that u(x) 6= v(x), since u(x), v(x) ∈
V (X) are formal sums that are different then there exists f : X → S such that
f ](u(x)) 6= f ](v(x)), i.e., of (x)(u) 6= of (x)(v). Now, as of (x) ∈ P = Im(Set(νθ, S))
then there exists cf : A∗/θ → S such that of (x) = cf ◦ νθ but then

of (x)(u) = (cf ◦ νθ)(u) = cf (u/θ) = cf (v/θ) = (cf ◦ νθ)(v) = of (x)(v)

which contradicts of (x)(u) 6= of (x)(v). Therefore (X,βX) |= (u, v) and hence
(X,βX) |= θ.

ii) Follows from i) since monoid congruences on A∗ are in one–to–one corre-
spondence with closed subsystems by Lemma 62.

Remark. In the previous proof, to prove that (X,βX) ||=P implies (X,βX) |= θ, we
cannot proceed as in the proof of Theorem 49. That is, for a fixed φ ∈ X, and
assuming that (X,βX) ||=P , we have the function gφ : SX → P given by gφ(f) =
of (φ), but then we do not know if by duality we will get a function hφ : A∗/θ → X
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such that Set(hφ, S) ∼= gφ (see diagram in the previous proof). Also, switching to
SV (X) instead of SX does not help since there are elements in γ ∈ SV (X) that are
not of the form γ = f ] for some f ∈ SX .

As an illustration of the previous theorem we have the following.

Example 67. Let A = {a, b} and let S be a semiring. Let θ be the monoid con-
gruence on A∗ generated by {a = ε}. Then we have that P := Im(Set(νθ, S)) is
the closed subsystem P =

{
g ∈ SA∗

∣∣ ∀w ∈ A∗g(w) = g (nb(w))
}

. In this case, we
have, for a weighted automaton (X,βX) with inputs on A and weights on S, that

(X,βX) |= θ ⇔ (X,βX) ||=P ⇔ ∀x ∈ X βX(a, x) = x.

3.5 Linear equations and coequations

In this section, we work with a more general kind of equations for weighted au-
tomata than the ones introduced in Section 3.2. We defined equations to be pairs
(u, v) ∈ A∗ × A∗ and we said that a weighted automaton (X,βX) with inputs in
A and weights on S satisfies (u, v) if for any x ∈ X, u(x) = v(x). Now, since
u(x) ∈ V (X) (the free S-semimodule generated by X) for any u ∈ A∗, it makes
sense to define expressions like

(s1w1 + · · ·+ snwn)(x) := s1w1(x) + · · ·+ snwn(x)

for elements si ∈ S and wi ∈ A∗, that is, for any ϕ =
∑n
i=1 siwi ∈ V (A∗) and x ∈

X we get an element ϕ(x) ∈ V (X). In this case we can ask whether ϕ(x) = ψ(x)
holds or not for some given ϕ,ψ ∈ V (A∗) and x ∈ X. This motivates the following
definition.

Definition 68. Let A be a set. A pair (ϕ,ψ) ∈ V (A∗) will be called a linear equation
on A. Note that this is now a more general kind of equation since A∗ ⊆ V (A∗). We
write (X,βX) |= (ϕ,ψ), and say: (X,βX) satisfies the equation (ϕ,ψ), if for every
x ∈ X, ϕ(x) = ψ(x).

The following example shows some particular cases of satisfaction of linear
equations and compares it with the concept of an equation.

Example 69. Let (X,βX) be the weighted automaton with inputs in A = {a, b, c}
and weights on Z3 given by the following diagram:

x1 x2
a : 1, b : 2, c : 1

a : 1, b : 1 a : 1, b : 1

Then one easily verifies that the following linear equations are satisfied by (X,βX):
ac = c, a+ c = b, and 2c+ b = b2.

Now, if we construct the deterministic automaton on A to get the equations in
A∗ ×A∗ that (X,βX) satisfies, we get the automaton:
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(x2, 0) (0, 0)(x1 + 2x2, x2)

(x1, x2)

(x1 + x2, x2)

c

a, b

a

b

c
a

b

c

a
b

c

a, b, c

Hence, the monoid congruence Eq(X,βX) of equations that (X,βX) satisfies is
generated by:

{c2 = c3, b3 = ε, a3 = ε, ab = ε, ba = ε, ac = c, bc = c, ca = c, cb = c}.

Observe that none of the linear equations a+ c = b or 2c+ b = b2 can be deduced
from Eq(X,βX), even though (X,βX) satisfies both of them.

As the previous example shows, equations of the form (ϕ,ψ) ∈ V (A∗)× V (A∗)
that are satisfied by (X,βX) are interesting. We now turn to define the notion of
linear automata.

Definition 70. Let K be a field and A be a set. A K–linear automaton, or VecK
automaton, on an alphabet A is a pair (X,βX) such that X ∈ VecK and βX ∈
VecK(X,XA). Note that every weighted automaton over a field K yields a VecK
automaton and conversely. Note that we have the converse since every X ∈ VecK
is free, i.e., it has a basis, which is not the case in SmodS.

Let X ∈ VecK and let A be a set. We denote by A · X the coproduct
∐
a∈AX

in VecK, whose underlying set is given by the set of all functions in XA with finite
support, i.e., an element f ∈ A·X is an element f ∈ XA such that the set supp(f) =
{a ∈ A | f(a) 6= 0} is finite. Operations in A · X are componentwise, that is, if
f, g ∈ A ·X ⊆ XA, a ∈ A and k ∈ K, then:

(f + g)(a) = f(a) + g(a) and (k · f)(a) = k · f(a).

Similarly to the case of deterministic automata, we can see a K–linear automa-
ton as an algebra as well as a coalgebra. In fact, every VecK automaton (X,βX) on
A corresponds to a pair (X, β̃X) where β̃X : A ·X → X. The previous observation
follows from the following commutative diagram in VecK:

XA

X

X

A ·X =
∐
a∈AX

∏
a∈AX = πa′

βX
πa′ ◦ βX

ιa′

β̃X
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where πa′ is the a′–th projection and ιa′ is the a′–th inclusion obtained from the
universal property of the product and coproduct, respectively. The previous alge-
braic and coalgebraic perspective allows us to study equations and coequations for
VecK automata, respectively.

We will study equations for VecK automata by taking into account the situation
we just described. In fact, for a fixed set A, consider the endofunctor H : VecK →
VecK defined as H(X) = A ·X =

∐
a∈AX. Then we have that a VecK automaton

is exactly an H–algebra. Consider the forgetful functor U : alg(H) → VecK from
the category of H–algebras to VecK, then the free U–object over K ∈ VecK is the
object V (A∗) = (V (A∗), $) ∈ alg(H) where the morphism $ : A ·V (A∗)→ V (A∗)
in VecK is such that ($ ◦ ιa)(s1w1 + · · · + snwn) = s1aw1 + · · · + snawn and the
morphism ηK : K → V (A∗) is such that ηK(1) = ε. From this, we define equations
for VecK automata as follows.

Definition 71. An equation for VecK automata is a pair (ϕ,ψ) ∈ V (A∗)×V (A∗). We
say that a VecK automaton (X,βX) satisfies (ϕ,ψ), denoted as (X,βX) |= (ϕ,ψ), if
for every x ∈ X we have that (ϕ,ψ) ∈ ker(x]), where x ∈ VecK(K, X) is the linear
map such that x(1) = x and x] ∈ alg(H)((V (A∗), γ), (X,βX)) is the extension of
the linear map x. Or, equivalently, (X,βX) |= (ϕ,ψ), if for every t ∈ VecK(K, X)
we have that (ϕ,ψ) ∈ ker(t]).

Similar to the case of deterministic automata, we have the following kind of
congruences for VecK automata.

An equivalence relation θ on V (A∗) is a linear congruence on V (A∗) if:

i) (ϕ1, ψ1), (ϕ2, ψ2) ∈ θ imply (ϕ1 + ϕ2, ψ1 + ψ2) ∈ θ.

ii) (ϕ,ψ) ∈ θ, k ∈ K, and a ∈ A imply (kϕ, kψ), (aϕ, aψ), (ϕa, ψa) ∈ θ. Here, for
φ =

∑n
i=1 kiwi ∈ V (A∗), the elements kφ, aφ, and φa in V (A∗) are defined as

kφ :=

n∑
i=1

kkiwi, aφ =

n∑
i=1

kiawi, φa =

n∑
i=1

kiwia.

If θ is a linear congruence on V (A∗) then the set V (A∗)/θ has the structure of a
VecK automaton which is the structure map fθ in VecK(A ·V (A∗)/θ, V (A∗)/θ) that
makes the linear morphism νθ : V (A∗) → V (A∗)/θ an H–algebra morphism in
alg(H)((V (A∗), $), (V (A∗)/θ, fθ)), where νθ(φ) = φ/θ. We denote by Eq(X,βX)
the set of equations that the VecK automaton (X,βX) satisfies, which can be easily
shown to be a linear congruence on V (A∗). Note that Eq(X,βX) is the intersection⋂
x∈X ker(x]) =

⋂
t∈VecK(K,X) ker(t]).

To study coequations for VecK automata, we use a dual argument by seeing
VecK automata as coalgebras for a functor. In fact, for a fixed set A, consider the
endofunctor G : VecK → VecK defined as G(X) = XA =

∏
a∈AX. Then we have

that a VecK automaton is exactly a G–coalgebra. Consider the forgetful functor
U : coalg(G) → VecK from the category of G–coalgebras to VecK. Then we have
that the cofree U–object over K is the object KA∗ = (KA∗ , σ) where the morphism
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σ : KA∗ → (KA∗)A in VecK is such that σ(g)(a) = ga, where ga(w) = g(aw), and
the morphism εK : KA∗ → K is defined as εK(g) = g(ε). We define coequations for
VecK automata as follows.

Definition 72. A set of coequations is a subspace S of KA∗ . We say that a VecK
automaton (X,βX) satisfies S, denoted as (X,βX) ||=S, if for every d ∈ VecK(X,K)
we have that Im(d[) ⊆ S, where the morphism d[ : X → KA∗ is obtained from the
universal property of the cofree U–object KA∗ . The morphism d[ is also called the
observability map with respect to d, which is also denoted as od. For every x ∈ X the
element d[(x) = od(x) is the behaviour of the state x with respect to the colouring
d.

The previous two situations for equations and coequations for VecK automata
are captured by the following commutative diagram in VecK:

K

V (A∗) X

K

KA∗

ηK
x

x]

d

d[

εK

where x ∈ X. Note that d[(x)(w) = (d ◦ x])(w). Also, the minimum set of coequa-
tions that a given VecK automaton (X,βX) satisfies, denoted as Coeq(X,βX), is
given by the subspace of KA∗ generated by the union

⋃
d∈VecK(X,K) Im(d[). We have

that Eq(X,βX) is a linear congruence, from which we get that V (A∗)/ Eq(X,βX)
has the structure of a VecK automaton which is the one induced by the surjec-
tive morphism νEq(X,βX). In a similar way, the space Coeq(X,βX) also has the
structure of a VecK automaton, which is the one induced by the inclusion map
ιCoeq(X,βX) ∈ VecK(Coeq(X,βX),KA∗), that is, Coeq(X,βX) is closed under right
derivatives. In fact, for every d ∈ VecK(X,K) and x ∈ X we have that d[(x) = d◦x],
from which we get that d[(x)a = (d ◦πa ◦βX)[(x), since for every w ∈ A∗ we have:

d[(x)a(w) = d[(x)(aw) = (d ◦ x])(aw) = (d ◦ x] ◦$)(a,w) = (d ◦ β̃X)(a, x](w))

= (d ◦ β̃X ◦ ιa)(x](w)) = (d ◦ πa ◦ βX)(x](w)) = (d ◦ πa ◦ βX ◦ x])(w)

= (d ◦ πa ◦ βX)[(x)(w)

where the identity (d◦x]◦$)(a,w) = (d◦β̃X)(a, x](w)) follows from the fact that x]

is a morphism in alg(H) and the equality (d◦ β̃X ◦ιa)(x](w)) = (d◦πa◦βX)(x](w))

follows from the commutative square that relates βX and β̃X . Hence, the result
follows from the fact that elements in Coeq(X,βX) are linear combinations of the
elements above (clearly, derivatives distribute over linear combinations).

For a VecK automaton (X,βX) denote by free(X,βX) the VecK automaton
V (A∗)/ Eq(X,βX) and by cofree(X,βX) the VecK automaton Coeq(X,βX). Then
we have the following.
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Theorem 73. Let A be a set and let θ be a linear congruence on V (A∗). Then we
have that (free ◦ cofree)(V (A∗)/θ) = V (A∗)/θ.

Proof. We will make use of the following facts:

a) For every d ∈ VecK(V (A∗)/θ,K), φ ∈ V (A∗) and w ∈ A∗ we have d[(φ/θ)(w) =
d(wφ/θ).

b) For every g ∈ KA∗ we have that g] ∈ VecK(V (A∗),KA∗) is the linear map such
that for every u,w ∈ A∗, g](u)(w) = gu(w) = g(uw). That is, if φ =

∑n
i=1 siwi,

then g](φ)(w) =
∑n
i=1 sig(wiw).

We have to show that Eq(cofree(V (A∗)/θ)) = θ.
(⊆) Consider any pair (φ, ψ) ∈ Eq (cofree(V (A∗)/θ)) and assume that φ/θ 6=

0/θ in V (A∗)/θ. As V (A∗)/θ is a vector space and φ/θ 6= 0/θ, there exists a basis
B of V (A∗)/θ containing φ/θ, now define the linear map dφ ∈ VecK(V (A∗)/θ,K)
such that dφ(φ/θ) = 1 and dφ(ϕ/θ) = 0 for any ϕ/θ ∈ B r {φ/θ}. Consider the
element d[φ(ε/θ) ∈ cofree(V (A∗)/θ). Then, as (φ, ψ) ∈ Eq (cofree(V (A∗)/θ)), we
have that φ(d[φ(ε/θ)) = ψ(d[φ(ε/θ)), in particular

(?) φ(d[φ(ε/θ))(ε) = ψ(d[φ(ε/θ))(ε).

Now, if we put φ =
∑n
i=1 siwi, then form a) and b) above we have that :

(??) φ(d[φ(ε/θ))(ε) = d[φ(ε/θ)
]
(φ)(ε) =

n∑
i=1

sid[φ(ε/θ)
]
(wi)(ε)

=

n∑
i=1

sid
[
φ(ε/θ)(wi) =

n∑
i=1

sidφ(wi/θ)

= dφ(φ/θ) = 1

A similar argument shows that ψ(d[φ(ε/θ))(ε) = dφ(ψ/θ) which implies, from (?)
above, that dφ(ψ/θ) = 1. From this equality and the definition of dφ we get that

ψ/θ = φ/θ +

m∑
j=1

tjϕj/θ (†)

for some ϕj/θ ∈ B r {φ/θ} and tj ∈ K.

Now, for every j = 1, . . . ,m, define the map dϕj ∈ VecK(V (A∗)/θ,K) such that
dϕj (ϕj/θ) = 1 and dϕj (ϕ/θ) = 0 for any ϕ/θ ∈ B r {ϕj/θ}, and consider the
element d[ϕj (ε/θ) ∈ cofree(V (A∗)/θ). Then, as (φ, ψ) ∈ Eq (cofree(V (A∗)/θ)), we
have that φ(d[ϕj (ε/θ)) = ψ(d[ϕj (ε/θ)), in particular

φ(d[ϕj (ε/θ))(ε) = ψ(d[ϕj (ε/θ))(ε)
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Similar to the reasoning above, we have that:

0 = dφj (ϕ) = φ(d[ϕj (ε/θ))(ε) = ψ(d[ϕj (ε/θ))(ε) = dϕj (ψ) = tj

which from equation (†) we get that ψ/θ = φ/θ, i.e. (ψ, φ) ∈ θ.
(⊇) Let (φ, ψ) ∈ θ, d ∈ VecK(V (A∗)/θ,K), ϕ ∈ V (A∗) and put x = d[(ϕ/θ). We

need to prove that φ(x) = ψ(x) in KA∗ . In fact, for any w ∈ A∗, by using a) and b)
above and a similar reasoning as in (??) above we get that

φ(x)(w) = d(φwϕ/θ) = d(ψwϕ/θ) = ψ(x)(w)

which is true since (φ, ψ) ∈ θ implies (φwϕ,ψwϕ) ∈ θ because θ is a linear congru-
ence.

Note that the inclusion from right to left above does not hold in general when
considering semimodules (over a semiring) instead of vector spaces. In fact, let
N be the semiring of natural numbers with the usual sum and product, A =
{a, b}, and let θ be the linear congruence on V (A∗) associated to the partition
{{0}, V (A∗)r{0}} of V (A∗). Then V (A∗)/θ ∼= B, the Boolean semiring, where the
action of N on B is given by n · x = 0 if and only if n = 0 or x = 0. However, one
can verify that cofree(V (A∗)/θ) has only one element and therefore it satisfies any
identity. It follows that V (A∗)/θ cannot be a subset of (free ◦ cofree)(V (A∗)/θ) =
1.

Similarly to the case of weighted automata we can show that for a VecK au-
tomaton (X,βX) and a linear congruence θ we have that

(X,βX) |= θ if and only if (X,βX) ||= cofree(V (A∗)/θ).

Example 74. Let A = {x, y}, and let θ = 〈xy = yx〉 be the linear congruence gen-
erated by the equation xy = yx. Then the VecK automaton V (A∗)/θ is isomorphic
to K[x, y], the ring of polynomials on indeterminates x and y with coefficients in K.
Here the transition function on K[x, y] is (right) multiplication, that is, for a polyno-
mial p(x, y) ∈ K[x, y] we have that x(p(x, y)) = p(x, y)x, and y(p(x, y)) = p(x, y)y.
Then, cofree (V (A∗)/θ) is the set{
L ∈ KA

∗
∣∣∣∣ ∀w1, w2

(
nx(w1) = nx(w2) ∧ ny(w1) = ny(w2)⇒ L(w1) = L(w2)

)}
,

where nx(w) is the number of x’s in the wordw ∈ A∗. Notice that cofree (V (A∗)/θ)
is isomorphic to KM(K[x,y]) whereM(K[x, y]) are the monic monomials in K[x, y].

Example 75. Let A = {x, y}, and, for a fixed k ∈ Kr{0}, let θ = 〈xy = yx, y−k =
0〉 be the linear congruence generated by the equations xy = yx and y − k = 0.
Then the VecK automaton V (A∗)/θ is isomorphic to K[x, y]/〈y − k〉 ∼= K[x], where
〈y − k〉 is the ideal generated by y − k. A similar calculation as in the previous
example shows that cofree (V (A∗)/θ) ∼= K{x}∗ ∼= KN.
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Example 76. Let A be a finite alphabet, and θ a linear congruence on V (A∗) such
that for any x, y ∈ A, (xy, yx) ∈ θ. We claim that θ = 〈C〉 for some finite C ⊆ θ.
In fact, if A = {x1, . . . , xn} then V (A∗)/θ ∼= K[x1, . . . , xn]/I for the ideal I of
K[x1, . . . , xn] given by I = {φ − ψ | (φ, ψ) ∈ θ}, which is an ideal of K[x1, . . . , xn]
since θ is a linear congruence (here φ− ψ is calculated as in K[x1, . . . , xn]). Then,
by Hilbert basis theorem, we have that I is finitely generated, say I = 〈ϕ1, . . . , ϕm〉.
It follows that

θ = 〈{xixj = xjxi | 1 ≤ i < j ≤ n} ∪ {ϕl = 0 | 1 ≤ l ≤ m}〉.

Now, as A∗ is a basis for the space V (A∗), i.e., V (A∗) is the free vector space
over the set A∗, then we have that KA∗ = Set(A∗,K) and VecK(V (A∗),K) are
isomorphic in VecK. In order to complete the duality, we work with VecK(V (A∗),K)
instead of KA∗ and use the duality between VecK and StVecK, where K is a finite
field. We complete the duality with the following result.

Proposition 77. Let K be a finite field. Let S be a subobject of VecK(V (A∗),K) in
StVecK which is closed under left right derivatives, then S = (cofree ◦ free)(S).

Proof. Let i : S ↪→ VecK(V (A∗),K) be the inclusion morphism in StVecK. Then, by
applying the functor StVecK( ,K) we get the surjective morphism StVecK(i,K) =:
e : StVecK(VecK(V (A∗),K),K)−→→ StVecK(S,K) in VecK. By duality, the object
StVecK(VecK(V (A∗),K),K) is isomorphic to V (A∗) in which each element φ ∈
V (A∗) corresponds to the evaluation morphism evφ ∈ StVecK(VecK(V (A∗),K),K)
such that evφ(f) = f(φ). Also, since e is onto then StVecK(S,K) is isomorphic in
VecK to V (A∗)/θ where θ = ker(e).

Claim: θ = Eq(S).
In fact, let φ, ψ ∈ V (A∗) then:

(φ, ψ) ∈ θ ⇔ (φ, ψ) ∈ ker(e)⇔ evφ ◦ i = evψ ◦ i
⇔ ∀s ∈ S (evφ ◦ i)(s) = (evψ ◦ i)(s)⇔ ∀s ∈ S s(φ) = s(ψ)

⇔ (φ, ψ) ∈ Eq(S)

where the last equivalence follows from the fact that S is closed under derivatives.
Finally, by the claim we have that free(S) = V (A∗)/θ and from that equality it

follows that (cofree ◦ free)(S) = cofree(V (A∗)/θ) = S. In fact, we have that

cofree(V (A∗)/θ) =
{
d ◦ φ/θ

]
| d ∈ VecK(V (A∗)/θ,K), φ/θ ∈ V (A∗)/θ

}
= {d | d ∈ VecK(V (A∗)/θ,K)} ∼= S

where the isomorphism follows by definition of V (A∗)/θ and duality and the last
equality follows from the fact that S is closed under derivatives (since the mor-
phisms φ/θ

]
are just translations and therefore can be omitted by closure under

derivatives).
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3.6 Discussion

The contents and results of this chapter were based on the paper [81], which can
be basically seen as a natural next step of what we presented for the case of deter-
ministic automata in the previous chapter. Even though some of the contents are
similar to the case of deterministic automata, their proofs had to be modified and
in some cases completely changed.

The first step in developing this chapter was to observe that every weighted
automaton induces a deterministic automaton in which the states are elements
of a free semimodule. Hence, we studied equations and coequations for weighted
automata as equations and coequations for the deterministic automata they induce.
Later, we switched to the category VecK of vector spaces over a field K to work
with K–linear automata and did a similar work in which the notion of equations is
a more general one since they need to induce an object in VecK.





Chapter 4

Equations and coequations,
categorically

Equations play a fundamental role in (universal) algebra and in axiomatizations
of mathematical structures such as, e.g., semigroups, monoids, groups, lattices,
rings, modules over a ring, vector spaces, Boolean algebras and Heyting algebras.
Algebraic structures of the same type that are equationally defined are also charac-
terized as classes of algebras closed under homomorphic images, subalgebras and
products, which is the statement of Birkhoff’s theorem [18]. There are categorical
versions of Birkhoff’s theorem in the literature such as [15], for which the role and
generalization of equations from a categorical point of view is made by using reg-
ular epimorphisms with regular–projective domain. The previous notion is equiv-
alent, in the classical case, to quotients of a term algebra, whose elements in its
kernel are exactly classical equations. Other categorical generalizations for equa-
tions were also considered in [52, 65, 50, 54, 38, 25]. A common aspect in most of
those approaches is the one of representing equations by means of an epimorphism
with projective domain. For the purpose of this chapter, we will consider equations
as epimorphisms with a free object as its domain (a surjective homomorphism from
a term algebra in the classical case), but any other kind of epimorphisms can also
be considered to get a notion of equations.

The categorical dual of equations is the notion of coequations. Coequations
were studied extensively in the search for a dual of Birkhoff’s theorem and the
specification of classes of coalgebras (see, e.g., [61, 62, 3, 2, 11, 75, 31, 46, 49, 84,
76]). In our case, coequations will be represented as monomorphisms with cofree
codomain. Again, any other kind of monomorphisms can be considered to get a
notion of coequations.

After defining the abstract concept of equations and coequations, we will define
the natural notion of a morphism between equations and of a morphism between
coequations in order to define their corresponding categories. We will show how
the category of equations and the category of coequations relate to each other

77
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under the setting of a contravariant adjunction. For this purpose, we state a lifting
theorem for contravariant adjunctions from [51] and, in the case of a duality, we
will add one more layer to get a duality result between equations and coequations.

A similar work will be done for the case of Eilenberg–Moore categories, i.e., for
algebras over a monad and coalgebras over a comonad. In this case, we present a
result for lifting contravariant adjunctions to Eilenberg–Moore categories, which is
based on the paper [80]. We give necessary and sufficient conditions to lift a con-
travariant adjunction to Eilenberg–Moore categories. Additionally, we will show
how to define a monad from a comonad in the case of a contravariant adjunction
and how to define a comonad from a monad in the case of a duality. As an ap-
plication, we derive dualities between equations and coequations for the case of
dynamical systems and deterministic automata.

We will start by defining the notions of equations and coequations from a cate-
gorical point of view and illustrate these notions with some examples.

4.1 Basic definitions

Let L be an endofunctor on a category D and S be an object in D. Assume that
the free U–object F(S) ∈ alg(L) over S exists, where U : alg(L) → D is the
forgetful functor. We define equations for L on S generators (or variables in S)
as epimorphisms with domain F(S), i.e., elements eQS ∈ alg(L)(F(S),QS) that
are epimorphisms in D for some QS ∈ alg(L)1. Observe that if L is a polynomial
functor on Set (see Example 19 and, e.g., [76, Section 10]) then equations can
be identified with L-congruences θ of F(S), since F(S)/θ ∼= QS in alg(L) for
θ = ker(eQS ), and elements in θ are pairs of terms with variables on the set S.
This corresponds to the classical definition of equations in universal algebra [27,
Definition II.11.1]. We say that an algebra X = (X,αX) ∈ alg(L) satisfies the
equation eQS , denoted as (X,αX) |= eQS , if for any morphism f ∈ D(S,X) the
morphism f ], which is given by freeness of F(S), factors through eQS , i.e., there
exists gf ∈ alg(L)(QS,X) such that the following diagram in alg(L) commutes:

F(S)

QS

X ∀f ∈ D(S,X)

eQS gf

f ]

We have a bijective correpondence between morphisms f ∈ D(S,X) and mor-
phisms h ∈ alg(L)(F(S),X), which is given by freeness of F(S) under the assign-
ment f 7→ f ] and h 7→ h ◦ ηS . Therefore, the property (X,αX) |= eQS is equivalent

1We treat the case of epimorphisms in the base category D, but other kind of epimorphisms can be
considered in order to define a notion of equations (e.g., regular epimorphisms, extremal epimorphisms,
split epimorphisms. Note that the forgetful functor U : alg(L) → D reflects epimorphisms since
it is faithful, i.e., if e is a morphism in alg(L) such that U(e) is an epimorphism, then e is also an
epimorphism.)
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to the property that every morphism h ∈ alg(L)(F(S),X) factors through eQS in
alg(L), i.e., there exists gh ∈ alg(L)(QS,X) such that the following diagram in
alg(L) commutes:

F(S)

QS

X

eQS gh

∀h

Now, assuming that the free U–object on S generators F(S) ∈ alg(L) exists, we
define the category eq(L, S) of equations for L on S generators as follows:

Objects of eq(L, S): morphisms eQS ∈ alg(L)(F(S),QS), some QS ∈ alg(L),

such that U(eQS ) is an epimorphism.

Arrows of eq(L, S): for eQS , eQ′S ∈ eq(L, S), a morphism

f ∈ eq(L, S)(eQS , eQ′S ) is a morphism f ∈ alg(L)(QS,Q
′
S)

such that the following diagram in alg(L) commutes:

F(S) QS

Q′S

eQS

eQ′S f

Notice that morphisms in eq(L, S) are necessarily epimorphisms and that eq(L, S)
is isomorphic to the co-slice category F(S) ↓ alg(L) with the restriction that the
objects are exactly epimorphisms in D with domain F(S).

The next example illustrates this notion of equations for the case of determinis-
tic automata.

Example 78. Consider the Set endofunctor L given by L(X) = A ×X, where A
is a fixed set.

The free U–object on S = 1 is given by A∗ = (A∗, %) where % : A × A∗ → A∗ is
defined by %(a,w) = aw and the unit η1 : 1→ A∗ maps the unique element in 1 to
the empty word ε ∈ A∗, i.e., η1 = ε.

As we saw in Examples 4 and 5, elements in alg(L) are deterministic automata
on A or, equivalently, algebras of type τ = A, where each a ∈ A = τ is a unary
function symbol. In this case, congruences on A∗ (which are also called left con-
gruences) are equivalence relations θ ⊆ A∗ × A∗ such that for any a ∈ A and
(u, v) ∈ θ we have that (au, av) ∈ θ. Congruences θ on A∗ correspond to equa-
tions as defined above, by letting A∗/θ = (A∗/θ, fθ) ∈ alg(L) where fθ is given by
fθ(a,w/θ) = aw/θ and the epimorphism (equation) νθ associated to θ is the mor-
phism νθ ∈ alg(L)(A∗, A∗/θ) that maps every word to its equivalence class with
respect to θ.
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An L-algebra (X,αX) satisfies the equation νθ, also denoted as (X,αX) |= θ,
if and only if for every (u, v) ∈ θ and any x ∈ X, we have x](u) = x](v), where
x ∈ Set(1, X) is the function such that x(0) = x.

Notice that the function %′ : A × A∗ → A∗ defined as %′(a,w) = wa is such
that the algebra (A∗, %′) is also a free U–object on 1, which gives us the notion of
right congruence as a corresponding notion of equation. In this case, satisfaction of
equations coincides with satisfaction of equations as defined in [13] and in Chapter
2 of this thesis.

We dualize the definition of equations to obtain the definition of coequations,
e.g., [76, 61, 62]. Let B be an endofunctor on a category C and R be an object
in C. Assume that the cofree V –object C(R) ∈ coalg(B) over R exists, where V :
coalg(B)→ C is the forgetful functor. We define coequations for B on R colours as
monomorphisms with codomain C(R), i.e., elements mSR ∈ coalg(B)(SR,C(R))
that are monomorphisms in C for some SR ∈ coalg(B)2. We say that a B–
coalgebra Y = (Y, βY ) satisfies the coequation mSR , denoted as (Y, βY ) ||=mSR

(notice the difference between the symbols: |= for equations and ||= for coequa-
tions), if for every morphism (R–colouring of Y ) f ∈ C(Y,R) the morphism f [,
which is given by cofreeness of C(R), factors through mQ. Equivalently, we have
that (Y, βY ) ||=mSR if every h ∈ coalg(B)(Y,C(R)) factors through mSR , i.e.,
there exists gh ∈ coalg(B)(Y,SR) such that the following diagram commutes:

C(R)

SR

Y

mSRgh

∀h

Assuming that the cofree V –object on R colours C(R) ∈ coalg(B) exists, we define
the category coeq(B,R) of coequations for B on R colours whose objects are mor-
phisms mSR ∈ coalg(B)(SR,C(R)) for some SR ∈ coalg(B) such that V (mSR)
is a monomorphism, and, a morphism from mSR to mS′R

in coeq(B,R) is a mor-
phism g ∈ coalg(B)(SR,S

′
R) such that mS′R

◦ g = mSR . Notice that morphisms in
coeq(B,R) are necessarily monomorphisms and that coeq(B,R) is isomorphic to
the slice category coalg(B) ↓ C(R) with the restriction that the objects are exactly
monomorphisms in C with codomain C(R).

The next example illustrates this definition of coequations for the case of deter-
ministic automata.

Example 79. For a given setA, consider the Set endofunctorB defined byB(X) =
XA, and consider the two–element set R = 2 of colours. Then the cofree B-
coalgebra on 2 colours is given by 2A

∗
= (2A

∗
, ς) where ς : 2A

∗ → (2A
∗
)A is given

2In a similar way as the case of equations, we choose monomorphisms in the base category C,
but other kind of monomorphisms can be considered in order to define a notion of coequations (e.g.,
regular monomorphisms, extremal monomorphisms, split monomorphisms.) Note that the forgetful
functor V : coalg(B) → C reflects monomorphisms since it is faithful, i.e., if m is a morphism in
coalg(B) such that V (m) is a monomorphism, then m is also a monomorphism.
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by right derivative, i.e., ς(L)(a) = La, where La(w) = L(aw), w ∈ A∗ and the
counit ε2 : 2A

∗ → 2 is given by ε2(L) = L(ε). Given a B–coalgebra Y = (Y, βY )
and a two–colouring c : Y → 2 of Y , the map c[ ∈ coalg(B)(Y, 2A

∗
) maps every

state y ∈ Y to the language c[(y) it accepts according to the colouring c, i.e.,
c[(y)(ε) = c(y) and c[(y)(aw) = c[(βY (y)(a))(w).

Coequations for B on R correspond to subsets of 2A
∗

that are closed under right
derivatives, i.e., subcoalgebras of 2A

∗
. Given any monomorphism (coequation) mS

with codomain 2A
∗

and a B-coalgebra (Y, βY ), we have that (Y, βY ) ||=mS if and
only if for every two–colouring c ∈ Set(Y, 2) of Y , the set of those languages
accepted by the states of the automaton (Y, βY ) with respect to c is contained in
Im(mS). This coincides with satisfaction of coequations as defined in [13].

Similarly to the previous example, the function ς ′ : 2A
∗ → (2A

∗
)A given by left

derivative ς ′(L)(a) = aL, where aL(w) = L(wa), w ∈ A∗, is such that (2A
∗
, ς ′) is

also a cofree B-coalgebra for which the corresponding notion of coequations are
subsets of 2A

∗
closed under left derivatives.

4.2 Lifting contravariant adjunctions

In this section, we study the notion of a contravariant adjunction and how to
lift contravariant adjunctions to categories of algebras and coalgebras, according
to [51, 56]. We instantiate this abstract approach in examples of constructions on
various kinds of automata.

Let C and D be categories and contravariant functors F : C ×−→D and G :
D×−→C that form a contravariant adjunction, i.e., F a`G (see Section 1.4). Let
B be an endofunctor on C and L be an endofunctor on D. That is, we have the
situation depicted in the following diagram:

C D

a`

F

B

G

L

In this setting, we are interested in lifting the adjunction to a contravariant adjunc-
tion between lifted functors F̂ : coalg(B) → alg(L) and Ĝ : alg(L) → coalg(B)

of F and G, respectively, meaning that UF̂ = FV and GU = V Ĝ, as in the follow-
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ing picture:

C D

coalg(B) alg(L)

a`
a`

F

B

G

L

F̂

Ĝ

UV (4.1)

where the vertical arrows U and V are forgetful functors. An important conse-
quence of such a lifting is that, if alg(L) has an initial object, then it is mapped by
Ĝ to a final object in coalg(B).

In [51, 2.14. Theorem] it is shown that a sufficient condition for such a lifting
is the existence of a natural isomorphism γ : GL⇒ BG. This is summarized by the
theorem below.

Theorem 80. Let F : C ×−→D and G : D×−→C be contravariant functors that form
a contravariant adjunction. Let B be an endofunctor on C and L be an endofunctor
on D. If there is a natural isomorphism γ : GL⇒ BG, then

1. The adjunction F a`G lifts to an adjunction as in Diagram (4.1), i.e., to
a contravariant adjunction between functors F̂ : coalg(B)×−→ alg(L) and
Ĝ : alg(L)×−→ coalg(B) such that UF̂ = FV and GU = V Ĝ, where the
functors U : alg(L)→ D and V : coalg(B)→ C are the forgetful functors.

2. If F,G form a duality then F̂ , Ĝ form a duality as well.

We will show a proof of the previous theorem to make the thesis self–contained.
To prove the theorem we will use the following.

Lemma 81. Let F : C ×−→D and G : D×−→C be contravariant functors that form
a contravariant adjunction with units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF . Let
B be an endofunctor on C and L be an endofunctor on D. Let γ : GL ⇒ BG be a
natural isomorphism. Define the natural transformation ρ : LF ⇒ FB as:

ρ = FBηGF ◦ Fγ−1F ◦ η
FG
LF .

Then, the following two diagrams commute:

GFB GLF

BGFB

(1)

Gρ

γFηGFB

BηGF

FGL FBG

LFGL

(2)

Fγ

ρGηFGL

LηFG
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Proof. Commutativity of (1) follows from the commutative diagram:

B BGF

GFB GFBGF

GLF

GLFGF GLF

c.a.a.

BηGF

ηGFB ηGFBGF

γ−1F

GFBηGF GFγ−1F

ηGFGLF IdGLF

GηFGLF

Gρ

And, commutativity of (2) follows from the commutative diagram:

L

LFG

FGL

FGLFG

FBG

FBGFG FBG

c.b.a.LηFG

ηFGL

ηFGLFG

FGLηFG

Fγ−1

Fγ−1FG

FBGηFG IdFBG

FBηGFG

ρG

where the following facts were used: a. Naturality of ηFG, b. Naturality of γ−1

and c. Triangle identity GηFG ◦ ηGFG = IdG.

Now we can prove Theorem 80.

Proof. Let ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF be the units of the contravariant
adjunction. Define the natural transformation ρ : LF ⇒ FB as

ρ = FBηGF ◦ Fγ−1F ◦ ηFGLF.

Define the functors F̂ : coalg(B)×−→ alg(L) and Ĝ : alg(L)×−→ coalg(B) on
objects as:

(Y
βY−→ BY )

F̂7−→ (LFY
ρY−→ FBY

F (βY )−→ FY )

(LX
αX−→ X)

Ĝ7−→ (GX
G(αX)−→ GLX

γX−→ BGX)

and F̂ = F and Ĝ = G on morphisms.
Clearly F̂ and Ĝ are liftings of F and G. Now to show that they form a con-

travariant adjunction we are going to show that the units ηFG and ηGF are the
units for the contravariant adjunction between F̂ and Ĝ. That is, we have to show
that if Y = (Y, βY ) ∈ coalg(B), then ηGFY ∈ coalg(B)

(
Y, ĜF̂ (Y)

)
and that if

X = (X,αX) ∈ alg(L) then ηFGX ∈ alg(L)
(
X, F̂ Ĝ(X)

)
. In fact,
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i) The property of ηGFY ∈ coalg(B)
(
Y, ĜF̂ (Y)

)
is the following commutative

diagram:

BGF (Y )

B(Y )

BηGFY

GLF (Y )
γF (Y )

GFB(Y )
GρY

GF (Y )
GF (βY )

Y

ηGFY

βY

ηGFB(Y )

nat. of ηGF (1)

ii) The property of ηFGX ∈ alg(L)
(
X, F̂ Ĝ(X)

)
is the following commutative dia-

gram:

FG(X)

X

ηFGX

FGL(X)
FG(αX)

FBG(X)
FγX

LFG(X)
ρG(X)

L(X)

LηFGX

αX

ηFGL(X)

nat. of ηFG(2)

Finally, in case that F and G form a duality, then the units ηFG and ηGF are natural
isomorphisms which means that the lifting is also a duality.

The functors F̂ : coalg(B)×−→ alg(L) and Ĝ : alg(L)×−→ coalg(B) in the
previous theorem are defined on objects as:

(Y
βY−→ BY )

F̂7−→ (LFY
ρY−→ FBY

F (βY )−→ FY )

(LX
αX−→ X)

Ĝ7−→ (GX
G(αX)−→ GLX

γX−→ BGX)

and on morphisms as F̂ = F and Ĝ = G. The natural transformation ρ : LF ⇒ FB
in the definition of F̂ is defined as the mate of the inverse γ−1 : BG⇒ GL:

ρ
def.
= FBηGF ◦ Fγ−1F ◦ ηFGLF,

by using the units ηGF and ηFG of the adjunction. Natural transformations of the
form ρ : LF ⇒ FB and the definition of F̂ form the heart of the approach to coal-
gebraic modal logic based on contravariant adjunctions/dualities (see, e.g., [59,
57, 68, 24]). There is a one-to-one correspondence between such natural trans-
formations and those of the form BG ⇒ GL, using the above construction (note
that we use a natural transformation BG ⇒ GL and not the inverse of a natural
transformation as γ above). We are only interested in the case where the natural
transformation BG ⇒ GL is an isomorphism, to lift adjunctions, as in [60]. For
notational convenience, the direction in γ : GL⇒ BG is reversed here.

In the rest of this section we provide examples and applications of Theorem 80
and the setting in Diagram (4.1).
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Example 82 (From [60, Example 4]). For a fixed set A consider the following
situation:

Set Set

F (X) = G(X) = 2X

L(X) = (A×X) + 1

B(Y ) = 2× Y A

γX : 2A×X+1 → 2× (2X)A

a`

F

B

G

L

Here L-algebras are pointed deterministic automata on A (cf. Example 78) and B-
coalgebras are two–coloured deterministic automata on A (cf. Example 79). The
contravariant functors F and G form a contravariant adjunction with unit ηFG =
ηGF : IdSet ⇒ GF such that ηFGX (x)(f) = f(x), x ∈ X ∈ Set and f ∈ 2X , which,
by Theorem 80, can be lifted to an adjunction between F̂ and Ĝ. The isomorphism
γ : GL ⇒ BG is defined for any X as the function γX : 2A×X+1 → 2 × (2X)A

such that γX(f) = (f(·), λa. λx.f(a, x)). Note that the natural transformation ρ

is given by the function ρY : A × 2Y + 1 → 22×Y
A

such that ρY (·)(j, f) = j and
ρY (a, L)(j, f) = L(f(a)).

Given a B-coalgebra (Y, 〈c, βY 〉), with c ∈ Set(Y, 2) and βY ∈ Set(Y, Y A), we
have that F̂ (Y, 〈c, βY 〉) = (2Y , [α, i]) where α : A × 2Y → 2Y and i : 1 → 2Y are
functions defined as follows:

i(·) = c−1({1}) = accepting states of (Y, 〈c, βY 〉),
α(a, Z) = {y ∈ Y | βY (y)(a) ∈ Z}.

Given an L-algebra (X, [αX , i]), with i ∈ Set(1, X) and αX ∈ Set(A ×X,X), we
have that Ĝ(X, [αX , i]) = (2X , 〈c, β〉) where the functions c : 2X → 2 and β : 2X →
(2X)A are defined as:

c(Z) = 1 iff i(·) ∈ Z
β(Z)(a) = {x ∈ X | αX(a, x) ∈ Z}

Recall from Example 78 that the initial L-algebra is given by (A∗, [η1, %]), where
A∗ is the free monoid with generators A and identity element ε, η1 : 1 → A∗ is
the empty word ε and % : A × A∗ → A∗ is the concatenation function given by
%(a,w) = aw. Because of the contravariant adjunction, the initial L-algebra is
sent by Ĝ to the final B-coalgebra, given by Ĝ(A∗, [η1, %]) = (2A

∗
, 〈ε2, ς〉) where

ε2(L) = L(ε) and ς(L)(a)(w) = L(aw). Note that the final B-coalgebra is not sent
by F̂ to the initial L-algebra.

Example 83. For a fixed set A consider the following situation:

CABA Set

F (Y ) = CABA(Y, 2)

G(X) = 2X

L(X) = (A×X) + 1

B(Y ) = 2× Y A

γX : 2A×X+1 → 2× (2X)A

∼=

F

B

G

L
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The contravariant functors F and G form a contravariant adjunction, in fact a
duality, whose units ηFG : IdSet ⇒ FG and ηGF : IdCABA ⇒ GF , which are natural
isomorphisms, are given by ηFGX (x)(f) = f(x) and ηGFY (y)(h) = h(y). By Theorem
80, this duality can be lifted to a duality between F̂ and Ĝ if we consider the
canonical natural isomorphism γ : GL⇒ BG defined for every X as the morphism
γX : 2A×X+1 → 2 × (2X)A such that γX(f) = (f(·), λa. λx.f(a, x)). Note that the
natural transformation ρ is given by the function ρY : A×CABA(Y, 2)+1→ CABA(2×
Y A, 2) defined as ρY (·)(i, f) = i and ρY (a, h)(i, f) = h(f(a)). That is, ρY (·) = π1,
where π1 ∈ CABA(2× Y A, 2) is such that π1(i, f) = i, and ρY (a, h) = h ◦ πa, where
πa ∈ CABA(2× Y A, 2) is such that πa(i, f) = f(a).

Given aB-coalgebra (Y, 〈c, βY 〉), we have that F̂ (Y, 〈c, βY 〉) = (CABA(Y, 2), [α, i])
where the functions α : A× CABA(Y, 2)→ CABA(Y, 2) and i : 1→ CABA(Y, 2) are de-
fined as follows:

i(·) = c and α(a, h) = h ◦ πa ◦ βY

In particular, if P ⊆ 2A
∗

is a preformation of languages [13, Definition 11], i.e., P ∈
CABA and it is closed under left and right derivatives 3, then (P, 〈ε2, ς ′〉) ∈ coalg(B)

where ε2(L) = L(ε) and ς ′(L)(a) = aL. In this case, F̂ (P, 〈ε2, ς ′〉) = free(P ) which
is the quotient A∗/θ where θ is the set, in fact congruence, of all equations satisfied
by the automaton (P, ς), where ς(L)(a) = La (see [13]).

Given an L-algebra (X, [αX , i]), we have that Ĝ(X, [αX , i]) = (2X , 〈c, β〉) where
the CABA morphisms c : 2X → 2 and β : 2X → (2X)A are defined as

c(Z) = 1 iff i(·) ∈ Z
β(Z)(a) = {x ∈ X | αX(a, x) ∈ Z}.

In particular, if θ is a congruence of the monoid A∗ then (A∗/θ, [fθ, ε/θ]) ∈ alg(L)

where fθ(a,w/θ) = aw/θ. In this case, Ĝ(A∗/θ, [fθ, ε/θ]) ∼= cofree(A∗/θ) which
is the minimum set of coequations that the automaton (A∗/θ, f ′θ) satisfies, where
f ′θ(a,w/θ) = wa/θ (see [13]).

Similarly to the previous example, the initial L-algebraA∗ = (A∗, [η1, %]), where
η1 = ε and %(a,w) = aw, is sent by Ĝ to the final B-coalgebra 2A

∗
= (2A

∗
, 〈ε2, ς〉),

where ε2(L) = L(ε) and ς(L)(a)(w) = L(aw). Also, because the contravariant
adjunction is a duality, the finalB-coalgebra 2A

∗
is sent by F̂ to the initial L-algebra

A∗. We will explore this case further in Section 4.3 to get dualities between sets of
equations and sets of coequations.

We can also show that in the setting of the previous example we can get the
semantics of an alternating automaton. In fact, consider the adjunction PP a U
where PP : Set → CABA is the composition of the contravariant powerset functor
with itself and U : CABA → Set is the forgetful functor. Observe that, for any
function f : X → Y , PP(f) is defined as PP(f)(S) = {A ⊆ Y | f−1(A) ∈ S}. The

3P ⊆ 2A
∗

is closed under right (left) derivatives if for every L ∈ P and a ∈ A, La ∈ P (aL ∈ P ).
Here La(w) = L(aw), and aL(w) = L(wa), w ∈ A∗.
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unit of the adjunction η : IdSet ⇒ UPP is given by:

ηX :X → PP(X)

x 7→ {S ⊆ X | x ∈ S}

i.e., ηX(x) is the principal filter ↑{x}. The universal property for η that character-
izes the adjunction can be verified as follows: for any C ∈ Set, D ∈ CABA, and f ∈
Set(C,UD), the unique morphism f ] ∈ CABA(PP(C), D) such that U(f ]) ◦ ηC = f
is given by:

f ](S) =
∨
R∈S

∧
q∈R

f(q)

whose existence and uniqueness follows by applying f ] to the identity:

S =
⋃
R∈S

⋂
q∈R

ηC(q).

Given an alternating automaton 〈c, β〉 : X → 2 × (PP(X))A we can define the
semantics of 〈c, β〉 by using the adjunction PP a U and the setting given in the
previous example to define the language L(x) ∈ 2A

∗
accepted by x ∈ X as L(x) :=

(c̃[ ◦ ηX)(x) by using the following commutative diagram:

X

2× (PP(X))A

PP(X) 2A
∗

2× (2A
∗
)A

ηX

〈c, β〉

2× (c̃[)A

c̃[

〈c, β〉] =: 〈c̃, β̃〉 〈ε2, ς〉

from the definition of 〈c̃, β̃〉 := 〈c, β〉] we have that:

〈c̃, β̃〉(S) =
∨
R∈S

∧
q∈R
〈c, β〉(q)

this means that
c̃(S) = 1 ⇔ c ∈ S

and that, for any K ⊆ X we have that

K ∈ β̃(S)(a) ⇔ ∃R ∈ S ∀q ∈ R K ∈ β̃(ηX(q))(a).

From this, we have that the language L(x) is defined as:

ε ∈ L(x)⇔ c(x) = 1

aw ∈ L(x)⇔ ∃R ∈ β(x)(a) ∀q ∈ R w ∈ L(q)

which is the expected semantics for an alternating automaton.
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Example 84. Let A be a fixed set and consider the following situation:

VecK VecK

F (X) = G(X) = VecK(X,K)

L(X) = K + (A ·X)

B(Y ) = K× Y A

γX : (K +A ·X)∂ → K× (X∂)A

a`

F

B

G

L

Here X∂ := VecK(X,K), the dual space of X, and A · X :=
∐
a∈AX. We have

that the contravariant functors F and G form a contravariant adjunction with
unit ηGFX = ηFGX : X −→ VecK(VecK(X,K),K) given by ηFGX (x)(ϕ) = ϕ(x).
By Theorem 80, this contravariant adjunction can be lifted to a contravariant
adjunction between F̂ and Ĝ if we consider the canonical natural isomorphism
γ : GL ⇒ BG defined for every X as the map γX : (K + A · X)∂ → K × (X∂)A

such that γX(ϕ) = (ϕ(1), λa. λx.ϕ(a, x)). Note that the natural transformation ρ is
given by the linear transformation ρY : K + A · Y ∂ → (K× Y A)∂ which is defined
on the canonical basis as ρY (1)(k, f) = k and ρY (a, ϕ)(k, f) = (ϕ ◦ f)(a).

Given aB-coalgebra (Y, 〈c, βY 〉), we have that F̂ (Y, 〈c, βY 〉) = (Y ∂ , [i, α]) where
i : K→ Y ∂ and α : A ·Y ∂ → Y ∂ are linear maps which are defined on the canonical
basis as:

i(1)(y) = c(y)

α(a, ϕ)(y) = (ϕ ◦ βY (y))(a) = ϕ(βY (y)(a))

In particular, if S ⊆ KA∗ is a subspace such that for every f ∈ S and a ∈ A,
fa, af ∈ S, where fa(w) = f(aw) and af(w) = f(wa), w ∈ A∗, then we have
that (S, 〈ε2, ς ′〉) ∈ coalg(B) where ε2(f) = f(ε) and ς ′(f)(a) = af . In this case,
F̂ (S, 〈ε2, ς ′〉) ∼= free(S) which is the quotient V (A∗)/θ where θ is the set, in fact
linear congruence, of all linear equations satisfied by the automaton (S, ς). Here
V (A∗) = {φ : A∗ → K | supp(φ) is finite}, where supp(φ) = {w ∈ A∗ | φ(w) 6= 0}
is the support of φ, and the function ς is defined as ς(f)(a) = fa (see [81]).

Given an L-algebra (X, [i, αX ]), we have that Ĝ(X, [i, αX ]) = (X∂ , 〈c, β〉) where
the linear maps c : X∂ → K and β : X∂ → (X∂)A are defined as

c(ϕ) = ϕ(i(1)) and β(ϕ)(a)(x) = ϕ(αX(a, x)).

In particular, if θ ⊆ V (A∗) × V (A∗) is a linear congruence on V (A∗), then we
have that (V (A∗)/θ, [fθ, ε/θ]) ∈ alg(L), where fθ(a, φ/θ) = aφ/θ, and we have
Ĝ(V (A∗)/θ, [fθ, ε/θ]) ∼= cofree(V (A∗)/θ) which is the minimum set of coequa-
tions (power series) satisfied by the automaton (V (A∗)/θ, f ′θ), where f ′θ(a, φ/θ) =
(φa)/θ (see [81]).

Notice that the contravariant adjunction is not a duality, but if we restrict to
vector spaces of finite dimension then we get a duality. In the latter case there is
no initial L-algebra or, equivalently, there is no final B-coalgebra.
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4.3 Duality between equations and coequations

We defined equations as epimorphisms from a free U–object and coequations as
monomorphisms into a cofree V –object. In the previous section, we have seen how
to relate initial algebras and final coalgebras by lifting contravariant adjunctions
and dualities. In this section, we describe how to apply these liftings to obtain a
correspondence between equations and coequations.

If we lift a contravariant adjunction between contravariant functors F and G to
a contravariant adjunction F̂ : coalg(B)×−→ alg(L) and Ĝ : alg(L)×−→ coalg(B)

as in the previous section, then the functor Ĝ sends the initial L-algebra to the final
B-coalgebra, and Ĝ sends epimorphisms to monomorphisms. As a consequence,
equations are sent by Ĝ to coequations. However, F̂ does not map coequations to
equations, in general.

In order to obtain a full correspondence between equations and coequations,
suppose that the contravariant adjunction between F and G is a duality (and that
there is a natural isomorphism γ : GL ⇒ BG). Then, by Theorem 80, the duality
between F and G lifts to a duality between F̂ and Ĝ. In this case, we can add
another level to the picture in (4.1), yielding a duality between equations and
coequations:

C D

coalg(B) alg(L)

coeq(B,G(S)) eq(L, S)

∼=

∼=

∼=

F

B

G

L

F̂

Ĝ

F̂

Ĝ
U ′V ′

UV

(4.2)

where eq(L, S) and coeq(B,G(S)) are the categories of equations for L on S gen-
erators and coequations for B on G(S) colours, respectively, U and V are forgetful
functors, and U ′ and V ′ are the canonical functors defined as U ′(eX) = X and
V ′(mY ) = Y on objects and U ′(f) = f and V ′(g) = g on morphisms. From this,
we have the following result.

Theorem 85. Let F : C ×−→D andG : D×−→C be contravariant functors that form a
duality. LetB be an endofunctor on C, L be an endofunctor onD with an object S inD
such that the free U–object F(S) ∈ alg(L) over S ∈ D exists, where U : alg(L)→ D
is the forgetful functor. If there is a natural isomorphism γ : GL⇒ BG then:
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1. The duality between F and G lifts to a duality between contravariant func-
tors F̂ : coeq(B,G(S))×−→ eq(L, S) and Ĝ : eq(L, S)×−→ coeq(B,G(S)), as
in Diagram (4.2), where F̂ (Y, βY ) = (F (Y ), F (βY ) ◦ ρY ) and Ĝ(X,αX) =
(G(X), γX ◦ G(αX)), for (Y, βY ) ∈ coalg(B) and (X,αX) ∈ alg(L), and
F̂ (f) = F (f) and Ĝ(g) = G(g) for morphisms f in coalg(B) and g in alg(L),
and the natural transformation ρ : LF ⇒ FB is defined as:

ρ = FBηGF ◦ Fγ−1F ◦ ηFGLF.

where ηGF : IdC ⇒ GF and ηFG : IdD ⇒ FG are the units of the contravari-
ant adjunction.

2. Given eP ∈ eq(L, S), mQ ∈ coeq(B,G(S)), (X,αX) ∈ alg(L), and (Y, βY ) ∈
coalg(B) we have:

i) (X,αX) |= eP if and only if Ĝ(X,αX) ||= Ĝ(eP ).

ii) F̂ (Y, βY ) |= F̂ (mQ) if and only if (Y, βY ) ||=mQ.

As an application of the previous theorem we have the following.

Example 86. (cf. Example 83) For a fixed set A consider the following situation:

CABA Set

F (Y ) = CABA(Y, 2)

G(X) = 2X

L(X) = A×X
B(Y ) = Y A

γX : 2A×X → (2X)A

∼=

F

B

G

L

If we put S = 1, then we get a duality between eq(L, 1), whose objects can be iden-
tified with left congruences of A∗, and coeq(B, 2), whose objects can be identified
with subalgebras Q ⊆ 2A

∗
in CABA that are closed under right derivatives. The pre-

vious fact was obtained by considering the free U–object on S A∗ = (A∗, %) where
%(a,w) = aw. Note that we can also get a duality between right congruences and
subalgebras of 2A

∗
in CABA that are closed under left derivatives by considering

(A∗, %′) such that %′(a,w) = wa instead of (A∗, %).
Additionally, from this setting, if we consider congruences of A∗ and subalge-

bras of 2A
∗

that are closed both under left and right derivatives, we can derive the
duality between equations and coequations that was shown in [13, Theorem 22]
and in Section 2.3. We will come back to this situation in a more general setting in
Section 4.5.1 and also in a slightly different setting in Section 4.5.2.

Example 87. (cf. Section 3.5) For a fixed set A and a finite field K consider the
following situation:
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StVecK VecK

F (Y ) = StVecK(Y,K)

G(X) = VecK(X,K)

L(X) = A ·X
B(Y ) = Y A

γX : VecK(A ·X,K)→ VecK(X,K)A

∼=

F

B

G

L

where the isomorphism γ is obtained from the universal property of the coprod-
uct A · X =

∐
a∈A

X. Now, if we put S = 1, then we get a duality between
eq(L, 1), whose objects can be identified with left linear congruences of V (A∗), and
coeq(B, 2), whose objects can be identified with subobjects Q of VecK(V (A∗),K)
in StVecK that are closed under right derivatives. The previous fact was obtained
by considering the free U–object on S V (A∗) = (V (A∗), $) where $ : A ·V (A∗)→
V (A∗) in VecK is such that ($ ◦ ιa)(s1w1 + · · · + snwn) = s1aw1 + · · · + snawn,
where ιa : V (A∗) → A · V (A∗) is the a–th inclusion. Note that we can also get
a duality between right linear congruences and subobjects of VecK(V (A∗),K) in
StVecK that are closed under left derivatives by considering (V (A∗), $′) such that
($′ ◦ ιa)(s1w1 + · · ·+ snwn) = s1w1a+ · · ·+ snwna instead of (V (A∗), $).

Additionally, from this setting, if we consider linear congruences of V (A∗) and
subobjects of VecK(V (A∗),K) in StVecK that are closed both under left and right
derivatives we get the duality proved in Section 3.5.

Example 88. In this example, we explicitly show that if the contravariant adjunc-
tion is not a duality then sets of coequations are not always sent to sets of equations.
Let A be the set A = {a, b} and consider the situation:

Set Set

F (X) = G(X) = 2X

L(X) = A×X
B(Y ) = Y A

γX : 2A×X → (2X)A

a`

F

B

G

L

In this case, consider the set S = 1 of generators. The free U–object in alg(L)
over S is given by A∗ = (A∗, %), where %(a,w) = aw, and unit η1 = ε, where
U : alg(L)→ Set is the forgetful functor. The cofree V –object onG(S) = 2 colours
is the coalgebra 2A

∗
= (2A

∗
, ς) = Ĝ(A∗), where ς(L)(a)(w) = L(aw), and counit

ε2(L) = L(ε), where V : coalg(B) → Set is the forgetful functor. Now, consider
the element mQ ∈ coeq(B, 2) where Q is the B–coalgebra Q = ({∅, A∗}, β) such
that for every a ∈ A, β(∅)(a) = ∅ and β(A∗)(a) = A∗, and mQ is the inclusion map
mQ : Q→ 2A

∗
(note that mQ ∈ coalg(B)(Q, 2A

∗
) since ς ◦mQ = (mQ)A ◦β). Now,

the codomain of F̂ (mQ) is (2Q, α) where α(a, f) = α(b, f) = f for all f ∈ 2Q (this
definition of α follows from Example 82).

We have that 2Q = (2Q, α) cannot be a homomorphic image of A∗. In fact, if
there exists an epimorphism e ∈ alg(L)(A∗, 2Q) then there is a right congruence θ
of A∗ such that (A∗/θ, fθ) ∼= (2Q, α) which means that A∗/θ has four equivalence
classes and for each equivalence class w/θ ∈ A∗/θ we have that w/θ = aw/θ =
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bw/θ, which is a contradiction since the last equalities imply that there is only one
equivalence class.

4.3.1 Equations for coalgebras

In this section, we define equations for coalgebras by using liftings of contravariant
adjunctions. The concepts presented here can be dualized to define coequations
for algebras.

Assume we have a contravariant adjunction between functors F : C ×−→D and
G : D×−→C which is lifted to a contravariant adjunction between contravariant
functors F̂ : coalg(B)×−→ alg(L) and Ĝ : alg(L)×−→ coalg(B) for an endofunc-
tor B on C and an endofunctor L on D. Given an equation eP ∈ eq(L, S) for some
S in D, we define, for a given coalgebra (Y, βY ) in coalg(B), (Y, βY ) |= eP , and
say that the coalgebra (Y, βY ) satisfies the equation eP , as:

(Y, βY ) |= eP
def⇐⇒ F̂ (Y, βY ) |= eP .

Notice that if F̂ and Ĝ form a duality then the property F̂ (Y, βY ) |= eP is equivalent
to (Y, βY ) ||= Ĝ(eP ). One could be tempted to use (Y, βY ) ||= Ĝ(eP ) as a definition
for (Y, βY ) |= eP since Ĝ(eP ) ∈ coeq(B,G(S)) but we prefer to avoid this since
the dual argument is not true in general, i.e., given mQ ∈ coeq(B,G(S)), F̂ (mQ)
is not always in eq(L, S), as it was shown in Example 88.

Now we illustrate the previous definition of satisfaction of equations for coalge-
bras in the following example.

Example 89. Consider the situation given in Example 82 and let S = ∅. Then we
have that for a B-coalgebra Y = (Y, 〈c, βY 〉), c ∈ Set(Y, 2) and βY ∈ Set(Y, Y A),
and a left congruence θ on A∗:

(Y, 〈c, βY 〉) |= θ ⇔ ∀(u, v) ∈ θ u(i(·)) = v(i(·)) in F̂ (Y, 〈c, βY 〉)
⇔ ∀(u, v) ∈ θ {y ∈ Y | c(u(y)) = 1} = {y ∈ Y | c(v(y)) = 1}.

In words, a left congruence θ on A∗ is satisfied by (Y, 〈c, βY 〉) if for every pair
(u, v) ∈ θ the set of states that accept u coincides with the set of states that accept
v.

In Example 78 we also defined satisfaction of left congruences for deterministic
automata, as the canonical notion that arises by viewing (the transition structure
of) automata as algebras. According to this, if we consider (Y, βY ) as an A× IdSet–
algebra, we have a direct definition for (Y, βY ) |= θ. We conclude this example by
showing the relation between (Y, 〈c, βY 〉) |= θ and (Y, βY ) |= θ.

Consider the coloured automaton (Y, 〈c, βY 〉) on A = {a} given by:

y3 ay2
ay1

a
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If we denote by 〈u = v〉 the least left congruence containing the pair (u, v) ∈
A∗ ×A∗, then we have that (Y, 〈c, βY 〉) |= 〈a = aa〉 since

{y ∈ Y | c(a(y)) = 1} = {y1, y2, y3} = {y ∈ Y | c(aa(y)) = 1}

but (Y, βY ) 6|= 〈a = aa〉 since a(y1) = y2 6= y3 = aa(y1). We now prove that
(Y, βY ) |= 〈u = v〉 implies (Y, 〈c, βY 〉) |= 〈u = v〉 and that the converse holds if
(Y, 〈c, βY 〉) is minimal.

Proposition 90. Let (Y, 〈c, βY 〉) be a two–coloured automaton on A, and let (u, v) ∈
A∗ ×A∗. Then (Y, βY ) |= 〈u = v〉 implies (Y, 〈c, βY 〉) |= 〈u = v〉.

Proof. If (Y, βY ) |= 〈u = v〉 then, for any y ∈ Y we have that u(y) = v(y), thus

{y ∈ Y | c(u(y)) = 1} = {y ∈ Y | c(v(y)) = 1}

which means that (Y, 〈c, βY 〉) |= 〈u = v〉.

A coalgebra Y = (Y, 〈c, βY 〉) ∈ coalg(B) is minimal if the unique observability
B–coalgebra morphism oc ∈ coalg(B)(Y, 2A

∗
) is injective.

Proposition 91. Let u, v ∈ A∗ and let (Y, 〈c, βY 〉) be a minimal B-coalgebra. Then

(Y, βY ) |= 〈u = v〉 if and only if (Y, 〈c, βY 〉) |= 〈u = v〉.

Proof. The direction (⇒) was proved in Proposition 90. To prove the other direc-
tion, assume that (Y, 〈c, βY 〉) |= 〈u = v〉 and let us prove that (Y, βY ) |= 〈u = v〉.
In fact, assume by contradiction that there exists y′ ∈ Y such that u(y′) 6= v(y′).
As (Y, 〈c, βY 〉) is minimal there exists w ∈ A∗ such that c(wu(y′)) 6= c(wv(y′))
implying that

{y ∈ Y | c(wu(y)) = 1} 6= {y ∈ Y | c(wv(y)) = 1}

which contradicts the fact that (Y, 〈c, βY 〉) |= 〈u = v〉 since (wu,wv) ∈ 〈u = v〉
because 〈u = v〉 is a left congruence.

This completes our example of equations for coalgebras.

4.4 Lifting contravariant adjunctions to Eilenberg–
Moore categories

In this section, we extend the results from the previous sections, on lifting ad-
junctions and dualities, to the case that the endofunctor L is a monad and the
endofunctor B is a comonad. We state the main theorem for lifting contravariant
adjunctions to Eilenberg–Moore categories (Theorem 92), and obtain a theorem
for dualities between equations and coequations as a consequence. Further, given
either a monad or a comonad, we show how to derive a corresponding canonical
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comonad or monad, respectively. We start by recalling the definition of Eilenberg–
Moore categories, see, e.g., [9].

Given a category D and a monad T = (T, η, µ) on D, we denote the category
of Eilenberg–Moore T–algebras, also called T–algebras, and their homomorphisms
by Alg(T). Note the calligraphic difference between alg(T ) and Alg(T). Objects
in Alg(T) are pairs X = (X,αX) where X is an object in D and αX ∈ D(TX,X)
is a morphism αX : TX → X in D that satisfies the identities αX ◦ ηX = idX and
αX ◦ T (αX) = αX ◦ µX . Note that every object in Alg(T) is an object in alg(T )
but the converse is does not hold in general. A homomorphism from a T–algebra
X1 = (X1, α1) to a T–algebra X2 = (X2, α2) is a morphism h ∈ D(X1, X2) such
that h ◦ α1 = α2 ◦ T (h).

Dually, given a category C and a comonad B = (B, ε, δ) on C, Coalg(B) denotes
the category of Eilenberg–Moore B–coalgebras, also called B–coalgebras. Note the
calligraphic difference between coalg(B) and Coalg(B). Objects in Coalg(B) are
pairs Y = (Y, βY ) where Y is an object in C and βY ∈ C(Y,BY ) satisfies the
identities εY ◦ βY = idY and B(αY ) ◦ αY = δY ◦ αY . Note that every object in
Coalg(B) is an object in coalg(B) but the converse is does not hold in general. A
homomorphism from a B–coalgebra Y1 = (Y1, β1) to a B–coalgebra Y2 = (Y2, β2)
is a morphism h ∈ C(Y1, Y2) such that β2 ◦ h = B(h) ◦ β1.

Assume a contravariant adjunction between F : C ×−→D and G : D×−→C, a
monad L = (L, η, µ) on D, and a comonad B = (B, ε, δ) on C, as summarized in the
following picture:

C D

a`

F

B = (B, ε, δ)

G

L = (L, η, µ)

Then we can ask under what conditions the contravariant adjunction can be lifted
to functors F̂ : Coalg(B)×−→ Alg(L) and Ĝ : Alg(L)×−→ Coalg(B) on the Eilen-
berg–Moore categories. Similar to the approach in Section 4.2, we require a natural
isomorphism γ : GL ⇒ BG, but for the current case we also require γ to satisfy
certain conditions that relate the monad L and the comonad B.

Theorem 92. Let F : C ×−→D and G : D×−→C be contravariant functors that form
a contravariant adjunction. Let L = (L, η, µ) be a monad on D, and B = (B, ε, δ)
a comonad on C. If there is a natural isomorphism γ : GL ⇒ BG such that the
following two diagrams commute:

G BG

GL

εG

Gη γ

BGL GLL GL

BBG BG

γL Gµ

Bγ

δG

γ (4.3)



4.4. Lifting contravariant adjunctions to Eilenberg–Moore categories 95

then F andG lift to functors F̂ : Coalg(B)×−→ Alg(L) and Ĝ : Alg(L)×−→ Coalg(B),
respectively, such that F̂ and Ĝ form a contravariant adjunction. Additionally, if F
and G form a duality then F̂ and Ĝ form a duality.

Proof. Follows from [58] (see the contravariant adjunction as an adjunction be-
tween D and Cop with G a F . In this case, having a comonad on C is the same
as having a monad in Cop). By [58, Lemma 1], using the fact that γ−1 is a natu-
ral transformation from BG to GL, there exists a functor Ĝ : Alg(L)×−→ Coalg(B)
that is a lifting. By [58, Theorem 4], using the fact that γ is a natural isomorphism,
there exists F̂ : Coalg(B)×−→ Alg(L) such that F̂ a` Ĝ, which is necessarily a lift-
ing (up to isomorphism).

Remark. We mention the explicit definition of the functors Ĝ : Alg(L)×−→ Coalg(B)

and F̂ : Coalg(B)×−→ Alg(L) in the theorem above. In fact, define ρ : LF ⇒ FB
as ρ = FBηGF ◦ Fγ−1F ◦ ηFGLF , where ηGF and ηFG are the units of the con-
travariant adjunction. Then, the definition of F̂ and Ĝ are given by F̂ (Y, βY ) =

(F (Y ), F (βY ) ◦ ρY ) and Ĝ(X,αX) = (G(X), γX ◦G(αX)) on objects and F̂ = F

and Ĝ = G on morphisms.
From the previous theorem, we derive dualities between equations and coequa-

tions in Eilenberg–Moore categories, which follows in a similar way as in Section
4.3. In this case, we do not need to explicitly assume the existence of free algebras
since the algebra LS = (L(S), µS) ∈ Alg(L) is the free U–object over S, where
U : Alg(L) → D is the forgetful functor. In fact, we have the adjunction L a U ,
where L : D → Alg(L) is defined as L(X) = LX on objects, L(f) = L(f) on
morphisms. Note that the unit for the adjunction L a U is the unit η of the monad
L and the extension f ] ∈ Alg(L)(LS,A) of a morphism f ∈ D(S,A) is given by
f ] = αA ◦Lf . Dually, the coalgebra BR = (B(R), δR) ∈ Coalg(B) is the cofree V –
object on R, where V : Coalg(B)→ C is the forgetful functor. In fact, we have that
the functor B : C → Coalg(B) defined as B(Y ) = BY on objects and B(g) = B(g)
on morphisms is such that V a B. Note that the counit for the adjunction V a B
is the counit ε of the comonad B and the map f [ ∈ Alg(L)(A,BR) associated to a
morphism f ∈ C(A,R) is given by f [ = Bf ◦ βA. In this case, for an object S ∈ D,
we define the category Eq(L, S) as follows:

Objects of Eq(L, S): epimorphisms eX ∈ Alg(L)(LS,X), for some X ∈ Alg(L).

Arrows of Eq(L, S): for eX1
, eX2

∈ Eq(L, S), a morphism

f ∈ Eq(L, S)(eX1
, eX2

) is a morphism f ∈ Alg(L)(X1,X2)

such that the following diagram commutes:

LS X1

X2

eX1

eX2 f
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Dually, for an object R ∈ C, we define the category Coeq(B, R) whose objects
are monomorphisms mY ∈ Coalg(B)(Y,BR), for some Y = (Y, βY ) ∈ Coalg(B),
and a morphism g ∈ Coeq(B, R)(mY1

,mY2
) is a morphism g ∈ Coalg(B)(Y1,Y2)

such that mY2
◦ g = mY1

. With these definitions we have the following.

Theorem 93. Let F : C ×−→D and G : D×−→C be contravariant functors that form
a duality. Let L = (L, η, µ) be a monad on D, and B = (B, ε, δ) a comonad on C. If
there is a natural isomorphism γ : GL ⇒ BG making the diagrams (4.3) commute,
then:

1. The duality between F and G lifts to a duality between contravariant functors
F̂ : Coeq(B, G(S))×−→ Eq(L, S) and Ĝ : Eq(L, S)×−→ Coeq(B, G(S)), where
F̂ (Y, βY ) = (F (Y ), F (βY ) ◦ ρY ) and Ĝ(X,αX) = (G(X), γX ◦ G(αX)), for
(Y, βY ) ∈ Coalg(B) and (X,αX) ∈ Alg(L), and F̂ (f) = F (f) and Ĝ(g) =
G(g) for morphisms f in Coalg(B) and g in Alg(L), and the natural transfor-
mation ρ : LF ⇒ FB is defined as:

ρ = FBηGF ◦ Fγ−1F ◦ ηFGLF.

where ηGF : IdC ⇒ GF and ηFG : IdD ⇒ FG are the units of the contravari-
ant adjunction.

2. Given eP ∈ Eq(L, S), mQ ∈ Coeq(B, G(S)), (X,αX) ∈ Alg(L), and (Y, βY ) ∈
Coalg(B) we have that:

i) (X,αX) |= eP if and only if Ĝ(X,αX) ||= Ĝ(eP ).

ii) F̂ (Y, βY ) |= F̂ (mQ) if and only if (Y, βY ) ||=mQ.

Now, it is worth mentioning that the converse of Theorem 92 also holds.

Theorem 94. Let F : C ×−→D and G : D×−→C be contravariant functors that form
a contravariant adjunction. Let L = (L, η, µ) be a monad on D, and B = (B, ε, δ) a
comonad on C. Assume that F lifts to a functor F̂ : Coalg(B)×−→ Alg(L) and G lifts
to a functor Ĝ : Alg(L)×−→ Coalg(B), such that F̂ and Ĝ form a contravariant ad-
junction. Then, there is a natural isomorphism γ : GL⇒ BG such that the following
two diagrams commute:

G BG

GL

?

εG

Gη γ

BGL GLL GL

BBG BG

??

γL Gµ

Bγ

δG

γ

Proof. Let U : Alg(L)→ D and V : Coalg(B)→ C be the forgetful functors. Define
the functors L : D → Alg(L) and B : C → Coalg(B) on objects as L(X) = LX =
(L(X), µX) and B(Y ) = BY = (B(Y ), δY ), and on morphisms as L(f) = L(f)
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and B(g) = B(g). Note that L and B are well–defined on objects since L is a
monad and B is a comonad, respectively, and they are well–defined on morphisms
by naturality of µ and naturality of δ, respectively. Now, by using the fact that L is
a monad and B is a comonad, resectively, we have that L a U and V a B. Note
that the unit of the adjunction L a U is η and the counit of the adjunction V a B
is ε. Hence we have the following (not necessarily commutative) diagram:

C D

Coalg(B) Alg(L)

a`
a`

a`

F

B = (B, ε, δ)

G

L = (L, η, µ)

F̂

Ĝ

B L UV

Let ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF be the units of the contravariant
adjunction F a`G and let ηĜF̂ : IdCoalg(B) ⇒ ĜF̂ and ηF̂ Ĝ : IdAlg(L) ⇒ F̂ Ĝ be the
units of the contravariant adjunction F̂ a` Ĝ. Now, as the contravariant adjunction
F a`G lifts to F̂ a` Ĝ, the we have that:

GU = V Ĝ, FV = UF̂ , UηF̂ Ĝ = ηFGU, and V ηĜF̂ = ηGFV

By composing the adjunctions, we have that ĜLa`UF̂ and BGa`FV which, by
using the fact that UF̂ = FV , implies that ĜL ∼= BG, by uniqueness of adjunctions.
Let α : ĜL ⇒ BG be a natural isomorphism. By construction of α, we have the
following commutative diagrams:

BV IdCoalg(B) ĜF̂

BGFV ĜLUF̂

†

ηBV ηĜF̂

BηGFV

αUF̂

ĜεLU F̂

LIdCFG

UF̂ ĜLFBG

††
ηηFG

UηF̂ ĜL

FV α

FεG

where ηBV : IdCoalg(B) ⇒ BV is the unit of the adjunction V a B and εLU : LU ⇒
IdAlg(L) is the counit of L a U .
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Now, we have that V α is a natural isomorphism from V ĜL = GUL = GL to
V BG = BG. We prove that γ := V α : GL ⇒ BG makes the diagrams ? and ??
above commute. In fact, commutativity of ? follows from the diagram:

G GL

GFG GFBG GUF̂ ĜL

G BG GL

††

nat. ηGF nat. ηGF

Gη

GηFG GUηF̂ ĜL

ηGFG

GFεG

ηGFBG

GFV α

V ηĜF̂ ĜL

εG V α

IdG IdGL

and commutativity of ?? follows from using the identities µ = UεLUL, δ = V ηBVB
and the commutative diagram:

BGL

GLL

GL

BBG BG

nat. ηBV

•V αL

BV α

V ηBVBG

V α

GUεLUL
V ηBV ĜL

where • follows from the commutative diagram:

BV Ĝ Ĝ

BV ĜF̂ Ĝ ĜLUF̂ Ĝ ĜF̂ Ĝ

BV Ĝ ĜLU Ĝ

†

nat. α nat. εLU

ηBV Ĝ

ηĜF̂ ĜBV ηĜF̂ Ĝ
αUF̂ Ĝ

ĜLUηF̂ Ĝ ĜηF̂ Ĝ

ĜεLU F̂ Ĝ

BV ĜηF̂ Ĝ

αU ĜεLU

IdBV Ĝ IdĜ

Remark. Note that in the previous proof the fact that L is a monad and the fact
that B is a comonad were essential in order to define the functors L and B and
to guarantee that L a U and V a B. The later two adjunctions were essential in
order to obtain the isomorphism γ.
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We now proceed with special cases of our setting where, given the contravariant
adjunction and a comonad B on C, we can canonically define a monad L on D
such that the contravariant adjunction lifts, Section 4.4.1. We can also do it in the
opposite way, i.e., define a comonad from a given monad, but in this case additional
assumptions are required, Section 4.4.2.

4.4.1 Defining a monad from a comonad

In this part, we start with a contravariant adjunction between contravariant func-
tors F : C ×−→D and G : D×−→C and a comonad B = (B, ε, δ) on C. That is, we
have the following setting:

C D

a`

F

B = (B, ε, δ)

G

The purpose is to find a canonical monad L = (L, η, µ) on D and a lift of the
contravariant adjunction between F and G to a contravariant adjunction between
F̂ : Coalg(B)×−→ Alg(L) and Ĝ : Alg(L)×−→ Coalg(B). We choose L = FBG, and
define η : IdD ⇒ L and µ : LL⇒ L by:

η = (IdD
ηFG

==⇒ FG
FεG==⇒ FBG)

µ = (FBGFBG
FBηGFBG=====⇒ FBBG

FδG==⇒ FBG)

(4.4)

where ηFG and ηGF are the units of the contravariant adjunction. With this choice
of (L, η, µ) we have the following result.

Proposition 95. Let F : C ×−→D and G : D×−→C be contravariant functors that
form a contravariant adjunction. Let B = (B, ε, δ) be a comonad on C. Then (L, η, µ)
with L = FBG and η, µ defined as in (4.4) is a monad on D.

Additionally, if ηGF is a natural isomorphism, then the contravariant adjunction
between the functors F and G lifts to a contravariant adjunction between contravari-
ant functors F̂ : Coalg(B)×−→ Alg(L) and Ĝ : Alg(L)×−→ Coalg(B). In this case, if
F and G form a duality then the lifting F̂ and Ĝ is also a duality.

Proof. We have that L = (L, η, µ) is the monad induced by the composite of the
following two adjunctions:

D Cop Alg(Bop)

a a

G

F

H

J
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(see, e.g., [4, Chapter V]), where Bop is the monad on Cop that is dual to the
monad B on C, and the functors H and J are defined as H(X) = (BX, δX) and
J(Y, αY ) = Y on objects and H(g) = B(g) and J(f) = f on morphisms.

The last part of the proposition will be a consequence of Theorem 92 for which
γ = (ηGFBG)−1 : GL ⇒ BG. In fact, we only need to prove that the following two
diagrams commute:

G BG

GL

i.

εG

Gη γ

BGL GLL GL

BBG BG

ii.

γL Gµ

Bγ

δG

γ

Commutativity of i. follows from the commutative diagram:

G BG

GLGFG

nat. of ηGF

εG

GηFG = (ηGFG )−1 γ = (ηGFBG)−1

GFεG

And commutativity of ii. follows from the commutative diagram:

GL

BG

γ = (ηGFBG)−1

GFBBG
GFδG

GLL
GFBηGFBG

BGL
(ηGFBGL)−1

BBG

B(ηGFBG)−1

δG

(ηGFBBG)−1

nat. of ηGFnat. of ηGF

4.4.2 Defining a comonad from a monad

We now prove a similar result as Proposition 95 in order to define a comonad on C
if we have a monad on D. In order to do this we will assume that the contravariant
adjunction is a duality so we can use the fact that the units of the contravariant
adjunction are isomorphisms.

Assume that we have a contravariant adjunction between contravariant functors
F : C ×−→D and G : D×−→C, and let L = (L, η, µ) be a monad on D. Define the
endofunctor B on C as B = GLF . Now, if we assume that the contravariant
adjunction is a duality with units ηFG : IdD ⇒ FG and ηGF : IdC ⇒ GF that are
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natural isomorphisms. Then we can define natural transformations ε : B ⇒ IdC
and δ : B ⇒ BB as:

ε = (GLF
GηF
==⇒ GF

(ηGF )−1

=====⇒ IdC)

δ = (GLF
GµF
===⇒ GLLF

GL(ηFG)−1
LF=======⇒ GLFGLF )

(4.5)

Under the previous assumptions and choice of (B, ε, δ) we get:

Proposition 96. Let F : C ×−→D and G : D×−→C be contravariant functors that
form a duality. Let L = (L, η, µ) be a monad on D. Then (B, ε, δ), where B = GLF
and ε, δ are defined as in (4.5), is a comonad on C. Further, the duality between F and
G lifts to a duality between F̂ : Coalg(B)×−→ Alg(L) and Ĝ : Alg(L)×−→ Coalg(B).

Proof. To prove that B = (B, ε, δ) is a comonad we have to prove that the following
diagrams commute:

B

BBB B
1. 2.

δ

Bε

IdB

εB

IdB
BB B

BBB BB

3.

δ

δδB

Bδ

Commutativity of the previous diagrams follow from proof of Proposition 95 by a
dual argument. That is, by replacing η, L, µ, F , G and B by ε, B, δ, G, F and
L, respectively, in the proof of Proposition 95 and by reversing the arrows. In
this case, arrows including ηGF or ηFG will be replaced by (ηFG)−1 and (ηGF )−1,
respectively.

The last part of the proposition will be a consequence of Theorem 92 by con-
sidering γ = GL(ηFG)−1 : GL ⇒ BG. In fact, we only need to prove that the
following two diagrams commute:

G BG

GL

i.

εG

Gη γ

BGL GLL GL

BBG BG

ii.

γL Gµ

Bγ

δG

γ

Commutativity of i. follows from the commutative diagram:

G BG

GL

GFG
nat. of η

(ηGFG )−1 = GηFG

γ = (GLηFG)−1

GηFG

Gη



102 Chapter 4. Equations and coequations, categorically

And commutativity of ii. follows from the commutative diagram:

GL

BG

γ = GL(ηFG)−1

GLLFG
GµFG

GLL

GLL(ηFG)−1

BGL
GL(ηFGL )−1

BBG

BGL(ηFG)−1

GL(ηFGLFG)−1

Gµ

nat. of µ
nat. of ηFG

4.5 Applications

In this section, we will apply results from this chapter to study equations and co-
equations for dynamical systems and deterministic automata. We illustrate both
cases by using Eilenberg–Moore categories.

4.5.1 Equations and coequations for dynamical systems

Let M = (M, ·, e) be a monoid, let L = (L, η, µ) be the monad on Set defined as:

L(X) = X ×M ηX : X → X ×M µX : (X ×M)×M → X ×M
x 7→ (x, e) (x,m, n) 7→ (x,m · n)

and let B = (B, ε, δ) be the comonad on CABA defined as:

B(Y ) = YM εY : YM → Y δY : YM → (YM )M

f 7→ f(e) f 7→ λm.λnf(n ·m)

where the CABA structure on ZM = B(Z), for a given Z ∈ CABA, is component-
wise. Consider the duality between CABA and Set given by the contravariant func-
tors F : CABA×−→ Set and G : Set×−→ CABA defined as F ( ) = CABA( , 2) and
G( ) = Set( , 2), if we consider the natural isomorphism γ : GL ⇒ BG given by
the canonical isomorphism γX : 2X×M → (2X)M then we can easily verify the hy-
pothesis of Theorem 92 to lift the duality between F and G from the following
setting:

CABA Set

F (Y ) = CABA(Y, 2)

G(X) = Set(X, 2)

L(X) = X ×M
B(Y ) = YM

γX : 2X×M → (2X)M

∼=

F

B = (B, ε, δ)

G

L = (L, η, µ)
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Observe that elements (X,αX) ∈ Alg(L) are dynamical systems, also called monoid
actions, on Set for the monoid M , that is, a set X together with a map αX : X ×
M → X that satisfies the properties αX(x, e) = x and αX(αX(x,m), n) = αX(x,m·
n). Further, an object (Y, βY ) ∈ Coalg(B) is an object Y ∈ CABA with a map
βY ∈ CABA(Y, YM ) such that βY (y)(e) = y and βY (βY (y)(m))(n) = βY (y)(n ·m).

We are going to consider equations and coequations for dynamical systems for
the particular case that the set of generators is S = 1. We have that the free
U–object F(1) in Alg(L) over S = 1 is F(1) = (M,%) where % : M × M → M
is given by %(m,n) = m · n and the unit η1 : 1 → M is given by η1 = e, the
identity element in M . On the other hand, the cofree V –object C(G(1)) = C(2)
in Coalg(B) over 2 colours is C(2) = (2M , ς ′), where ς ′ : 2M → (2M )M is given by
ς ′(f)(n)(m) = f(m · n) and the counit ε2 : 2M → 2 is given by ε2(f) = f(e).

According to this, equations in Eq(L, 1) correspond to quotientsM/θ = (M/θ, fθ)
where θ ⊆ M × M is a right congruence on M , i.e. an equivalence relation
such that for any p ∈ M , (m,n) ∈ θ implies (m · p, n · p) ∈ θ, and the function
fθ : M/θ×M →M/θ is given by fθ(m/θ, n) = m ·n/θ. On the other hand coequa-
tions in Coeq(L, 2) correspond to left-closed-subsystems Q = (Q, ς ′), i.e. subalgebras
Q of the complete atomic Boolean algebra 2M such that for any f ∈ Q and m ∈M ,
ς ′(f)(m) ∈ Q.

Now, by using Theorem 93, we have as a consequence a correspondence be-
tween right congruences and left-closed-subsystems for dynamical systems.

Proposition 97. There is a duality between Eq(L, 1) and Coeq(B, 2) given by F̂ and
Ĝ that induces a duality between right congruences on M and left-closed-subsystems
of 2M .

Proof. Duality between Eq(L, 1) and Coeq(B, 2) follows Theorem 93 by taking S =
1. Now, given a right congruence θ on M its corresponding left-closed-subsystem
is Im(Ĝ(νθ)) where νθ ∈ Alg(L)(M,M/θ) is the canonical morphism defined as
νθ(m) = m/θ and, given a left-closed-subsystem Q = (Q, ς ′) its corresponding right
congruence is ker(F̂ (iQ)) where iQ ∈ Coalg(B)(Q, 2M ) is the inclusion morphism.
This correspondence between right congruences and left-closed-subsystems is a
duality induced by F̂ and Ĝ.

Using this duality one can prove that right congruences on M and left-closed
subsystems of 2M characterize the same classes of dynamical systems.

Proposition 98. Let (X,αX) be a dynamical system on M , i.e., (X,αX) ∈ Alg(L).
For a right congruence θ on M let νθ ∈ Alg(L)(M,M/θ) be the canonical epimor-
phism (equation) defined as νθ(m) = m/θ. The following are equivalent:

i) (X,αX) |= νθ.

ii) For every colouring c : X → 2 and any x ∈ X we have that

{m ∈M | c(αX(x)(m)) = 1} ∈ Im(Ĝ(νθ)).
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Proof. (⇒): Assume that (X,αX) |= νθ, i.e., for every z ∈ Set(1, X) we have
that z] factors in Alg(L) through the epimorphism νθ as z] = gz ◦ νθ. That is, the
following diagram commutes:

1

M XM/θ

η1

νθ gz

z]

z

Therefore, by applying the functor G, we have that for every d ∈ CABA(2X , 2)
the morphism d[, given by cofreeness of C(2), factors in Coalg(B) through 2νθ as
d[ = 2νθ ◦ hd, which means that Im(d[) ⊆ Im(2νθ ) = Im(Ĝ(νθ)). This is shown in
the following commutative diagram:

2

2M2X 2M/θ

ε2

2νθhd

d[

d

In particular, for a fixed x ∈ X, if we define the morphism dx ∈ CABA(2X , 2) as
dx(f) = f(x), then we have that Im(dx

[) ⊆ Im(Ĝ(νθ)). Now, given a function
c : X → 2, put {xi}i∈I = c−1(1) and define fi ∈ 2X as fi(x′) = 1 iff x′ = xi, i ∈ I.
Then we have that dx[(fi) ∈ Im(Ĝ(νθ)) for every i ∈ I, but

dx
[(fi) = {m ∈M | αX(x)(m) = xi}

Hence, {m ∈ M | αX(x)(m) = xi} ∈ Im(Ĝ(νθ)), and since Im(Ĝ(νθ)) ∈ CABA we
have that

{m ∈M | c(αX(x)(m)) = 1} =
∨
i∈I
{m ∈M | αX(x)(m) = xi} ∈ Im(Ĝ(νθ)).

(⇐) Assume that for any c ∈ Set(X, 2) and for any x ∈ X we have that {m ∈
M | c(αX(x)(m)) = 1} ∈ Im(Ĝ(νθ)). For any x0 ∈ X define cx0

∈ Set(X, 2)
as cx0

(x′) = 1 iff x′ = x0. Hence, for any x0 ∈ X and any x ∈ X we have
{m ∈M | cx0(αX(x)(m)) = 1} ∈ Im(Ĝ(νθ)), but

{m ∈M | cx0
(αX(x)(m)) = 1} = {m ∈M | αX(x)(m) = x0} = dx

[(cx0
)

if we denote by dx the element in CABA(2X , 2) given by dx(f) = f(x). So, for
a fixed x ∈ X and every x0 ∈ X we have that dx[(cx0) ∈ Im(Ĝ(νθ)), and,
as Im(Ĝ(νθ)) ∈ CABA, then Im(dx

[) ⊆ Im(Ĝ(νθ)), which means that dx[ factors
through the inclusion map i : Im(Ĝ(νθ)) → 2M as dx[ = i ◦ hx in Coalg(B). That
is, the following diagram commutes:
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2

2M2X Im(Ĝ(νθ))

ε2

ihx

dx
[

dx

Therefore, by applying the functor F , we have that for x ∈ X, x] factors through
F̂ (i) = CABA(i, 2) as x] = gs ◦ CABA(i, 2). That is, the following diagram commutes:

1

M XCABA(Im(Ĝ(νC)), 2)

η1

CABA(i, 2) gx

x]

x

which means that ker(x]) ⊇ ker(CABA(i, 2)) = ker(F̂ (i)) = θ. Now, as x ∈ X was
arbitrary, then we have that (X,αX) |= νθ.

If M is the free monoid on A generators then we get [79, Corollary 14]. In
this case, property ii) in the previous proposition is the definition for satisfaction of
coequations given in [13] where the set of coequations considered is Im(Ĝ(eC)).

4.5.2 Equations and coequations for automata

In this part, we study the case of equations and coequations for deterministic au-
tomata. Consider the following setting:

CABA Set∼=

F

G

L = (L, η, µ)

where F (Y ) = CABA(Y, 2), G(X) = Set(X, 2), and L is the monad given by:

L(X) = X∗ =
∐
i∈NX

i ηX : X → X∗ µX : (X∗)∗ → X∗

x 7→ x w1 · · ·wn 7→ w1 · · ·wn

According to Proposition 96, as F and G form a duality, we get a comonad B =
(B, ε, δ) on CABA and a duality between Coalg(B) and Alg(L). Observe that Alg(L)
is isomorphic to the category of monoids.

For any set A, L(A) = A∗ is the free monoid on A generators, with unit mor-
phism ηA and multiplication µA. That is, (A∗, µA) is the free U–object over A,
where U : Alg(L) → Set is the forgetful functor. Now we will fix the set A and
show how the notion of satisfaction of equations given in [13] for a deterministic
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automaton on A can be equivalently defined in this setting. In fact, given a deter-
ministic automaton (X,αX : X ×A→ A) on A we can use the correspondence:

αX : X ×A→ X

α̂X : A→ XX

to work with the monoid XX = (XX , β) ∈ Alg(L) with composition of functions
as multiplication β. We have that homomorphic images of A∗, i.e., elements in
Eq(L, A), correspond to congruences of the monoid A∗. Given any congruence θ of
A∗ we have that (X,αX) |= θ, if the unique extension α̂X

] ∈ Alg(L)(A∗, XX) of
α̂X factors in Alg(L) through the canonical morphism νθ : A∗ → A∗/θ. That is, we
have that (X,αX) |= θ if there exists g ∈ Alg(L)(A∗/θ,XX) such that the following
diagram commutes:

A

A∗ XXA∗/θ

ηA

νθ g

α̂X
]

α̂X

this means that for any (u, v) ∈ θ the transition functions fu, fv ∈ XX , where
fw(x) = w(x), w ∈ A∗, are the same. This is the notion of satisfaction of equations
we previously defined in Example 78, and which appears in [13].

We apply G to the previous diagram to get the following diagram:

2A

2(A
∗) 2(X

X)2(A
∗/θ)

2ηA

2νθ 2g

2α̂X
]

2α̂X

Now, the equality 2α̂X
]

= 2νθ ◦ 2g in the diagram above implies that:

Im(2α̂X
]

) ⊆ Im(2νθ ) = {L ∈ 2A
∗
| ∀ (u, v) ∈ θ, L(u) = L(v)},

which is an object in CABA and it is closed under left and right derivatives since
Im(2α̂X

]

) ∼= 2(A
∗/θ) and 2α̂X

]

is a B–coalgebra morphism, where the isomorphism
follows from the fact that 2νθ is injective, since νθ is surjective.

By Theorem 93, we get a duality between Eq(L, A) and Coeq(B, G(A)) which is
the duality between equations and coequations given in [13, Theorem 22]. Addi-
tionally, using the previous commutative diagrams, one can prove the equivalence
between i) and ii) given in Proposition 98 for the case that M = A∗, the congru-
ences θ are congruences of A∗, and the coequations Im(Ĝ(νθ)) are subalgebras of
2M that are closed under left and right derivatives, cf. [79, Theorem 17].
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4.6 Discussion

In this chapter, we developed the general theory about equations and coequations
that we use in this thesis, from a categorical point of view. We already studied
particular cases in Chapter 2 and Chapter 3, where equations and coequations for
deterministic automata and weighted automata were introduced, respectively. In
both cases, we showed a duality result which is also obtained from the general the-
ory of the present chapter. The main idea in this chapter was to consider equations
as special arrows in a category, namely, epimorphisms with free domain. Dually, we
considered coequations as monomorphisms with cofree codomain. Epimorphisms
and monomorphisms are the categorical generalization of surjective and injective
functions, respectively.

The main idea of considering equations from a categorical point of view was
initially made in [15] where a categorical version of Birkhoff’s theorem is proved.
Later, other categorical approaches for equations and coequations were also stud-
ied in, e.g., [52, 65, 50, 54, 38, 25, 76]. In [15], a categorical version of Birkhoff’s
theorem was formulated by considering equations as regular epimorphisms with
regular–projective domain. From [15], dual versions can be easily obtained and
hence the idea of defining coequations as a special kind of monomorphisms. In
[10], coequations are defined as regular subobjects of a cofree coalgebra, i.e., a
special kind of monomorphism. In [61], coequations are called modal rules or
modal formulas, and they are represented by morphisms inM , usually a monomor-
phism, for a given (E ,M)–category [61, Definition 2.4.1]. In [25], equations are
presented as pairs of arrows, left–hand side and right–hand side, and the defini-
tion of satisfaction of an equation is in terms of coequalizing those two arrows, this
property can be presented in terms of their coequalizer, when it exists, and hence
equations are a special kind of epimorphism. A similar idea of defining equations
with left–hand side and right–hand side is explored in [38]. In [76], the role of
the coequations that define a covariety is achieved by considering subsystems of a
cofree coalgebra, i.e., a monomorphism. In this chapter, we presented a general
approach by considering equations as epimorphisms with free domain and coequa-
tions as monomorphisms with cofree codomain. Special kinds of epimorphisms
and monomorphisms can also be considered to obtain similar results.

Liftings of adjunctions to categories of algebras were studied in [51]. We in-
cluded this theorem in this chapter and added another level by considering cat-
egories of equations and coequations in the case of a duality. In this case, we
showed that the duality between the base categories can be lifted to a duality be-
tween equations and coequations. It is worth mentioning that we cannot obtain a
similar result if we consider a contravariant adjunction that is not a duality, since
coequations are not always mapped to equations, see Example 88.

We presented a similar work of lifting contravariant adjunctions for the case of
Eilenberg–Moore categories. That is, we included monads and comonads into the
picture. This work on Eilenberg–Moore categories was based on the paper [80].
We gave necessary and sufficient conditions to lift contravariant adjunctions to
Eilenberg–Moore categories, and from that we also obtained liftings to categories
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of equations and coequations in the case that the contravariant adjunction is a
duality. Additionally, we obtained results on how to obtain a monad from a given
comonad and a contravariant adjunction and how to obtain a comonad from a
given monad and a duality. Contravariant adjunctions also allowed us to define a
notion of satisfaction of equations for coalgebras and satisfaction of coequations
for algebras.

Our setting was general enough to obtain the duality of equations and coequa-
tions shown in [13] and generalize it to the case of dynamical systems. Which
also gives us a more clear picture on how equations and coequations correspond
to each other if we are in the setting of a contravariant adjunction that is a duality.
Finally, the contents of this chapter will help us to get a basic understanding of the
notion of equations and coequations that will be used in the next two chapters to
obtain a categorical version of Birkhoff’s theorem and abstract categorical versions
of Eilenberg–type correspondences.



Chapter 5

Birkhoff’s Theorem

In this chapter, we state a categorical version of Birkhoff’s theorem for varieties of
algebras over a monad. We will show that varieties of algebras are characterized
as equational classes and that there is a one–to–one correspondence between va-
rieties of algebras and equational theories. The definition of an equational theory
will be given, which is a new concept and it will be used in the next chapter with
the purpose of obtaining Eilenberg–type correspondences. The main purpose of the
present chapter, apart from making the thesis self–contained, is to show a version
of Birkhoff’s theorem for algebras over a monad and to obtain a one–to–one corre-
spondence between varieties of algebras and equational theories, contrary to some
known categorical versions such as [10, 15] in which the existence of a defining
family of equations for a variety is shown but no uniqueness. We will do a simi-
lar work for the case of pseudovarieties of algebras, local varieties of algebras and
local pseudovarieties of algebras.

The main setting will be of a category with a factorization system together with
a monad on the category. The factorization system will allow us to define the
notion of homomorphic images, subalgebras and also to restrict the morphisms
where equations are considered. The definition of a variety of algebras will be the
standard one. On the other hand, to define the notion of an equational theory we
based our approach on [27, Definition II.14.16] and also on early ideas in [78] for
an Eilenberg–type correspondence for algebras over a monad. The main purpose of
our definition of an equational theory is to derive Eilenberg–type correspondences
in the next chapters. We will show the relation between equational theories and
monad morphisms, the latter concept is used in a categorical characterization of
HSP subcategories of Eilenberg–Moore algebras shown in [17].

We start by showing a categorical version for varieties of algebras over a monad,
Birkhoff’s theorem, whose proof is given by following the same ideas for standard
proofs of Birkhoff’s theorem, see, e.g., [27], but in our case we also take into ac-
count our notion of an equational theory to obtain a one–to–one correspondence
between varieties of algebras and equational theories. Then we proceed to do a
similar work for the finite case, i.e., pseudovarieties of algebras over a monad.

109
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This is also known in some cases as Reiterman’s theorem [73]. In our case, we
based our proof on the fact that pseudovarieties of algebras are exactly directed
unions of classes of finite algebras that are equational [12, 14, 37]. It is worth
mentioning that the proof presented here avoids the use of topology, profinite
techniques and implicit operations, which are the usual techniques to prove this
theorem [73, 14, 28]. In this sense, the proof presented for characterizing pseu-
dovarieties of algebras is more intuitive and easier to understand without needing
the knowledge of topology or profinite techniques, even though those concepts can
be easily brought to the scene by considering limits. Then we finish the chapter
by doing a similar work to obtain local versions, in the sense that all the algebras
considered are quotients of a given one.

In order to define the concept of a variety of algebras, we need to define the
notion of a subalgebra, homomorphic image and product. The concept of a product
is the standard one [66]. In order to define homomorphic images and subalgebras
we will need the following concept of a factorization system.

Definition 99. Let D be a category and let E and M be classes of morphisms in
D. The pair (E ,M ) is called a factorization system on D if:

i) Each of E and M is closed under composition with isomorphisms,

ii) Every morphism f in D has a factorization f = m ◦ e, with e ∈ E and m ∈M .

iii) Given any commutative diagram

· ·

· ·

m

e

f g

with e ∈ E and m ∈ M , there is a unique diagonal fill–in, i.e., a unique
morphism d such that the following diagram commutes:

· ·

· ·

m

e

f
d g

We will use the following fact about factorization systems [4].

Lemma 100. Let D be a category, T = (T, η, µ) a monad on D and (E ,M ) a fac-
torization system on D. If T preserves the morphisms in E then Alg(T) inherits the
same (E ,M ) factorization system.
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Proof. (Sketch) Given a morphism f ∈ Alg(T)(A,B), factor f as f = m◦e inD with
m ∈M and e ∈ E . Let C ∈ D be the codomain of e. Since f = m◦ e is a morphism
in Alg(T) thenm◦e◦αA = f◦αA = αB◦T (f) = αB◦T (m)◦T (e). From this equality,
by using the diagonal fill–in property and the fact that T (e) ∈ E , there exists a
unique αC ∈ C(T (C), C) such that e ◦ αA = αC ◦ T (e) and m ◦ αC = αB ◦ T (m),
that is, e and m are morphisms in alg(T ).

Now, to prove that C = (C,αC) ∈ Alg(T) we use the diagonal fill–in. The
identity idC = αC ◦ ηC is shown by proving that idC and αC ◦ ηC are the diagonal
fill–in of the square m ◦ e = m ◦ e. The identity αC ◦ TαC = αC ◦ µC is shown
by prooving that αC ◦ TαC and αC ◦ µC are the diagonal–fill in of the square
(αB ◦T (αB) ◦TT (m)) ◦TT (e) = m ◦ (e ◦αA ◦T (αA)) (note that TT (e) ∈ E by the
assumption that T preserves E ).

Uniqueness of factorizations and diagonal fill–in property in Alg(T) follow from
uniqueness of factorizations and diagonal fill–in property in D, respectively.

5.1 Varieties of algebras

Varieties of algebras have been studied in universal algebra and equational logic.
In particular, Birkhoff’s variety theorem (see Theorem 9 and, e.g., [18, 27]) states
that a class of algebras of the same type is a variety, i.e., it is closed under homo-
morphic images, subalgebras and (not necessarily finite) products, if and only if it
is definable by equations. As a consequence, for a fixed type of algebras, we get
a one–to–one correspondence between varieties of algebras and equational the-
ories. Birkhoff’s theorem has been generalized to a categorical level, see, e.g.,
[4, 10, 15, 17], to characterize subcategories of a given category that are, in some
sense, equationally defined. In this section, we provide, under mild assumptions, a
Birkhoff’s theorem for varieties of T–algebras, Theorem 105, where T is a monad.
In order to derive Eilenberg–type correspondences in the subsequent chapters, we
will also prove that there is a one–to–one correspondence between varieties of
T–algebras and equational T–theories. A categorical definition of an equational
T–theory will be given.

The definition of variety of T–algebras, which depends on the concept of homo-
morphic images and subalgebras, will be defined by using a factorization system
(E ,M ) on D. In order to define the concept of equational T–theories, we base
our approach on [27, Definition II.14.16]. After providing the assumptions and
basic definitions needed to state Theorem 105, its proof will easily follow from the
assumptions needed by following the same ideas for standard proofs of Birkhoff’s
theorem, see, e.g., [27]. We start by fixing the setting for the theorem and by
listing the assumptions we need.

We fix a complete category D, a monad T = (T, η, µ) on D, a factorization
system (E ,M ) on D and a full subcategory D0 of D. We will use the following
assumptions:

(B1) The factorization system (E ,M ) is such that every map in E is an epimor-
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phism1.

(B2) For every X ∈ D0, the free T–algebra TX = (T (X), µX) is projective with
respect to E in Alg(T). That is, for every h ∈ Alg(T)(TX,B) with X ∈ D0

and e ∈ Alg(T)(A,B) ∩ E there exists g ∈ Alg(T)(TX,A) such that the
following diagram commutes:

B A

T (X)

e

h g

(B3) For every A ∈ Alg(T) there exists XA ∈ D0 and sA ∈ Alg(T)(TXA,A) ∩ E .

(B4) T preserves morphisms in E .

(B5) For every X ∈ D0, there is, up to isomorphism, only a set of T–algebra
morphisms in E with domain TX.

The notion of a variety of T–algebras, which depends on the concept of homo-
morphic images and subalgebras, will be defined by using the factorization system
(E ,M ) on D, which is lifted to Alg(T) using (B4), Lemma 100. The role of D0 is
that the objects from which “variables” for the equations are considered are objects
inD0. Assumption (B2) of TX being projective with respect to E ,X ∈ D0, will play
a fundamental role in relating varieties of algebras with equational theories. As-
sumption (B3) guarantees that every algebra in Alg(T) is the homomorphic image
of a free T–algebra with object of generators from D0. Condition (B5) will allow us
to define the equational theory for a given variety of algebras. Condition (B1) will
provide the condition that different equational T–theories (Definition 102) define
different varieties of T–algebras, Proposition 107.

For Birkhoff’s classical variety theorem [18], we can take D = D0 = Set, E =
surjections, M = injections, and T to be the term monad for a given type of al-
gebras τ , i.e., T (X) = Tτ (X), the set of terms of type τ on the set of variables X
(see Example 103 and Example 110). Another important example will be given by
D = Poset, with D0 = discrete posets (i.e., we do not want the “variables” to be
ordered) to obtain a Birkhoff’s theorem for ordered algebras [20].

We now give the necessary definitions to formulate our Birkhoff’s theorem for
T–algebras. We start by defining varieties of T–algebras.

Definition 101. Let D be a complete category, T a monad on D and (E ,M ) a
factorization system on D. Let K be a class of algebras in Alg(T). We say that K is
closed under E –quotients if B ∈ K for every e ∈ Alg(T)(A,B)∩E with A ∈ K. We
say thatK is closed under M –subalgebras if B ∈ K for everym ∈ Alg(T)(B,A)∩M

1Note that this condition implies that M contains the extremal monomorphisms of D, [4, 14.10
Proposition]. Condition (B1) will only be used to prove that the correspondence between varieties of
algebras and equational theories is bijective, see Proposition 107.
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with A ∈ K. We say that K is closed under products if
∏
i∈I Ai ∈ K for every set

I such that Ai ∈ K, i ∈ I. A class V of algebras in Alg(T) is called a variety of
T–algebras if it is closed under E –quotients, M –subalgebras and products.

Now, we define one of the main concepts of this thesis that will play a role
in the obtainment of Eilenberg–type correspondences in the subsequent chapters,
namely, the concept of an equational T–theory.

Definition 102. Let D be a category, T a monad on D, D0 a full subcategory of D
and (E ,M ) a factorization system on D. An equational T–theory on D0 is a family
of T–algebra morphisms (equations) E = {T (X)

eX−→→QX}X∈D0
in E such that for

any X,Y ∈ D0 and any g ∈ Alg(T)(TX,TY) there exists g′ ∈ Alg(T)(QX,QY)
such that the following diagram commutes:

T (Y )

QY

T (X)

QX

eYeX

∀g

g′

Intuitively, in the setting D = D0 = Set, E = surjections, M = injections, and
T to be the term monad for a given type of algebras τ , we have that for every
object X ∈ D0 (i.e., a set of variables) the morphism eX , which we asssume to
be a surjection, represents the set of equations ker(eX), which is a congruence on
TX, i.e., it is an equivalence relation on T (X) which is closed under the compo-
nentwise algebraic operations. In this case, the algebra QX is the free algebra on
X generators in the variety associated to the equational theory. Commutativity of
the diagram above means that the family of all equations {ker(eX)}X∈D0 is closed
under any substitution g ∈ Alg(T)(TX,TY). The previous definition generalizes
the definition of an equational theory to a categorical level, cf. [27, Definition
II.14.16].

We have the following examples of equational theories.

Example 103. Consider the case D = D0 = Set, E = surjections and M =
injections. For a given type of algebras τ , consider the monad Tτ = (Tτ , η, µ)
such that Tτ (X) is the set of terms for τ on variables X, see [27, Definition
II.10.1]. The unit ηX : X → Tτ (X) is the inclusion function and multiplication
µX : Tτ (Tτ (X)) → Tτ (X) is the identity map. Now, Alg(Tτ ) is the category of al-
gebras A = (A,αA) of type τ , where αA : Tτ (A)→ A is the evaluation αA(t) in A
of each term t ∈ Tτ (A). An equational Tτ–theory on D0 = Set is a family of surjec-
tive homomorphisms E = {Tτ (X)

eX−→→QX}X∈Set in Alg(Tτ ) such that every ker(ex)
is a congruence on Tτ (X) and the family {ker(eX)}X∈D0

is closed under substitu-
tion, i.e., for (p(x1, . . . , xn), q(x1, . . . , xn)) ∈ ker(eX) and rx ∈ Tτ (Y ), x ∈ X, we
have that (p(rx1 , . . . , rxn), q(rx1 , . . . , rxn)) ∈ ker(eY ), where t(rx1 , . . . , rxn) is the
term in Tτ (Y ) obtained from t(x1, . . . , xn) ∈ Tτ (X) by replacing each variable xi
by rxi , i = 1, . . . , n.
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Example 104. Consider the case D = Poset, D0 = the full subcategory of discrete
posets, E = surjections and M = embeddings. Let τ be a type of algebras. An
ordered algebra of type τ is a triple A = (A,≤A, {fA : Anf → A}f∈τ ) such that
(A,≤A) ∈ Poset and all the functions fA : Anf → A are order preserving, where
the order inAnf is componentwise, f ∈ τ . We can define the monad Tτ = (Tτ , η, µ)
where Tτ (X,≤X) is the poset (Tτ (X),≤Tτ (X)) defined as: x ≤Tτ (X) y for every
x, y ∈ X such that x ≤X y, and f(t1, . . . , tnf ) ≤Tτ (X) f(q1, . . . , qnf ) for every f ∈ τ
and terms ti, qi ∈ Tτ (X) such that ti ≤Tτ (X) qi, i = 1, . . . , nf . Algebras in Alg(Tτ )
are ordered algebras of type τ .

An equational Tτ–theory is a family E = {Tτ (X)
eX−→→QX}X∈D0 of surjective

homomorphisms, which are trivially order preserving since Tτ (X) is discrete for
any X ∈ D0, such that

−→
ker(eX) is an admissible preorder on Tτ (X) 2, where

−→
ker(eX) := {(u, v) | eX(u) ≤ eX(v)}, and the family {

−→
ker(ex)}X∈D0 is closed under

substitution as in the previous example. In this case,
−→
ker(eX) represents the equa-

tions and inequations of terms with variables in X in the equational Tτ–theory.
Note that if we take D0 = Poset then condition (B2) does not hold.

Given a set of equations E = {T (Xi)
ei−→→QXi}i∈I and an algebra A ∈ Alg(T),

we say that A satisfies E, denoted as A |= E, if A is E–injective, that is, if for every
i ∈ I and every f ∈ Alg(T)(TXi,A) there exists a T–algebra morphism gf such
that f = gf ◦ ei.

Intuitively, A |= E if for every i ∈ I and every assignment f ∈ Alg(T)(TXi,A)
of the variables Xi to elements of the algebra A, all the equations represented by
ei : T (Xi)−→→QXi hold in A. Given a set of equations E we denote the models of E
by Mod(E), that is:

Mod(E) := {A ∈ Alg(T) | A |= E}

A class K of T–algebras is defined by E if K = Mod(E).
Now we state our categorical version of Birkhoff’s theorem as follows.

Theorem 105 (Birkhoff’s Theorem for T–algebras). Let D be a complete category,
T a monad on D, D0 a full subcategory of D and (E ,M ) a factorization system on
D. Assume (B2) to (B5). Then a class K of T–algebras is a variety of T–algebras
if and only if it is defined by a set of equations in which the domain of each each
equation is TX for some X ∈ D0. Additionally, by assuming condition (B1), varieties
of T–algebras are in one–to–one correspondence with equational T–theories on D0.

5.1.1 Proof of Birkhoff’s theorem for T–algebras

The proof for Birkhoff’s theorem for T–algebras can be given by following the same
ideas for standard proofs of Birkhoff’s theorem, see, e.g., [27]. In our case, we will

2A preorder v on an ordered algebra (A,≤A, {fA : Anf → A}f∈τ ) of type τ is compatible
if for every f ∈ τ and ai, bi ∈ A with ai v bi, i = 1, . . . , nf , we have that fA(a1, . . . , anf ) v
fA(b1, . . . , bnf ). A preorder v is admissible if it is compatible and a v b whenever a ≤A b. The
congruence θv on A induced by the compatible preorder v is the relation θv on A defined as θv :=v
∩ v−1. Then (A/θv,≤v) is an ordered algebra with the order given by [x] ≤v [y] iff x v y. See [20].



5.1. Varieties of algebras 115

also deal with equational T–theories and we have a fixed subcategory D0 whose
objects represent “variables”, which is the main difference with respect to some
categorical versions such as [10, 15, 17]. Our proof follows the same ideas for
standard proofs of (categorical) Birkhoff’s theorem (see, e.g., [4, 15]), we include
a proof of Theorem 105 in this thesis for the sake of completeness. We derive
Theorem 105 from the following facts.

First, we have that the codomain of each arrow in an equational theory E be-
longs to Mod(E). That is, Mod(E) contains every free algebra on X for each choice
of “variables” X ∈ D0.

Lemma 106. Let D be a category, (E ,M ) a factorization system on D, T = (T, η, µ)

a monad on D and D0 a full subcategory of D. Let E = {T (X)
eX−→→QX}X∈D0

be an
equational T–theory on D0. Assume (B2). Then QX ∈ Mod(E) for every X ∈ D0.

Proof. Let Y ∈ D0 and let f ∈ Alg(T)(TY,QX). Then we have the following
commutative diagram:

QXT (Y )
QY

T (X)

eY eX
g′

f

g

where g ∈ Alg(T)(TY,TX) is obtained from f and eX using assumption (B2) and
g′ is obtained from the fact that E is an equational T–theory. Therefore, f factors
through eY as f = g′ ◦ eY and hence QX ∈ Mod(E).

Next, we show that different equational theories will give us different class of
algebras.

Proposition 107. Let D be a category, (E ,M ) a factorization system on D, T =
(T, η, µ) a monad on D and D0 a full subcategory of D. Assume (B1) and (B2).

For i = 1, 2, let Ei = {T (X)
(ei)X−→→(Qi)X}X∈D0

be an equational T–theory on D0. If
E1 6= E2 then Mod(E1) 6= Mod(E2).

Proof. As E1 6= E2, there exists X ∈ D0 such that (e1)X 6= (e2)X , i.e., there is no
isomorphism φ ∈ Alg(T)((Q1)X, (Q2)X) such that φ ◦ (e1)X = (e2)X . We have
that (Q1)X /∈ Mod(E2) or (Q2)X /∈ Mod(E1). In fact, assume by contradiction
that (Q1)X ∈ Mod(E2) and (Q2)X ∈ Mod(E1), then, from the fact that (Q1)X ∈
Mod(E2), we get the commutative diagram:

(Q1)XT (X) (Q2)X
(e2)X g21

(e1)X
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i.e., there exists g21 ∈ Alg(T)((Q2)X, (Q1)X) such that g21 ◦ (e2)X = (e1)X .
Similarly, from the fact that (Q2)X ∈ Mod(E1), we get that there exists g12 ∈
Alg(T)((Q1)X, (Q2)X) such that g12 ◦ (e1)X = (e2)X . Hence we have that:

(e2)X = g12 ◦ (e1)X = g12 ◦ g21 ◦ (e2)X

which implies that g12◦g21 = id(Q2)X since (e2)X is epi by (B1). Similarly, g21◦g12 =
id(Q1)X , which implies that g12 is an isomorphism such that g12 ◦ (e1)X = (e2)X
which is a contradiction. Hence (Q1)X /∈ Mod(E2) or (Q2)X /∈ Mod(E1) and, by the
previous lemma, (Qi)X ∈ Mod(Ei), which implies that Mod(E1) 6= Mod(E2).

The next proposition shows that, under conditions (B2) and (B4), every class de-
fined by a set of equations, in which the domain of each equation is TX for some
X ∈ D0, is a variety of T–algebras.

Proposition 108. Let D be a complete category, T = (T, η, µ) a monad on D, (E ,M )
a factorization system on D and D0 a full subcategory of D. Assume (B2) and (B4).
Let E be a set of equations in which the domain of each equation is TX for some
X ∈ D0. Then Mod(E) is a variety of T–algebras.

Proof. Mod(E) is nonempty since the algebra 1 = (1, !T (1)), where 1 is the terminal
object in D, is in Mod(E). Put E = {T (Xi)

ei−→→QXi}i∈I , then:

i) Mod(E) is closed under E –quotients: Let A,B ∈ Alg(T) with A ∈ Mod(E) and
let e ∈ Alg(T)(A,B) ∩ E . Let i ∈ I and f ∈ Alg(T)(TXi,B), then we have
the following commutative diagram:

AT (Xi) QXi B
ei egk

k

f

where k ∈ Alg(T)(TXi,A) was obtained from f using (B2) and the morphism
gk ∈ Alg(T)(QXi

,A) from the fact that A ∈ Mod(E). Therefore f factors
through ei, i.e., B ∈ Mod(E).

ii) Mod(E) is closed under M –subalgebras: Let A,B ∈ Alg(T) with A ∈ Mod(E)
and let m ∈ Alg(T)(B,A) ∩M . Let i ∈ I and f ∈ Alg(T)(TXi,B), then we
have the following commutative diagram:

BT (Xi)
QXi

A

ei
m

k

f

gm◦f
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where gm◦f ∈ Alg(T)(QXi
,A) was obtained from the fact that A ∈ Mod(E),

and k ∈ Alg(T)(QXi
,B) was obtained by the diagonal fill–in property of the

factorization system (E ,M ) restricted to Alg(T), by using (B4) in Lemma 100.
Therefore, B ∈ Mod(E).

iii) Mod(E) is closed under products: Let Aj ∈ Mod(E), j ∈ J , and let A =∏
j∈J Aj be their product in Alg(T) with projections πj : A → Aj . Let i ∈ I

and f ∈ Alg(T)(TXi,A), then we have the following commutative diagram:

AT (Xi)
QXi

Aj

ei πj
g

f

gπj◦f

where gπj◦f ∈ Alg(T)(QXi
,Aj) was obtained from the fact that Aj ∈ Mod(E),

and g ∈ Alg(T)(QXi
,A) was obtained by the universal property of the prod-

uct. Finally, we have that g ◦ ei = f since πj ◦ g ◦ ei = πj ◦ f for every j ∈ J .

The previous proposition shows that, under the assumptions of Theorem 105,
every class defined by a set of equations, in which the domain of each equation is
TX for some X ∈ D0, is a variety of T–algebras.

Now we prove the converse, that is, that every variety of T–algebras is defined
by a set of equations (in fact, an equational T–theory).

Proposition 109. Let D be a complete category, (E ,M ) a factorization system on
D, T = (T, η, µ) a monad on D and D0 a full subcategory of D. Assume (B3), (B4)
and (B5). Let V be a variety of T–algebras. Then V = Mod(E) for some equational
T–theory E on D0.

Notice that, if we assume (B2), the equational T–theory E is unique by Proposition
107.

Proof. We prove the proposition in two steps: i) the construction of E, and ii) to
show that V = Mod(E). In fact:

i) For any X ∈ D0, let HX = {T (X)
(eX)i−→→(PX)i}i∈IX be the collection of all T–

algebra morphisms, up to isomorphism, in E with domain TX and codomain
in the variety V . By (B5), HX is a set. Put PX =

∏
i∈IX (PX)i and let

(πX)i ∈ Alg(T)(PX, (PX)i) be the ith–projection. Then we have the following
commutative diagram in Alg(T):

QX

(PX)iTX PX(?)

mXeX

kX (πX)i

(eX)i
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where kX ∈ Alg(T)(TX,PX) is obtained from the universal property of the
product PX and kX = mX ◦ eX is the factorization of kX in Alg(T) (use (B2)
and apply Lemma 100). Note that QX ∈ V since it is an M –subalgebra of a
product of elements in V .

Claim: E = {T (X)
(eX)i−→→QX}X∈D0 is an equational T–theory on D0.

Let g ∈ Alg(T)(TX,TY) such that X,Y ∈ D0. We have to prove that there
exists g′ ∈ Alg(T)(QX,QY) such that g′ ◦ eX = eY ◦ g. In fact, we have the
following commutative diagram:

PX

T (X)

QX

TY

QY

(?)

S = (PX)j meY ◦gmX

eX eY
eeY ◦g = (eX)j

g

(πX)j

where eY ◦g = meY ◦g◦eeY ◦g is the factorization of eY ◦g and S is the codomain
of eeY ◦g. From that we have that S is an M –subalgebra of QY ∈ V . Hence S ∈
V and therefore S = (PX)j and eeY ◦g = (eX)j for some j ∈ IX . Therefore, E
is an equational T–theory on D0.

ii) Let us prove that V = Mod(E).
(⊇): Let A ∈ Alg(T) such that A ∈ Mod(E). By assumption (B3), there exists
sA ∈ Alg(T)(TXA,A) ∩ E with XA ∈ D0. As A ∈ Mod(E), the morphism
sA factors through eXA as sA = gsA ◦ eXA . Since gsA ◦ eXA = sA ∈ E and
eXA ∈ E then gsA ∈ E [4, dual of 14.9 Proposition (1)]. Therefore, A ∈ V
since QXA

∈ V .

(⊆): Let A ∈ Alg(T) such that A ∈ V . Let f ∈ Alg(T)(TX,A) such that
X ∈ D0. Then we have the following commutative diagram in Alg(T):

TX QX

PX

Z = (PX)iA

eX

ef = (eX)i
f

(πX)i

mX

mf
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where f = mf ◦ ef is the factorization of f with mf ∈M and ef ∈ E , which
implies that Z ∈ V since A ∈ V . Therefore, Z = (PX)i and ef = (eX)i
for some i ∈ IX . Hence the factorization of f through eX follows from the
definition of eX (see i) above) which implies that A ∈ Mod(E).

Now, first part of Theorem 105 follows from Proposition 108 (by using (B2)
and (B4)) and Proposition 109 (by using (B3), (B4) and (B5)). Uniqueness of
the defining equational T–theory follows from Proposition 107 (by using (B1) and
(B2)).

From Birkhoff’s theorem for T–algebras we have the following.

Example 110. By considering the monad and the categories given in Example 103
we obtain the classical Birkhoff variety theorem [18].

Example 111. By considering the monad and the categories given in Example 104
we obtain the Birkhoff variety theorem for ordered algebras [20].

We now describe how we can derive an Eilenberg–type correspondence from
our Birkhoff’s theorem (this will be explained in full detail in subsequent chapters).

Example 112 (cf. [13, Theorem 39]). Consider the case D = D0 = Set, T the
monad given by TX = X∗, whereX∗ is the free monoid onX, E = surjections and
M = injections. We have that conditions (B1) to (B5) are fullfilled. Therefore we
have a one–to–one correspondence between varieties of monoids and equational
T–theories. Now, consider the category C = C0 = CABA which is dual to Set and let
B be the comonad on CABA that is dual to the monad T on Set, i.e, B is defined,
up to isomorphism, as B(2X) = 2X

∗
. Then, by duality, we have a one–to–one

correspondence between equational T–theories E and its dual E∂ , i.e., families of
monomorphisms {SX

mX
↪−−→ B(X)}X∈C0=C in Coalg(B) such that for any X,Y ∈ C0

and any g ∈ Coalg(B)(BX,BY) there exists g′ ∈ Coalg(B)(SX,SY) such that
mY ◦ g = g′ ◦mX .
This notion of the dual of an equational T–theory is equivalent with the –more
complicated– notion of a variety of languages in [13, Definition 35] (see Example
144 for more details). In this setting, we get a one–to–one correspondence between
varieties of monoids and duals of equational T–theories, i.e., varieties of languages.
This is exactly the Eilenberg–type theorem [13, Theorem 39] and we will come
back to this kind of example and provide more details in the next chapter.

It is worth mentioning that even though the Birkhoff’s theorem we stated seems
to be restricted for the case of T–algebras, there is no real limitation in this fact
since we can always consider the identity monad on D and in this case Alg(T) =
D. Besides our interest of the study of algebras for a monad, which is the most
common generalization for algebraic structures, we chose this approach for the
following reasons:
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i) We can study different algebraic structures by considering the same base cate-
gory and the same factorization system on the base category.

ii) Equations are usually defined as certain kinds of epimorphisms with a projec-
tive domain, which in our case projective objects are usualy among the free
objects TX = (TX, µX) ∈ Alg(T).

iii) Our main purpose is to derive Eilenberg–type correspondences in the subse-
quent chapters for which we make use of a dual category of Alg(T), which we
already know how to construct from a dual category of the base category D by
using Theorem 92 in the previous chapter.

Before we proceed with the case of finite algebras, we study the relationship of
equational theories with the natural notion of monad morphisms. The following
subsection will not be used in the rest of this thesis.

5.1.2 On equational T–theories

In this subsection, we prove some properties about equational T–theories and its
relation with monad morphisms. We study this for the caseD0 = D. Thus, through-
out this section we work with equational T–theories on D which are of the form
E = {T (X)

eX−→→QX}X∈D, i.e., indexed by D = D0. The first property we show is
that the assignment X 7→ QX can be turned into a functor on D such that every
eX is the component of a natural transformation as follows.

Proposition 113. Let D be a category, T = (T, η, µ) a monad on D, (E ,M ) a
factorization system on D and E = {T (X)

eX−→→QX}X∈D an equational T–theory on
D. Assume (B1). Define the operator S on objects in D as S(X) = QX and for any
morphism f ∈ D(X,Y ) as S(f) = (T (f))′ where (T (f))′ is the unique morphism in
Alg(T) such that eY ◦ T (f) = (T (f))′ ◦ eX , which is given by Definition 102. Then
S : D → D is a functor and e : T ⇒ S is a natural transformation.

Proof. It follows from the definitions and using the fact that every eX is epi by
(B1).

By using the previous proposition we prove now that the property for a T–
algebra A = (A,αA) of satisfying E depends only on the fact that αA factors
through eA.

Proposition 114. Let D be a category, T = (T, η, µ) a monad on D, (E ,M ) a
factorization system on D and E = {T (X)

eX−→→QX}X∈D an equational T–theory on
D. Assume (B1) and let S : D → D and e : T ⇒ S as in the previous proposition. Let
A = (A,αA) ∈ Alg(T), then A |= E if and only if αA factors through eA.

Proof. The fact that αA factors through eA follows from the definition of A |= E

by considering the T–algebra morphism αA : TA → A in Alg(T)(TA,A). Con-
versely, assume that αA factors through eA as αA = g ◦ eA and let X ∈ D and
f ∈ Alg(T)(TX,A), we have to show that f factors through eX . In fact, this
follows from the following commutative diagram:



5.1. Varieties of algebras 121

S(X) ST (X) S(A)

T (X) TT (X) T (A) A

T (X)

nat. e nat. e
eX eT (X) eA

S(ηX) S(f)

g

T (ηX)

idX µX
T (f) αA

f

We now recall the definition of a monad morphism.

Definition 115. Let D be a category and let T = (T, η, µ) and S = (S, ι, ν) be
monads on D. A monad morphism % from T to S, denoted as % : T→ S is a natural
transformation % : T ⇒ S such that the following diagrams commute:

IdD T

S

?

η

ι
%

T S

TT TS SS

??

%

µ

T% %S

ν

In [17], it is shown, under mild assumptions, that there is a one–to–one corre-
spondence between monad morphisms T → S for which the induced components
are in E and full subcategories of Alg(T) that are closed under U–split epimor-
phisms, products and M –subalgebras. We study the relationship between such
monad morphisms T→ S and equational T–theories.

Proposition 116. Let D be a category and let T = (T, η, µ) and S = (S, ι, ν) be
monads on D. Let % : T→ S be a monad morphism. Then:

i) For every X ∈ D we have that SX% := (S(X), νX ◦ %S(X)) ∈ Alg(T) and %X is
a morphism in Alg(T)(TX,SX%).

ii) Let (E ,M ) be a factorization system on D. Assume (B1) and (B4). If every
component of % is in E then, for every X ∈ D, there is a unique morphism
h ∈ D(TS(X), S(X)) such that %X ∈ Alg(T)(TX, (S(X), h)), namely h =

νX ◦%S(X). Furthermore, E% := {T (X)
%X−→→S(X)}X∈D is an equational T–theory

on D, where %X ∈ Alg(T)(TX,SX%) ∩ E .

Proof.

i) The property of SX% := (S(X), νX ◦ %S(X)) ∈ Alg(T) follows from the com-
mutative diagrams
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S(X) TS(X)

SS(X)

S(X)

?

ηS(X)

ιS(X)

idS(X)

%S(X)

νX

TS(X) SS(X) S(X)

TSS(X) SSS(X) SS(X)

TTS(X) TS(X)

nat. %

??

%S(X) νX

T (νX)

%SS(X)

S(νX)

νS(X)

νX

T (%S(X))

µS(X)

%S(X)

The property that %X ∈ Alg(T)(TX,SX%) follows from ??.

ii) If %X ∈ Alg(T)(TX, (S(X), h)) then h ◦ T (%X) = %X ◦ µX . By ?? we have
%X ◦ µX = νX ◦ %S(X) ◦ T (%X). Hence h ◦ T (%X) = νX ◦ %S(X) ◦ T (%X) which
implies, by (B1) and (B4), that h = νX ◦ %S(X). We now prove that E% is an
equational T–theory on D. In fact, let g ∈ Alg(T)(TX,TY), then we have
that g = µY ◦ T (g) ◦ T (ηX), which follows from the following commutative
diagram:

T (Y ) T (X)

TT (Y ) TT (X) T (X)

g

µY µX

T (g) T (ηX)

IdT (X)

Now, the unique T–algebra morphism g′ such that g′ ◦ %X = %Y ◦ g is given by
g′ = νY ◦ S(%Y ) ◦ S(g) ◦ S(ηX), as the following commutative diagram shows:

S(X) ST (X) ST (Y )

SS(Y ) S(Y )

T (X) TT (X) TT (Y ) T (Y )

TS(Y )

nat. %
nat. %

??nat. %
S(ηX) S(g)

S(%Y )

νY

T (ηX)

%X

T (g)

%T (X)

µY

%T (Y ) T (%Y )

%Y

%S(Y )

g

g′
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Now, we prove that, under mild assumptions, for any monad morphism % : T→
S such that each component is in E , that the categories Mod(E%) and Alg(S) are
isomorphic.

Proposition 117. Let D be a category, T = (T, η, µ) and S = (S, ι, ν) monads on D,
% : T→ S a monad morphism and (E ,M ) a factorization system on D. Assume (B1)
and (B4). If every component of % is in E then the categories Mod(E%) and Alg(S) are
isomorphic.

Proof. Define the functor F : Mod(E%) → Alg(S) as F (X,αX) = (X,α′X), where
the morphism α′X ∈ Alg(T)(SX%, (X,αX)) is the unique morphism such that α′X ◦
%X = αX for (X,αX) ∈ Mod(E%) and define F on morphisms as F (f) = f . Define
the functor G : Alg(S)→ Mod(E%) as G(X,α′X) = (X,α′X ◦ %X) and on morphism
as G(f) = f . The fact that F and G are functors defining an isomorphism of
categories is easily verified by using (B1), (B4), Proposition 114, Proposition 116
and the results given in [17, Section 3].

Until now, we proved, under mild assumptions, that every monad morphism
% : T → S such that every component is in E induces a variety of T–algebras
Mod(E%) which is isomorphic to Alg(S). Now, by the main theorem in [17], we
have, under mild assumptions, that every varietyK of T–algebras induces a monad
SK on D and a monad morphism % : T→ SK with every component in E such that
K is equivalent to Alg(SK).

Proposition 118. Let D be a complete category, T = (T, η, µ) a monad on D and
(E ,M ) a factorization system onD. Assume (B1), (B4) and that for any X ∈ Alg(T),
there is, up to isomorphism, only a set of T–algebra morphisms in E whose domain
is X. Let K be a variety of T–algebras and assume that E contains all the U–split
epis, where U : Alg(T) → D is the forgetful functor. Then there exists a monad SK
on D and a monad morphism α : T→ SK with every component in E such that K is
equivalent to Alg(SK).

Proof. Follows from [17, 4.1. Theorem].

5.2 Varieties of finite algebras

This section is similar to the previous one with the restriction that all the alge-
bras considered are finite. That is, we assume that the category D is a con-
crete category, with forgetful functor U : D → Set, and we say that an algebra
A = (A,α) ∈ Alg(T) is finite if U(A) is a finite set. We state a categorical version
of a Birkhoff–type theorem for finite T–algebras, some versions of this theorem are
known as Reiterman’s theorem [73]. We use the prefix ‘pseudo’ to indicate that
all the algebras considered are finite. That is, a pseudovariety of T–algebras is a
variety of finite T–algebras, which is a class of finite T–algebras closed under ho-
momorphic images, subalgebras and finite producs. The Birkhoff–type theorem for
varieties of finite algebras states that a class of finite algebras of the same type is a
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pseudovariety if and only if it is defined by “extended equations” [73, 14]. An “ex-
tended equation” is a concept that generalizes the concept of an equation and can
be defined by using topological techniques or, alternatively, by implicit operations
[73, 14]. Reiterman’s proof for the Birkhoff–type theorem for varieties of finite
algebras involves topological methods in which the set of n–ary implicit operations
is the completion of the set of n–ary terms [73]. A topological approach was also
explored by Banaschewski by using uniformities [14]. Recently, in [28], profinite
techniques were used to define the concept of profinite equations which are the
kind of equations that define pseudovarieties of T–algebras.

We provide a categorical version for a Birkhoff–type theorem for varieties of fi-
nite algebras, Theorem 122, which, under mild assumptions, establishes a one–to–
one correspondence between pseudovarieties of T–algebras and pseudoequational
T–theories. Different versions of this theorem such as [73, 14, 28] use topolog-
ical approaches and/or profinite techniques. In the present chapter, topological
approaches and profinite techniques are not used, thus avoiding constructions of
certain limits and profinite completions, which gives us a better and basic under-
standing on how pseudovarieties are characterized. The main strategy we follow to
state and prove our theorem is that pseudovarieties of algebras are exactly directed
unions of equational classes of finite algebras, which is a fact that was proved in
[12, 14, 37]. The definition of pseudoequational T–theories is based on the previ-
ous observation and the categorical dual of “varieties of languages” that was used
by the author to derive an Eilenberg–type correspondence for T–algebras [78].

Throughout this section, we fix a complete concrete category D such that its
forgetful functor preserves epis, monos and products, a monad T = (T, η, µ) on D,
a full subcategory D0 of D and a factorization system (E ,M ) on D. We make the
following assumptions:

(Bf1) The factorization system (E ,M ) is proper, that is, every morphism in E is an
epimorphism and every morphism in M is a monomorphism.

(Bf2) For every X ∈ D0, the free T–algebra TX = (T (X), µX) is projective with
respect to E in Alg(T). That is, for every h ∈ Alg(T)(TX,B) with X ∈ D0

and e ∈ Alg(T)(A,B)∩E there exists g ∈ Alg(T)(TX,A) such that e◦g = h.

(Bf3) For every finite A ∈ Alg(T) there existsXA ∈ D0 and sA ∈ Alg(T)(TXA,A)∩
E .

(Bf4) T preserves morphisms in E .

In order to talk about finite algebras, we assume that the category D is a con-
crete category. That is, if U : D → Set is the forgetful functor for the concrete
category D, then an object X ∈ D is finite if U(X) is a finite set. An algebra
A ∈ Alg(T) is finite if its carrier object A ∈ D is finite. The algebras of interest
will be the objects Algf (T) of finite algebras in Alg(T). The factorization system
(E ,M ) on D, which is lifted to Alg(T) by using (Bf4) in Lemma 100, allows us to
define the concept of homomorphic image and subalgebra. In this case, by using
condition (Bf1) and the requirement that the forgetful functor U preserves epis,
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monos and products, we get the property that M –subalgebras, E –quotients and
finite products of finite algebras are also finite. For instance, for the case of E –
quotients, if A,B ∈ Alg(T) are algebras and e ∈ Alg(T)(A,B) ∩ E with U(A)
finite (i.e., A is finite), then U(B) is also finite since U(e) : U(A) → U(B) is a
surjective map by the assumption that U preserves epis. A similar argument shows
that M –subalgebras and finite products of finite algebras are also finite, by using
the fact that U preserves monos and products, respectively. The purpose of the
subcategory D0 is that the objects from which “variables” for the equations are
considered are objects in D0. Assumption (Bf3) guarantees that every algebra is
the homomorphic image of a free one with object of generators in D0.

To obtain a classical Birkhoff–type theorem for varieties of finite algebras we
can consider D = Set, D0 = finite sets, E = surjections, M = injections, and T to
be the term monad for a given type of algebras τ , i.e., T (X) = Tτ (X), the set of
terms of type τ on the set of variables X (see Example 103). Another important
example will be given by D = Poset and D0 to be the full subcategory of finite
discrete posets (as before, we do not want the “variables” to be ordered).

Now, we will define the main concepts needed to state our categorical Birkhoff–
type theorem for varieties of finite T–algebras. We start by defining the concept of
a pseudoequational T–theory.

Definition 119. Let D be a complete concrete category such that its forgetful func-
tor preserves epis, T a monad on D, D0 a full subcategory of D and (E ,M ) a
factorization system on D. Assume (Bf1) and (Bf4). A pseudoequational T–theory
on D0 is an operator P on D0 such that for every X ∈ D0, P(X) is a nonempty col-
lection of T–algebra morphisms in E with domain TX and finite codomain such
that:

i) For every finite set I and fi ∈ P(X), i ∈ I, there exists f ∈ P(X) such that
every fi factors through f , i ∈ I.

ii) For every e ∈ P(X) with codomain A and every T–algebra morphism e′ ∈ E
with domain A we have that e′ ◦ e ∈ P(X).

iii) For every Y ∈ D0, f ∈ P(X) and h ∈ Alg(T)(TY,TX) we have that ef◦h ∈
P(Y ) where f ◦ h = mf◦h ◦ ef◦h is the factorization of f ◦ h in Alg(T) by using
the factorization system (E ,M ) on D, which is lifted to Alg(T) by using (Bf4)
and Lemma 100.

Pseudovarieties of algebras are exactly directed unions of equational classes of
finite algebras [12, 14, 37]. With this in mind, we can give an intuition of the
previous definition. In fact, for each object X ∈ D0 of variables every morphism
f ∈ P(X) represents a set of equations on X, namely ker(f), which can be equiv-
alently given by a T–algebra morphism in E with domain TX. Condition i) says
that the set of all the equations on a fixed X is a directed set, i.e., for every set
of equations fi ∈ P(X), i ∈ I, with I finite, there is an upper bound f ∈ P(X).
Here f is an upper bound of {fi | i ∈ I} if every fi factors through f . Condi-
tion iii) says that all the equations considered are preserved under any substitution
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h ∈ Alg(T)(TY,TX) of variables in Y by terms in T (X), this condition is re-
lated to the commutativity of the diagram given in Definition 102. Condition ii) is
needed for uniqueness of the pseudoequational theory defining a given pseudova-
riety of algebras. In fact, two directed unions of equational classes of finite algebras
can give us the same pseudovariety, but if we put the requirement of being down-
ward closed, which is the requirement in condition ii), then we get uniqueness.

Given an algebra A ∈ Algf (T), we say that A satisfies P, denoted as A |= P, if
for every X ∈ D0 and f ∈ Alg(T)(TX,A) we have that f factors through some
morphism in P(X). We denote by Modf (P) the finite models of P, that is:

Modf (P) := {A ∈ Algf (T) | A |= P}

A class K of finite T–algebras is defined by P if K = Modf (P).
Let K be a class of algebras in Algf (T). We say that K is closed under finite

products if
∏
i∈I Ai ∈ K for every finite set I such that Ai ∈ K, i ∈ I. We now

define the concept of a pseudovariety of T–algebras.

Definition 120. Let D be a complete concrete category, T a monad on D and
(E ,M ) a factorization system on D. A class K of finite algebras in Alg(T) is called
a pseudovariety of T–algebras if it is closed under E –quotients, M –subalgebras and
finite products.

The following example shows some known pseudovarieties.

Example 121. Consider the setting D = Set, D0 = finite sets, E = surjections,
M = injections, and T to be the term monad for a given type of algebras τ . Then
we have that equational classes of finite algebras are examples of pseudovarieties
of T–algebras. For example, finite semigroups, finite monoids, finite groups, finite
vector spaces, finite Boolean algebras, finite lattices, and so on. In [14], some
non–equational examples of pseudovarieties are shown such as:

(1) the finite commutative monoids satisfying some identity xn = xn+1, n =
1, 2, . . .,

(2) the finite cancellation monoids,

(3) the finite abelian p–groups, for a given prime number p, and

(4) the finite products of finite fields of a given prime characteristic.

In fact, every equation satisfied in the given pseudovariety is also satisfied in the
larger pseudovariety, i.e., the pseudovariety of all commutative monoids for (1),
the pseudovariety of all monoids for (2), the pseudovariety of all abelian groups
for (3), and the pseudovariety of all commutative rings with unit of a given prime
characteristic for (4).

Now we can formulate our categorical Birkhoff–type theorem for varieties of
finite T–algebras as follows.
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Theorem 122 (Birkhoff–type theorem for varieties of finite T–algebras). Let D be
a complete concrete category such that its forgetful functor preserves epis, monos and
products, T a monad on D, D0 a full subcategory of D and (E ,M ) a factorization
system on D. Assume (Bf1) to (Bf4). Then a class K of finite T–algebras is a
pseudovariety of T–algebras if and only if is defined by a pseudoequational T–theory
on D0. Additionally, pseudovarieties of T–algebras are in one–to–one correspondence
with pseudoequational T–theories on D0.

5.2.1 Proof of Birkhoff–type theorem for varieties of finite T–
algebras

In this subsection, we prove Theorem 122. We start by proving that models of
pseudoequational T–theories are pseudovarieties of T–algebras.

Proposition 123. LetD be a complete concrete category such that its forgetful functor
preserves epis, monos and products, T a monad on D, D0 a full subcategory of D and
(E ,M ) a factorization system on D. Assume (Bf1), (Bf2) and (Bf4). Let P be a
pseudoequational T–theory on D0. Then Modf (P) is a pseudovariety of T–algebras.

Proof. Clearly Modf (P) is non empty since 1 = (1, !T (1) : T (1) → 1) ∈ Modf (P),
where 1 is the terminal object in D, which is finite since the forgetful functor from
D to Set preserves products. The proof of Modf (P) being closed under E –quotients
and M –subalgebras is done in a similar way as in Proposition 108. Note that E –
quotients and M –subalgebras of finite algebras are also finite since the forgetful
functor from D to Set preserves epis and monos, respectively.

Now, let us prove that Modf (P) is closed under finite products. In fact, let
Ai ∈ Modf (P), i ∈ I with I finite, and let A =

∏
i∈I Ai be their product in

Alg(T) with projections πi : A → Ai. We have that A is finite since the forgetful
functor from D to Set preserves products, I is finite, and each Ai is finite. Let
f ∈ Alg(T)(TX,A), X ∈ D0. As Ai ∈ Modf (P) then πi ◦ f factors through some
ei ∈ P(X) as πi ◦ f = gi ◦ ei. Since P is a pseudoequational T–theory there exists
e ∈ P(X) such that every ei factors through e as hi ◦ e = ei, i ∈ I. Let Q be the
codomain of e. Now, by definition of A there exists h ∈ Alg(T)(Q,A) such that
πi ◦h = gi ◦hi. As πi ◦ f = πi ◦h ◦ e for every i ∈ I, then f = h ◦ e, e ∈ P(X), which
means that A ∈ Modf (P).

Given a class K of algebras in Algf (T) define the operator PK on D0 as follows:

PK(X) = T–algebra morphisms in E with domain TX and codomain in K.

Now we show, under mild assumptions, that if K is a pseudovariety then PK is a
pseudoequational theory.

Proposition 124. LetD be a complete concrete category such that its forgetful functor
preserves epis, monos and products T a monad on D, D0 a full subcategory of D
and (E ,M ) a factorization system on D. Assume (Bf1) and (Bf4). Let K be a
pseudovariety of T–algebras. Then PK is a pseudoequational T–theory on D0.
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Proof. We have to prove properties i), ii), and iii) of Definition 119. In fact:

i) Let X ∈ D0, I a finite set and fi ∈ PK(X), i ∈ I. Let Ai ∈ K be the codomain
of fi. Let A =

∏
i∈I Ai with projections πi ∈ Alg(T)(A,Ai). We have A ∈ K.

Now, by definition of A, there exists f ∈ Alg(T)(TX,A) such that πi ◦ f = fi.
Let f = mf ◦ ef be the factorization of f with ef ∈ Alg(T)(TX,Q) ∩ E and
mf ∈ Alg(T)(Q,A) ∩M . We have that Q ∈ K. Then ef is a morphism in
PK(X) such that every fi factors through ef .

ii) Let X ∈ D0, e ∈ PK(X) with codomain A ∈ K, and e′ ∈ Alg(T)(A,B) ∩ E .
We have that B is finite and that B ∈ K. Therefore e′ ◦ e ∈ PK(X).

iii) Let X,Y ∈ D0, f ∈ PK(X) with codomain A ∈ K, and h ∈ Alg(T)(TY,TX).
Let f◦h = mf◦h◦ef◦h be the factorization of f◦hwith ef◦h ∈ Alg(T)(TY,Q)∩
E and mf◦h ∈ Alg(T)(Q,A)∩M . Then Q ∈ K, which implies ef◦h ∈ PK(Y ).

The next lemma shows that the codomain of every arrow in a pseudoequational
theory satisfies the pseudoequational theory.

Lemma 125. Let D be a complete concrete category such that its forgetful functor
preserves epis,monos and products, T a monad on D, D0 a full subcategory of D
and (E ,M ) a factorization system on D. Assume (Bf1), (Bf2) and (Bf4). Let P
be a pseudoequational T–theory on D0. Let X ∈ D0 and e ∈ P(X) with codomain
A ∈ Algf (T), then A ∈ Modf (P).

Proof. Let Y ∈ D0 and f ∈ Alg(T)(TY,A). We have to show that f factors
through some element in P(Y ). We have the following commutative diagram:

T (X)

Q

AT (Y )

e

ee◦k me◦k

k

f

where the morphism k is obtained from f and e by using (Bf2) and e ◦ k = me◦k ◦
ee◦k is the factorization of e ◦ k. Then, from the previous diagram we have that
ee◦k ∈ P(Y ), since e ∈ P(X) and P is a pseudoequational T–theory. Therefore f
factors through ee◦k ∈ P(Y ), which implies that A ∈ Modf (P).

To finish the proof of Theorem 122 we establish the following one–to–one
correspondence between pseudoequational T–theories and pseudovarieties of T–
algebras.
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Proposition 126. LetD be a complete concrete category such that its forgetful functor
preserves epis, monos and products, T a monad on D, D0 a full subcategory of D and
(E ,M ) a factorization system on D. Assume (Bf1), (Bf2) and (Bf4). Let P be a
pseudoequational T–theory on D0 and let K be a pseudovariety of T–algebras. Then:

i) PModf (P) = P.

ii) Assume (Bf3), then Modf (PK) = K.

Proof.

i) Let X ∈ D0, we have to prove that PModf (P)(X) = P(X).
(⊆): Let e ∈ PModf (P)(X) with codomain A ∈ Modf (P). As A ∈ Modf (P),
there exists e′ ∈ P(X) such that e factors through e′ as g ◦ e′ = e. By (Bf1) and
(Bf4) we have that g is a T–algebra morphism. As g ◦ e′ = e ∈ E , then g ∈ E ,
and, as P is a pseudoequational T–theory, then g ◦ e′ = e ∈ P(X).
(⊇): Let e ∈ P(X) with codomain A. By Lemma 125, A ∈ Modf (P), i.e.,
e ∈ PModf (P)(X).

ii) Let A be an object in Algf (T).
(⊇): Assume that A ∈ K. We have to show that A ∈ Modf (PK). In fact, let
X ∈ D0 and f ∈ Alg(T)(TX,A). Let f = mf ◦ ef be the factorization of f
with ef ∈ Alg(T)(TX,Q) ∩ E and mf ∈ Alg(T)(Q,A) ∩M . Then Q ∈ K,
which implies that ef ∈ PK(X), i.e., A ∈ Modf (PK).
(⊆): Assume that A ∈ Modf (PK). By (Bf3) there exists an object XA ∈ D0

and e ∈ Alg(T)(TXA,A) ∩ E . As A ∈ Modf (PK), e factors through some
e′ ∈ PK(XA) as e = g ◦ e′. Let Q ∈ K be the codomain of e′. As g ◦ e′ = e ∈ E ,
then g ∈ E and g ∈ Alg(T)(Q,A) which implies that A ∈ K since Q ∈ K.

The previous proposition finishes the proof of our Birkhoff–type theorem for
varieties of finite T–algebras.
Now, we derive a Birkhoff–type theorem for pseudovarieties of (ordered) algebras
for a given type, then we show an example of a particular pseudovariety of algebras
with its defining pseudoequational T–theory and finish this subsection by deriving
Eilenberg’s theorem [36, Theorem 34] to show a one–to–one correspondence be-
tween pseudovarieties of monoids and pseudovarieties of languages.

Example 127. Consider the case D = Set, D0 = finite sets, E = surjections, M =
injections and, for a given type of algebras τ , let Tτ be the term monad for τ . Then,
by Theorem 122, a class of algebras of type τ is a pseudovariety if and only if it is
defined by a pseudoequational Tτ–theory.

Example 128. Consider the case D = Poset, D0 = finite discrete posets, E = sur-
jections, M = embeddings and, for a given type of algebras τ , let Tτ be the monad
on Poset defined in Example 104. Then, by Theorem 122, a class of ordered alge-
bras of type τ is a pseudovariety if and only if it is defined by a pseudoequational
Tτ–theory.
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Example 129. Consider the case D = Set, D0 = finite sets, T the monad given
by T (X) = X∗, where X∗ is the free monoid on X, E = surjections, and M =
injections. We have that conditions (Bf1) to (Bf4) are fullfilled. In this case, we
have that Alg(T) is the category of monoids. To describe the pseudovariety of all
commutative monoids satisfying some identity xn = xn+1, n = 1, 2, . . ., we define
P on D0 as follows:

- For every X ∈ D0, and n = 1, 2 . . ., we define the surjective homomorphism of
monoids en : X∗−→→Fn(X), where Fn(X) is the free commutative monoid on X
that satisfies the identity xn = xn+1. That is, Fn(X) = (Set(X, {0, 1, . . . n}), ·, 0)
where 0 ∈ Set(X, {0, 1, . . . n}) is the zero function, i.e., 0(x) = 0 for every x ∈
X, and · is defined on Set(X, {0, 1, . . . n}) as (f · g)(x) = min{n, f(x) + g(x)}.
Then define en on the set of generators X as en(x) = χx, where χx(x) = 1 and
χx(y) = 0 for x 6= y. Define P(X) as:

P(X) = {e′ ◦ en | n ∈ N+ and e′ is a T–alg. morphism in E with domain Fn(X)}

We have then that P is a pseudoequational T–theory and Modf (P) is the pseu-
dovariety of all finite commutative monoids that satisfy some identity xn = xn+1,
n = 1, 2, . . ..

In the next example, we derive Eilenberg’s variety theorem [36, Theorem 3.4.].
Given a finite set Σ, i.e., an alphabet, a language L on Σ is a subset L of Σ∗,
i.e., a collection of words with letters in Σ. We identify a language L on Σ by its
characteristic function L : Σ∗ → 2. A language L on Σ is recognizable if there
exists a finite monoid A, a homomorphism of monoids h : Σ∗ → A and a function
L′ : A → 2 such that L′ ◦ h = L. We denote by Rec(Σ) the Boolean algebra of all
recognizable languages on Σ. A pseudovariety of languages is an operator L such
that for every finite set Σ we have:

i) L (Σ) is a subalgebra of the Boolean algebra Rec(Σ),

ii) L (Σ) is closed under left and right derivatives. That is, aL,La ∈ L (Σ) for
every L ∈ L (Σ) and a ∈ Σ, and

iii) L is closed under morphic preimages. That is, for every alphabet Γ, homo-
morphism of monoids h : Γ∗ → Σ∗ and L ∈ L (Σ), we have that L◦h ∈ L (Γ).

Eilenberg’s variety theorem [36, Theorem 34] says that there is a one–to–one corre-
spondence between pseudovarieties of monoids and pseudovarieties of languages.
This theorem is derived from Theorem 122 as follows.

Example 130 (Eilenberg’s variety theorem). Consider the setting as in the previous
example, i.e., D = Set, D0 = finite sets, T the monad given by T (X) = X∗, where
X∗ is the free monoid on X, E = surjections, and M = injections. Then, we have
a one–to–one correspondence between pseudovarieties of monoids, i.e., pseudova-
rieties of T–algebras, and pseudoequational T–theories on D0. Now, we have that
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pseudoequational T–theories on D0 are in one–to–one correspondence with pseu-
dovarieties of languages. In fact, every pseudoequational T–theory P on D0 defines
the pseudovariety of languages L P defined as L P(X) :=

⋃
e∈P(X) Im(Set(e, 2)),

and every pseudovariety of languages L defines the pseudoequational T–theory
PL on D0 such that PL (X) is the collection of all T–algebra morphisms e ∈ E
with domain TX and finite codomain such that Im(Set(e, 2)) ⊆ L (X), X ∈ D0.
Furthermore, this correspondence is bijective, that is, for every pseudoequational
T–theory P on D0 and every pseudovariety of languages L we have that P = PL P

and L = L PL (see Example 176 for more details).

Birkhoff–type theorems for varieties of finite algebras, some of them also known
as Reiterman’s theorem [73], have been proved and generalized in [14, 28]. The
approach in [73] was to consider implicit operations, which generalize the notion
of terms. Equations given by implicit operations are the kind of equations that de-
fine pseudovarieties. The proof given in [73] involves the use of topology in which
the set of n–ary implicit operations is the completion of the set of n–ary terms.
In [14], a topological approach is also considered by using uniformities, and it is
also shown that pseudovarieties are exactly directed unions of equational classes
of finite algebras [14, Proposition 4]. In [28], a categorical approach is considered
to prove a Birkhoff–type theorem for varieties of finite T–algebras, this is done by
using profinite techniques to define the notion of profinite equation which are the
kind of equations that allow to define and characterize pseudovarieties. In [28],
for a given monad T on D they define the profinite monad T̂ on the profinite com-
pletion D̂ of the category Df of finite objects in D which is done by using limits
(in fact, right Kan extensions). The approach in the present work do not use topo-
logical nor profinite techniques, and it is based in the fact that pseudovarieties are
exactly directed unions of equational classes of finite algebras, see [14, Proposition
4] and [12, 37]. Nevertheless, profinite and topological techniques can be easily
brought to the scene in the present work if we identify the family of morphisms
P(X) by its limit, where P is a pseudoequational T–theory. This would have led us
to deal with profinite completions and topological spaces, in particular, profinite
monoids, Stone spaces and Stone duality. We prefer to avoid this approach for the
following reasons:

a) Make the present work more accessible to some readers.

b) To present a different approach without using topology and profinite tech-
niques.

c) In the following chapters we derive Eilenberg–type correspondences, which
deal with pseudocoequational theories rather than its dual, i.e., pseudoequa-
tional theories.
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5.3 Local versions

In this section, we provide abstract versions of a Birkhoff–type theorem for local
varieties of T–algebras and local pseudovarieties of T–algebras. Local pseudovari-
eties of algebras have been studied in [1, 43] in order to obtain local versions of
Eilenberg–type correspondences, which will be derived in the subsequent chapters.
The main idea for these local versions is to work with a fixed set of variables (or
alphabet in the sense of [1, 43]), which in our notation reduces to consider the
case in which the category D0 has only one object, say X. In order to do this, the
kind of algebras considered in this local version are algebras that are generated by
the object X in the following sense.

Definition 131. Let D be a category, T a monad on D, (E ,M ) a factorization sys-
tem onD andX ∈ D. An algebra A ∈ Alg(T) isX–generated if Alg(T)(TX,A)∩E
is nonempty.

The following example illustrates this concept.

Example 132. Consider the setting D = Set, E = surjections, M = injections and
T the free group monad. Then, a group is 1–generated if and only if it is a quotient
of T1 = Z, i.e., if and only if it is isomorphic to the group Z or to to the group Zn
of integers modulo n for some n ∈ N+.

We have that E –quotients of X–generated T–algebras are X–generated, but
this property does not hold in general for M –subalgebras and products. Thus, we
will restrict our attention to X–generated M –subalgebras, i.e., M –subalgebras
that are X–generated, and subdirect products. The latter are defined as follows.

Definition 133. Let D be a complete category, T a monad on D, (E ,M ) a factor-
ization system on D such that T preserves the morphisms in E . Let X ∈ D and let
Ai be an X–generated T–algebra with ei ∈ Alg(T)(TX,Ai) ∩ E , i ∈ I. We define
the subdirect product of the family {(Ai, ei)}i∈I as the X–generated M –subalgebra
S of

∏
i∈I Ai described in the following commutative diagram:

T (X)

∏
i∈I Ai AjS

ejee

πj

e

me

where e is obtained from the morphisms ej , j ∈ I, and the universal property of
the product

∏
i∈I Ai and e = me ◦ ee is the factorization of e. We say that the

subdirect product S defined above is finite if I is a finite set.

To obtain local versions of a Birkhoff–type theorem, the concept of a local va-
riety of T–algebras used is: classes of X–generated T–algebras closed under E –
quotients, X–generated M –subalgebras and subdirect products. We state two lo-
cal versions in the rest of this section, one for local varieties of algebras and one for
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local pseudovarieties of algebras. We start with a Birkhoff–type theorem for local
varieties of T–algebras.

We fix a complete category D, a monad T = (T, η, µ) on D, (E ,M ) a factoriza-
tion system on D and X ∈ D. We will use the following assumptions:

(b1) Every morphism in E is an epimorphism.

(b2) The free T–algebra TX = (T (X), µX) is projective with respect to E in
Alg(T).

(b3) T preserves morphisms in E .

(b4) There is, up to isomorphism, only a set of T–algebra morphisms in E with
domain TX.

We define local varieties of X–generated T–algebras as follows.

Definition 134. Let D be a complete category, T a monad on D, and (E ,M ) a
factorization system on D. Assume (b1) and (b3). Let X ∈ D. A class K of
X–generated T–algebras is a local variety of X–generated T–algebras if it is closed
under E –quotients, X–generated M –subalgebras and subdirect products.

Next, we define the notion of a local equational T–theory.

Definition 135. Let D be a category, T a monad on D, X ∈ D and (E ,M )
a factorization system on D. A local equational T–theory on X is a T–algebra
morphism TX

eX−→→QX in E such that for any g ∈ Alg(T)(TX,TX) there exists
g′ ∈ Alg(T)(QX,QX) such that the following diagram commutes:

T (X)

QX

T (X)

QX

eXeX

∀g

g′

Note that, in the setting of Example 103, a morphism T (X)
eX−→→QX in local

equational T–theory onX is characterized, up to isomorphism, by its kernel ker(eX).
In this case, the property of eX being a local equational T–theory is exactly the
property that ker(eX) is a fully invariant congruence of TX [27, Definition II.14.1].
This generalizes the definition of an equational theory over X in [27, Definition
II.14.9] to a categorical level.

Given a local equational T–theory T (X)
eX−→→QX on X and an X–generated T–

algebra A, we say that A satisfies eX , denoted as A |= eX , if every morphism
f ∈ Alg(T)(TX,A) factors through eX . We denote by Mod(eX) the X–generated
models of eX , that is:

Mod(eX) = {A ∈ Alg(T) | A is X–generated and A |= eX}.
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A class K of X–generated T–algebras is defined by eX if K = Mod(eX).
With the previous definitions, we have our Birkhoff–type theorem for local va-

rieties of T–algebras.

Theorem 136 (Birkhoff–type theorem for local varieties T–algebras). Let D be a
complete category, T a monad on D, X ∈ D and (E ,M ) a factorization system on D.
Assume (b2) to (b4). Then a class K of X–generated T–algebras is a local variety of
X–generated T–algebras if and only if is defined by a local equational T–theory on X.
Additionally, by assuming condition (b1), local varieties of X–generated T–algebras
are in one–to–one correspondence with local equational T–theories on X.

We illustrate the previous theorem with the following example.

Example 137. Consider the setting D = Set, E = surjections, M = injections and
T the free group monad. Then, for local varieties V of X–generated T–algebras for
the case X = 1 we have the following:

i) TX = T1 is isomorphic to the group Z of integers with addition and hence,
every group in V is isomorphic to Z itself or isomorphic to the group Zn of
integers modulo n for some n ≥ 1.

ii) Either V contains Z, and hence every element in V is isomorphic to Z or to Zn,
or V does not contain Z and hence m := max{n ∈ N | ∃G ∈ V,G ∼= Zn} exists
and G ∈ V if and only if G ∼= Zn for some n|m. In the first case V = Mod(IdZ)
and in the second case V = Mod(em), where em : Z → Zm is the canonical
map that sends every integer to its equivalence class modulo m.

We now provide a Birkhoff–type theorem for local varieties of finite T–algebras.
We fix a complete concrete category D such that its forgetful functor preserves
epis, monos and products, a monad T = (T, η, µ) on D, X ∈ D and a factorization
system (E ,M ) on D. We will need the following assumptions:

(bf1) The factorization system (E ,M ) is proper.

(bf2) The free T–algebra TX = (T (X), µX) is projective with respect to E in
Alg(T).

(bf3) T preserves morphisms in E .

We define the concept of a local pseudoequational T–theory on X as follows.

Definition 138. Let D be a concrete category such that its forgetful functor pre-
serves epis and monos, T a monad on D, X ∈ D and (E ,M ) a factorization system
on D. Assume (bf1) and (bf3). A local pseudoequational T–theory on X is a
nonempty collection PX of T–algebra morphisms in E with domain TX and finite
codomain such that:

i) For every finite set I and fi ∈ PX , i ∈ I, there exists f ∈ PX such that fi factors
through f , i ∈ I.
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ii) For every e ∈ PX with codomain A and every T–algebra morphism e′ ∈ E
with domain A we have that e′ ◦ e ∈ PX .

iii) For every f ∈ PX and h ∈ Alg(T)(TX,TX) we have that ef◦h ∈ PX where
f ◦ h = mf◦h ◦ ef◦h is the factorization of f ◦ h in Alg(T).

Given an X–generated algebra A ∈ Algf (T), we say that A satisfies PX , de-
noted as A |= PX , if every f ∈ Alg(T)(TX,A) factors through some morphism in
PX . We denote by Modf (PX) the finite X–generated models of PX , that is:

Modf (PX) := {A ∈ Algf (T) | A is X–generated and A |= PX}.

A class K of finite X–generated T–algebras is defined by PX if K = Modf (PX).
We define the concept of a local pseudovariety of X–generated T–algebras as

follows.

Definition 139. Let D be a complete concrete category, T a monad on D, (E ,M )
a factorization system on D and X ∈ D a finite object. A class K of finite X–
generated algebras in Alg(T) is called a local pseudovariety of X–generated T–
algebras if it is closed under E –quotients, X–generated M –subalgebras and finite
subdirect products.

From the previous definitions, we obtain our Birkhoff–type theorem for local
varieties of finite T–algebras.

Theorem 140 (Birkhoff–type theorem for local varieties of finite T–algebras). Let
D be a concrete complete category such that its forgetful functor preserves epis, monos
and products, T a monad on D, X ∈ D and (E ,M ) a factorization system on D.
Assume (bf1) to (bf3). Then a class K of finite X–generated T–algebras is a local
pseudovariety of X–generated T–algebras if and only if is defined by a local pseu-
doequational T–theory on X. Additionally, local pseudovarieties of X–generated T–
algebras are in one–to–one correspondence with local pseudoequational T–theories on
X.

The following example illustrates the previous theorem.

Example 141. Consider the setting D = Set, E = surjections, M = injections
and T the free group monad. Then, for local pseudovarieties V of X–generated
T–algebras for the case X = 1 we have the following:

i) Every morphism in a local pseudoequational T–theory PX on X is of the form
em : Z→ Zm for some m, where em sends each integer to its equivalence class
modulo m. Property i) in Definition 138 is equivalent, under the assumption
that PX is a pseudoequational T–theory on X, to the property that for every
finite family {em1

, . . . , emn} ⊆ PX we have that el.c.m.{m1,...,mn} ∈ PX , where
l.c.m.{m1, . . . ,mn} is the least common multiple of the family {m1, . . . ,mn}.
Properties ii) and iii) in Definition 138 says that for every em ∈ PX and n|m
we have en ∈ PX .
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ii) According to i), pseudoequational T–theories are in one–to–one correspon-
dence with proper filters of the lattice (N,∨,∧) where ∨ is given by the least
common multiple and ∧ is the greatest common divisor. Furthermore, given
such filter F ⊆ N its pseudovariety KF is characterized as all the finite groups
that are isomorphic to Zn for some n ∈ F .

5.4 Discussion

We presented a categorical version of a Birkhoff–type theorem for varieties of al-
gebras over a monad. The main purpose of doing this was to get a version which
is stated as a one–to–one correspondence between varieties of algebras and equa-
tional theories, which will be used in the next chapters to derive Eilenberg–type
correspondences. With this in mind, we defined the concept of an equational the-
ory based on the classical concept given in [27, Definition II.14.16] and a previous
definition of variety of languages in [78, Definition 18]. We also presented similar
versions for the case of pseudovarieties of T–algebras, local varieties of T–algebras
and local pseudovarieties of T–algebras.

There are categorical versions of Birkhoff–type theorems in the literature such
as [4, 10, 15, 17]. The main difference of the present work with those approaches
is the use of equational theories and therefore the statement of the theorem as a
one–to–one correspondence. The proof of the Birkhoff–type theorem for varieties
of T–algebras we presented is based on the work made in [15]. We also related
our concept of an equational theory with that of a monad morphism used in [17].

In the theorems we presented we used a factorization system on the base cat-
egory which, under mild assumptions, is lifted to the category Alg(T) of algebras
over the monad T. The main reason for this approach, instead of considering a
factorization system in the category Alg(T), is to be able to use different monads
for the same factorization system on the base category. We could have also consid-
ered a factorization system on Alg(T) and having essentially the same proofs for
the theorems. It is worth mentioning that not every factorization system in Alg(T)
comes from a factorization system in the base category, see, e.g., [17].

Birkhoff–type theorems for varieties of finite algebras, some of them also known
as Reiterman’s theorem, were initially proved in [14, 73, 12, 37]. Different versions
such as [73, 14, 28] use topologial approaches and/or profinite techniques. The
approach presented in [28] is a categorical one. The version presented in this
paper is also a categorical approach and it is based on the observation made in
[12, 15, 37] that pseudovarieties of algebras are characterized as directed unions of
equational classes of finite algebras. We defined the concept of a pseudoequational
theory based on the previous observation. As a consequence, the proof presented
in this thesis does not use topological or profinite techniques, which can help to
understand a Birkhoff–type theorem for varieties of finite algebras in a more basic
setting and it is more accessible to some readers.

Another important aspect and parameter we used in our theorems is the use of
the subcategory D0 of D, which is the subcategory where we consider the objects
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that represent variables. In cases such as D = Set we can also take D0 = Set, but
in cases such as D = Poset we take D0 = discrete posets (in this case, the choice
D0 = Poset does not satisfy condition (B2) needed to prove the theorem). This
choice of D0 will define the domain for the varieties of languages in Eilenberg–type
correspondences which is one of the motivations for using it. Also, in order to deal
with the case D = Poset we needed to restrict the domain of the epimorphisms
that define the equations of a variety of algebras, which is done by considering the
subcategory D0 of D.

It is worth mentioning that different choices of the subcategory D0 of D could
work for the same D. For instance, if we consider the monad Tτ such that Tτ (X) is
the set of terms for a type of algebras τ on variables X, see [27, Definition II.10.1]
or Section 1.2, then we can consider, for instance, D0 = Set, D0 = finite sets or
even D0 = {X} for any infinite set X. This property of being able to restrict the
subcategory D0 is essentially a property that is discussed in [15, Remark 1].

Local versions of Birkhoff–type theorems are less known, and the main pur-
pose of including them here is to derive local versions of Eilenberg–type correspon-
dences, a work that has been done in [1, 43]. Those local versions are basically a
consequence of the non–local versions by restricting to the case in which the sub-
category D0 has only one object. For this purpose, we only dealt with X–generated
algebras, where X is the only object in D0. In this case, the closure properties that
define a local variety are modified in order to deal only withX–generated algebras.





Chapter 6

Eilenberg–type
correspondences

In this chapter we show that:

Eilenberg–type correspondences = Birkhoff’s theorem for (finite) algebras + duality.

Eilenberg’s theorem is an important result in algebraic language theory, stating that
there is a one–to–one correspondence between certain classes of regular languages,
called varieties of languages, and certain classes of monoids, called pseudovarieties
of monoids [36, Theorem 34]. The concept of a regular language, which is defined
in terms of deterministic automata, has an equivalent machine–independent alge-
braic definition, namely, a language recognized by a finite monoid. Recognizable
languages on an alphabet Σ are inverse images of monoid homomorphisms with
domain Σ∗ and as codomain any finite monoid. This algebraic approach allows us
to study various kinds of recognizable languages where the notion of homomor-
phism between algebras is a key ingredient.

To state Eilenberg–type theorems, which establish one–to–one correspondences
between (pseudo)varieties of algebras and (pseudo)varieties of languages, one has
to define and find the corresponding notion of a (pseudo)variety of languages
which is, in general, a non–trivial problem. There are Eilenberg–type correspon-
dences in the literature such as, e.g., [70] for pseudovarieties of ordered monoids
and ordered semigroups, the one in [74] for pseudovarieties of finite dimensional
K–algebras, [72] for pseudovarieties of idempotent semirings and [13, Theorem
39] for varieties of monoids.

The work in this chapter has its basis in [22, 80]. We take the main idea given
in [22], where algebras for a monad T on D are considered, to define the natural
notion of a variety of T–algebras and a pseudovaritey of T–algebras. Now, based
on the work of the previous chapter in which we established a one–to–one corre-
spondence between varieties of T–algebras and equational T–theories and also a
one–to–one correspondence between pseudovarieties of T–algebras and pseudoe-

139
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quational T–theories, we use a category C that is dual to D and Proposition 96 to
define a canonical comonad B on C that is dual to T and lift the duality between C
and D to their corresponding Eilenberg–Moore categories. With this duality, there
is a canonical correspondence between (pseudo)equational T–theories and their
corresponding dual, i.e., (pseudo)coequational B–theories. Our most important ex-
amples of (pseudo)coequational B–theories are those given in Eilenberg–type cor-
respondences, namely, “varieties of languages”. All in all, we get a one–to–one cor-
respondence between (pseudo)varieties of T–algebras and (pseudo)coequational
B–theories. We will show how this concept of (pseudo)coequational B–theories
coincides with the different notions of “varieties of languages” in Eilenberg–type
correspondences, which bring us to our slogan, Eilenberg–type correspondences
= Birkhoff’s theorem for (finite) algebras + duality. As a consequence, we can
summarize Eilenberg–type correspondences in the following picture:

(pseudo)varieties
of T–algebras

Eilenberg–type correspondences
op(

(pseudo)equational
T–theories

)
where ‘op’ denotes the dual operator. This easy to understand and straightforward
one–to–one correspondence gives us what we called an abstract Eilenberg–type
correspondence for varieties and pseudovarieties of T–algebras, Proposition 143
and 153, respectively, from which we recover and discover particular instances
of Eilenberg–type correspondences for different kinds of algebraic structures, i.e.,
T–algebras.

It is worth mentioning that Eilenberg–type correspondences have not been fully
understood for the last forty years, which can be witnessed by the numerous
published results on the subject that deal with specific kinds of algebras such as
[13, 36, 70, 72, 74, 90] and categorical generalizations such as [5, 22, 89, 78]
in which the direct relation between “varieties of languages” and equational the-
ories, by using duality, is not studied or explored to find and justify the defining
properties of a “variety of languages”.

The contributions of the present chapter can be summarized as follows:

- To unveil Eilenberg–type correspondences and show that:

Eilenberg–type correspondences = Birkhoff’s theorem for (finite) algebras + duality.

- To show and understand where “varieties of languages” come from, that is:

“varieties of languages” = duals of (pseudo)equational theories.

This fact was conjectured by the author in [78].

- To provide a general and abstract Eilenberg–type correspondence theorem that
encompasses existing Eilenberg–type correspondences from the literature. Not
only for (local) pseudovarieties of algebras but also for (local) varieties of alge-
bras.
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- To derive Eilenberg–type correspondences without the use of syntactic algebras.

- To show that the notion of derivatives used to define the different kinds of “vari-
eties of languages” in Eilenberg–type correspondences is exactly the coalgebraic
structure of an object, which is easily derived via duality, in most of the cases,
from the notion of an algebra homomorphism.

As a running example we will work with the case of monoids, additional exam-
ples and applications will be presented in the next chapter.

6.1 Eilenberg–type correspondence for varieties of
T–algebras

In this section, we state an abstract Eilenberg–type correspondence for varieties of
T–algebras. We start by dualizing the categorical definition of an equational T–
theory, given in Definition 102, to get that of a coequational B–theory, where B is
a comonad on a category C. We will note that particular instances of coequational
B–theories have been already studied in the literature under the name of “varieties
of languages” to establish Eilenberg–type correspondences, e.g., [13, Theorem 39].
Thus, if we assume that D and C are dual categories and that the comonad B is the
dual of the monad T, as in Proposition 96, then, by duality, we get a one–to–one
correspondence between equational T–theories and coequational B–theories. All
in all, we get a one–to–one correspondence between varieties of T–algebras and
coequational B–theories, which is the abstract Eilenberg–type correspondence for
varieties of T–algebras, Proposition 143. The main picture can be summarized as
follows:

Varieties of
T–algebras Birkhoff’s thm.

Theorem 105

Equational
T–theories

Duality

Coequational
B–theoriesEilenberg–type correspondence

Proposition 143

where each arrow symbolizes a one–to–one correspondence and B is the comonad
that is the dual of the monad T (Proposition 96).

We dualize the definition of an equational T–theory as follows.

Definition 142. Let C be a category, B = (B, ε, δ) a comonad on C, (E ,M ) a factor-
ization system on C and C0 a full subcategory of C. A coequational B–theory on C0 is
a family of B–coalgebra morphisms M = {SY

mY
↪−−→ B(Y )}Y ∈C0 in M such that for

anyX,Y ∈ C0 and any g ∈ Coalg(B)(BX,BY) there exists g′ ∈ Coalg(B)(SX,SY)
such that the following diagram commutes:
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SY

B(Y )

SX

B(X)

mYmX

g′

∀g

Intuitively, every coalgebra SY is a B–subcoalgebra of the cofree coalgebra
BY = (B(Y ), δY ), and the family {SY }Y ∈C0 is closed under any coalgebra mor-
phism, i.e., for every g ∈ Coalg(B)(BX,BY), x ∈ SX implies g(x) ∈ SY . As an
example of coequational B–theories we have the “varieties of languages” defined
in [13, Definition 35] which we describe in a simpler way in Example 144. Now,
with the previous definition, Theorem 105 and duality, we have the following.

Proposition 143 (Abstract Eilenberg–type correspondence for varieties of T–alge-
bras). Let D be a complete category, T a monad on D, (E ,M ) a factorization system
on D and D0 a full subcategory of D. Assume (B1) to (B5). Let C be a category that
is dual to D, C0 the corresponding dual category of D0 and let B be the comonad on
C that is dual to T which is defined as in Proposition 96. Then there is a one–to–
one correspondence between varieties of T–algebras and coequational B–theories on
C0.

We now proceed with the continuation of Example 112 and describe the prop-
erties that characterize the coequational B–theories that correspond to varieties of
monoids. In this case, the Eilenberg–type correspondence we obtain is the one in
[13, Theorem 39].

Example 144 (Example 112 continued). Consider the setting of Example 112, i.e.,
D = D0 = Set, T the free monoid monad on Set, E = surjections and M = in-
jections. Then we get a one–to–one correspondence between varieties of monoids
and coequational B–theories on CABA. The latter can be characterized (see Exam-
ple 169 for a detailed proof of this fact in a more general setting) as operators L
on Set such that for every X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete atomic Boolean algebra
Set(X∗, 2) of subsets of X∗, i.e., every element in L (X) is a language on X.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of monoids h : Y ∗ → X∗ and L ∈ L (X), we have that L ◦ h ∈
L (Y ).

We finish this section by showing that the previous characterization of a co-
equational B–theory on CABA is equivalent with the –more complicated– notion of
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a “variety of languages” in [13, Definition 35]. This one–to–one correspondence is
exactly the Eilenberg–type theorem [13, Theorem 39].

In order to prove the previous fact, we recall the concept of a “variety of lan-
guages” defined in [13].

Definition 145 ([13, Definition 35]). A variety of languages, is an operator V on
Set such that for every X ∈ Set, V(X) ⊆ Set(X∗, 2) and it satisfies the following:

i) for every L ∈ V(X) we have that coeq(X∗/ eq〈L〉) ⊆ V(X);

ii) if coeq(X∗/Ci) ⊆ V(X), where Ci a monoid congruence of X∗, i ∈ I, then we
have that coeq(X∗/

⋂
i∈I Ci) ⊆ V(X);

iii) for every Y ∈ Set, if L ∈ V(Y ) and νL : Y ∗ → Y ∗/ eq〈L〉 denotes the
quotient morphism, then for each monoid morphism ϕ : X∗ → Y ∗ we have
coeq(X∗/ ker(νL ◦ ϕ)) ⊆ V(X).

We have the following coalgebraic characterization of coeq(X∗/ eq〈L〉).

Lemma 146. Let X ∈ Set and L ∈ Set(X∗, 2), then coeq(X∗/ eq〈L〉) = 〈〈L〉〉,
where 〈〈L〉〉 is the B–coalgebra generated by L.

Proof. By [13, Corollary 8] we have that the monoid X∗/ eq〈L〉 is the syntactic
monoid of L. The universal property of the syntactic monoid of L is, by duality, the
property that coeq(X∗/ eq〈L〉) = 〈〈L〉〉. This property of 〈〈L〉〉 being the dual of the
syntactic monoid of L was also mentioned in [42, Section 6].

Now, we characterize each of the V(X) for a variety of languages V.

Lemma 147. Let V be a variety of languages and X ∈ Set, then

V(X) = coeq

X∗/ ⋂
L∈V(X)

eq〈L〉

 .

Proof. (⊇): Follows from properties i) and ii) of V being a variety of languages.
(⊆): Consider the canonical morphism of monoids e

L′ : X∗/
⋂
L∈V(X) eq〈L〉 →

X∗/ eq〈L′〉, L′ ∈ V(X). Then, by duality, i.e., applying coeq, we get the monomor-

phism m
L′ : 〈〈L′〉〉 → coeq

(
X∗/

⋂
L∈V(X) eq〈L〉

)
which implies that the language

L′ is such that L′ ∈ coeq
(
X∗/

⋂
L∈V(X) eq〈L〉

)
since L′ ∈ 〈〈L′〉〉.

We now have, according to our notation, the following result that the syntactic
monoid of a language recognizes the language.

Lemma 148. For every X ∈ Set and every L ∈ Set(X∗, 2) we have that L =⋃
w∈L w/ eq〈L〉, where w/ eq〈L〉 denotes the equivalence class of w in X∗/ eq〈L〉.
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Proof. (⊆): obvious.
(⊇): Let u ∈

⋃
w∈L w/ eq〈L〉, then there exists v ∈ L such that (u, v) ∈ eq〈L〉.

In particular, Lu = Lv. Now, using the fact that v ∈ L we get the following
implications:

v ∈ L⇒ ε ∈ Lv = Lu ⇒ ε ∈ Lu

i.e., u ∈ L.

Lemma 147 says that V(X) ∈ CABA for every X ∈ Set, since coeq(X∗/C) ∼=
P(X∗/C) for every monoid congruence C of X∗ [13, Proposition 15]. Lemma
146 together with property i) of V being a variety of languages imply that V(X)
is closed under left and right derivatives. That is, every variety of languages V
satisfies properties i) and ii) of a coequational B–theory. Now we show that V also
satisfies property iii) of a coequational B–theory.

Lemma 149. Let V be a variety of languages. Then for every X,Y ∈ Set, homomor-
phism of monoids h : X∗ → Y ∗ and L ∈ V(Y ) we have that L ◦ h ∈ V(X).

Proof. By property iii) of V being a variety of languages we have the inclusion
coeq(X∗/ ker(νL ◦ h)) ⊆ V(X). We will show that L ◦ h ∈ coeq(X∗/ ker(νL ◦ h)) ⊆
V(X). In fact,

Claim: L ◦ h =
⋃
{w/ ker(νL ◦ h) | w ∈ X∗ s.t. h(w) ∈ L}.

Let v ∈ X∗, then:
(⊆): v ∈ L ◦ h⇒ h(v) ∈ L⇒ v ∈

⋃
{w/ ker(νL ◦ h) | w ∈ X∗ s.t. h(w) ∈ L}.

(⊇): Assume v ∈
⋃
{w/ ker(νL ◦ h) | w ∈ X∗ s.t. h(w) ∈ L}, i.e., there exists

u ∈ X∗ with h(u) ∈ L such that (v, u) ∈ ker(νL ◦ h). Now, we have

(v, u) ∈ ker(νL ◦ h)⇒ (h(v), h(u)) ∈ ker(νL) = eq〈L〉 ⇒ h(v) ∈ L

where the last implication follows from Lemma 148 since h(u) ∈ L. Finally, from
h(u) ∈ L we get u ∈ L ◦ h. This finishes the proof of the claim.

From the claim we have that L ◦ h ∈ coeq(X∗/ ker(νL ◦ h)) ⊆ V(X).

Until now we proved the following.

Proposition 150. Let V be a variety of languages. Then V is a coequational B–
theory.

Now we prove the converse.

Proposition 151. Let L be a coequational B–theory. Then L is a variety of lan-
guages.

Proof. We have to prove that L satisfies properties i), ii) and iii) that define a
variety of languages. In fact, let X ∈ Set, then:
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i) Properties i) and ii) of L being a coequational B–theory say that L (X) is a
B–subcoalgebra of Set(X∗, 2). In particular, for every L ∈ L (X) we have
coeq(X∗/ eq〈L〉) = 〈〈L〉〉 ⊆ L (X).

ii) To prove property ii) we show that for a monoid congruence Ci of X∗, i ∈
I, the B–coalgebra coeq(X∗/

⋂
i∈I Ci) is the B–subcoalgebra of Set(X∗, 2)

generated by the family {coeq(X∗/Ci)}i∈I . We show this by duality, i.e., in
the category of monoids. We have the following setting:

X∗

X∗/
⋂
i∈I CiPX∗/Cj mν

νj eν
ν

πj

where:

- νj : X∗ → X∗/Cj is the canonical homomorphism, j ∈ I,

- P is the product P =
∏
i∈I X

∗/Ci with projections πj : P → X∗/Cj , j ∈ I,

- ν is obtained from νj , j ∈ I, by the universal property of P , and

- ν = mν ◦ eν is the factorization of ν, i.e., ker(ν) =
⋂
i∈I Ci.

Now we prove, by duality, that coeq(X∗/
⋂
i∈I Ci) is the least B–subcoalgebra

of Set(X∗, 2) containing each of coeq(X∗/Ci). Let e : X∗ → X∗/C be an
epimorphism of monoids such that each νj factors through e, j ∈ I. That is,
there exists gj : X∗/C → X∗/Cj such that νj = gj ◦ e, j ∈ I. Therefore,
C ⊆ Cj , j ∈ I, and hence C ⊆

⋂
i∈I Ci, which means that there exists g :

X∗/C → X∗/
⋂
i∈I Ci such that eν = g ◦ e.

Now, L satisfying property ii) of a variety of languages follows from the ob-
servation above. In fact, if L (X) contains coeq(X∗/Ci), i ∈ I, then, by using
the fact that L (X) is a B–subcoalgebra of Set(X∗, 2), it contains the least
B–subcoalgebra of Set(X∗, 2) containing each of coeq(X∗/Ci), i ∈ I, which
is coeq(X∗/

⋂
i∈I Ci).

iii) Let Y ∈ Set, L ∈ L (Y ) and νL : Y ∗ → Y ∗/ eq〈L〉 be the quotient mor-
phism. Let ϕ : X∗ → Y ∗ be a monoid morphism. We have to show that
coeq(X∗/ ker(νL ◦ ϕ)) ⊆ L (X). In fact, let L′ ∈ coeq(X∗/ ker(νL ◦ ϕ)), i.e.,
L′ is of the form L′ =

⋃
w∈W w/ ker(νL ◦ ϕ) for some W ⊆ X∗. Define L′′

as L′′ =
⋃
w∈W ϕ(w)/ ker(νL) =

⋃
w∈W ϕ(w)/ eq〈L〉. Then we have that L′′ ∈

coeq(Y ∗/ eq〈L〉) which by i) implies that L′′ ∈ L (Y ), since coeq(Y ∗/ eq〈L〉) ⊆
L (Y ). Since L is a coequational B–theory then L′′ ◦ϕ ∈ L (X). To finish the
proof we prove the following:

Claim: L′ = L′′ ◦ ϕ.

Let u ∈ X∗, then:
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(⊆): Assume that u ∈ L′. Then there exists w ∈W such that (u,w) ∈ ker(νL ◦
ϕ). This implies that (ϕ(u), ϕ(w)) ∈ ker(νL) = eq〈L〉 with w ∈W , i.e., ϕ(u) ∈
L′′ which means that u ∈ L′′ ◦ ϕ.

(⊇): Assume that u ∈ L′′ ◦ ϕ, i.e., ϕ(u) ∈ L′′. Then there exists w ∈ W such
that (ϕ(u), ϕ(w)) ∈ ker(νL). This implies that (u,w) ∈ ker(νL◦ϕ) with w ∈W ,
i.e., u ∈ L′.

6.2 Eilenberg–type correspondence for pseudovari-
eties of T–algebras

Similar to the previous section, the purpose of this section is to derive Eilenberg–
type correspondences for pseudovarieties of T–algebras. This is summarized in the
following picture:

Pseudovarieties
of T–algebras Birkhoff’s thm. for

finite T–alg. Thm. 122

Pseudoequational
T–theories

Duality

Pseudocoequational
B–theoriesEilenberg–type correspondence

Proposition 153

As we saw in Example 130, we can derive Eilenberg–type correspondences for
pseudovarieties of T–algebras from Birkhoff’s theorem for finite T–algebras, The-
orem 122. Eilenberg–type correspondences for pseudovariaties of T–algebras are
exactly one–to–one correspondences between pseudovarieties of T–algebras and
duals of pseudoequational T–theories. By dualizing the definition of a pseudoe-
quational T–theory we get the following.

Definition 152. Let C be a concrete category such that its forgetful functor pre-
serves monos, B = (B, ε, δ) a comonad on C, (E ,M ) a factorization system on C
and C0 a full subcategory of C. Assume (Bf1) and that B preserves the morphisms
in M . A pseudocoequational B–theory on C0 is an operator R on C0 such that for
every X ∈ C0, R(X) is a nonempty collection of B–coalgebra morphisms in M with
codomain BX and finite domain and:

i) For every finite set I and fi ∈ R(X), i ∈ I, there exists f ∈ R(X) such that
every fi factors through f , i ∈ I.

ii) For everym ∈ R(X) with domain A and every B–coalgebra morphismm′ ∈M
with codomain A we have that m ◦m′ ∈ R(X).
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iii) For every Y ∈ C0, f ∈ R(X) and h ∈ Coalg(B)(BX,BY) we have that mh◦f ∈
R(Y ) where h◦f = mh◦f ◦eh◦f is the factorization of h◦f in Coalg(B) by using
the factorization system (E ,M ) on C, which is lifted to Coalg(B) by using the
fact that B preserves the morphisms in M and the dual of Lemma 100.

With the previous definition, Theorem 122 and duality, we have the following:

Proposition 153 (Abstract Eilenberg–type correspondence for pseudovarieties of
T–algebras). Let D be a complete concrete category such that its forgetful functor
preserves epis, monos and products, T a monad on D, D0 a full subcategory of D and
(E ,M ) a factorization system on D. Assume (Bf1) to (Bf4). Let C be a category
that is dual to D, let C0 be dual of D0 and B be the comonad on C that is dual to
the monad T on D which is defined as in Proposition 96. Then there is a one–to–
one correspondence between pseudovarieties of T–algebras and pseudocoequational
B–theories on C0.

We now explain and justify how the concept of a variety of languages in Eilen-
berg’s variety theorem [36, Theorem 34] corresponds to the dual of a pseudoequa-
tional T–theory in the setting of Example 130. For this purpose, we consider the
settingD = Set, D0 = finite sets, T the free monoid monad on Set, E = surjections
and M = injections. Then, by Proposition 153 we have a one–to–one correspon-
dence betweeen pseudovarieties of monoids and pseudoequational T–theories on
D0.

We now show that pseudoequational T–theories on D0 correspond exactly to
varieties of languages as defined in [36], which we call pseudovarieties of lan-
guages to avoid confusion with the concept of a variety of languages defined in
Example 144.

Definition 154. A pseudovariety of languages is an operator L on finite sets such
that for every finite set Σ we have:

i) L (Σ) is a subalgebra of the Boolean algebra Rec(Σ) of recognizable languages
on Σ,

ii) L (Σ) is closed under left and right derivatives. That is, aL,La ∈ L (Σ) for
every L ∈ L (Σ) and a ∈ Σ, and

iii) L is closed under morphic preimages. That is, for every alphabet Γ, homo-
morphism of monoids h : Γ∗ → Σ∗ and L ∈ L (Σ), we have that L◦h ∈ L (Γ).

We have that pseudoequational T–theories on D0 and pseudovarieties of lan-
guages are in one–to–one correspondence.

Lemma 155. Consider the setting D = Set, D0 = finite sets, T the free monoid
monad on Set, E = surjections and M = injections. Then there is a one–to–one
correspondence between pseudoequational T–theories on D0 and pseudovarieties of
languages.
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Proof. Let P be a pseudoequational T–theory and let L be a pseudovariety of lan-
guages. Then:

a) Define the operator L P on Setf as L P(X) :=
⋃
e∈P(X) Im(Set(e, 2)). We claim

that L P is a pseudovariety of languages. In fact, as the family P(X) is di-
rected in the sense of Definition 119 i), then the union

⋃
e∈P(X) Im(Set(e, 2)) ⊆

Set(T (X), 2) is a directed union of finite objects in CABA, which is a Boolean
subalgebra of Set(T (X), 2). As each e ∈ P(X) has as codomain a finite monoid
then Im(Set(e, 2)) is a subset of Rec(X) which is closed under left and right
derivatives. The previous argument shows that L P satisfies properties i) and
ii) above. Now, closure under morphic preimages follows from property iii) in
Definition 119. Therefore, L P is a pseudovariety of languages.

b) Define the operator PL on Setf such that PL (X) is the collection of all T–
algebra morphisms e ∈ E with domain TX and finite codomain such that
Im(Set(e, 2)) ⊆ L (X). We claim that PL is a pseudoequational T–theory. In
fact, we have that PL (X) is nonempty since e : TX−→→1 ∈ PL (X), where
1 is the one–element T–algebra. By definition, we have that PL (X) satis-
fies property ii) in Definition 119, and, it also satisfies property iii) in Defi-
nition 119 since L is closed under morphic preimages. Now, consider a family
{T (X)

ei−→→Ai}i∈I in PL (X) with I finite such that Im(Set(ei, 2)) ⊆ L (X), we
need to find a morphism e ∈ PL (X) such that every ei factors through e. In
fact, let A be the product of

∏
i∈I Ai with projections πi : A→ Ai, then, by the

universal property of A there exists a T–algebra morphism f : T (X)→ A such
that πi ◦ f = ei, for every i ∈ I. Let f = mf ◦ ef be the factorization of f in
Alg(T). We claim that e = ef is a morphism in PL (X) such that every ei factors
through e. Clearly, from the construction above, each ei factors through e = ef .
Now, let us prove that Im(Set(e, 2)) ⊆ L (X). In fact, let S be the codomain of
e = ef and let g ∈ Set(S, 2). We have to prove that g ◦ e ∈ L (X) which follows
from the following straightforward identity:

g ◦ e =
⋃
s∈g

(⋂
i∈I

hi,s ◦ ei

)

where hi,s ∈ Set(Ai, 2) is the set {πi(mf (s))} (i.e., we express the subset g of S
as the union of its points and each point s ∈ S is represented as

⋂
i∈I hi,s ◦ πi ◦

mf ). Now, for every s ∈ S and i ∈ I the composition hi,s ◦ ei belongs to L (X)
since hi,s ◦ei ∈ Im(Set(ei, 2)) ⊆ L (X). As S and I are finite then g ◦e ∈ L (X)
because L (X) is a Boolean algebra.

c) We have that P = PL P
. In fact, for everyX ∈ Setf the inclusion P(X) ⊆ PL P

(X)
is obvious. Now, to prove that PL P

(X) ⊆ P(X), let e′ ∈ Alg(T)(TX,A) ∩
E with finite codomain such that e′ ∈ PL P

(X), i.e., we have the inclusion
Im(Set(e′, 2)) ⊆

⋃
e∈P(X) Im(Set(e, 2)). Then the previous inclusion means

that for every f ∈ Set(A, 2) there exists ef ∈ P(X) and gf such that f ◦ e′ =
gf ◦ ef . As {ef | f ∈ Set(A, 2)} is finite, then there exists e ∈ P(X) such
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that each ef factors through e. We will prove that e′ factors through e ∈ P(X)
which will imply that e′ ∈ P(X), since P is a pseudoequational T–theory. It
is enough to show that ker(e) ⊆ ker(e′). In fact, assume that (u, v) ∈ ker(e)
and define f ′ ∈ Set(A, 2) as f ′(x) = 1 iff x = e′(u). Then, as ef ′ factors
through e we have that ker(e) ⊆ ker(ef ′) which implies (u, v) ∈ ker(ef ′). But
ker(ef ′) ⊆ ker(gf ′ ◦ ef ′) = ker(f ′ ◦ e′), which implies that (u, v) ∈ ker(f ′ ◦ e′),
i.e., 1 = f ′(e′(u)) = f ′(e′(v)), but the later equality means that e′(u) = e′(v) by
definition of f ′, i.e., (u, v) ∈ ker(e′) as desired.

d) We have that L = L PL . In fact, for every X ∈ Setf the inclusion L PL (X) ⊆
L (X) is obvious. Now, to prove L (X) ⊆ L PL (X) we need to find for every
L ∈ L (X) a surjective homomorphism e : T (X) → A with A finite such that
L ∈ Im(Set(e, 2)) ⊆ L (X). In fact, for L ∈ L (X) let e′ : T (X) → B be a
homomorphism with B finite and g ∈ Set(B, 2) such that L = g ◦ e′, this can be
done by property i) above. Let 〈〈L〉〉 be the subset of Set(T (X), 2) obtained from
{L} which is closed under Boolean combinations and left and right derivatives.
We show that 〈〈L〉〉 ∈ Coalgf (B), that is, we show that 〈〈L〉〉 is a finite object
in CABA that is closed under left and right derivatives. In fact, Im(Set(e′, 2)) ∈
Coalgf (B) is such that 〈〈L〉〉 ⊆ Im(Set(e′, 2)), which implies that 〈〈L〉〉 is a finite
Boolean algebra, i.e., an object in Coalgf (B). By construction of 〈〈L〉〉 we have
that L ∈ 〈〈L〉〉 ⊆ L (X) since L satisfies properties i) and ii) above. Now, let
i ∈ Coalg(B)(〈〈L〉〉, Set(T (X), 2)) be the inclusion morphism, then by duality
we have that the dual morphism e in Alg(T) of i is such that L ∈ Im(Set(e, 2)) ⊆
L (X) (in fact, Im(Set(e, 2)) = 〈〈L〉〉). Note that the codomain of e is finite since
it is an E –quotient of B which is also finite.

Remark. Note that, for every language L ∈ Set(T (X), 2), the object 〈〈L〉〉 in d)
above is the B–subcoalgebra of Set(T (X), 2) generated by L, which implies, by
duality, that its dual is the syntactic algebra SL of L. Additionally, by using duality
and the construction of 〈〈L〉〉, we have that every language in Im(Set(e, 2)) (i.e.,
recognized by the syntactic algebra of L) is a Boolean combination of derivatives
of L, where e is the dual of the inclusion i ∈ Coalg(B)(〈〈L〉〉, Set(T (X), 2)).

Now, by combining Proposition 153 and the previous lemma we obtain the
celebrated Eilenberg’s variety theorem.

Corollary 156 (Eilenberg’s variety theorem [36, Theorem 34]). There is a one–to–
one correspondence between pseudovarieties of monoids and pseudovarieties of lan-
guages.

6.3 Local Eilenberg–type correspondences

In this section, we provide abstract versions of local Eilenberg–type correspon-
dences for local varieties of T–algebras and local pseudovarieties of T–algebras.
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Local Eilenberg–type correspondences for pseudovarieties of algebras have been
studied in [1, 43]. The main idea of local Eilenberg–type correspondences is to
work with a fixed alphabet, which in our notation reduces to consider the case
in which the category D0 has only one object, say X. Our local Eilenberg–type
correspondences will follow from their corresponding local Birkhoff’s theorem and
duality. We start by dualizing the notion of a local equational T–theory.

Definition 157. Let C be a category, B a comonad on C, Y ∈ C and (E ,M ) a
factorization system on C. A local coequational B–theory on Y is a B–coalgebra
morphism SY

mY
↪−−→ B(Y ) in M such that for any g ∈ Coalg(B)(BY,BY) there

exists g′ ∈ Coalg(B)(SY,SY) such that the following diagram commutes:

SY

B(Y )

SY

B(Y )

mYmY

∀g

g′

With the previous definition, Theorem 136 and duality, we have the following.

Proposition 158 (Abstract Eilenberg–type correspondence for varieties ofX–gener-
ated T–algebras). Let D be a complete category, T a monad on D, (E ,M ) a factor-
ization system on D and X ∈ D. Assume (b1) to (b4). Let C be a category that is dual
to D, Y the corresponding dual object of X and let B be the comonad on C that is dual
to T which is defined as in Proposition 96. Then there is a one–to–one correspondence
between local varieties of X–generated T–algebras and local coequational B–theories
on Y .

For the case of varieties ofX–generated monoids we get the following Eilenberg–
type correspondence.

Example 159 (cf. [43]). Let D = Set, T be the free monoid monad on Set, E =
surjections and M = injections. Then, by fixing an object X ∈ D, we get a one–to–
one correspondence between varieties of X–generated monoids and subalgebras
S ∈ CABA of the complete atomic Boolean algebra Set(X∗, 2) such that:

i) S is closed under left and right derivatives. That is, for every L ∈ S and x ∈ X,
xL,Lx ∈ S.

ii) S is closed under morphic preimages. That is, for every homomorphism of
monoids h : X∗ → X∗ and L ∈ S, we have that L ◦ h ∈ S.

Now, we do a similar work for the case of finite X–generated T–algebras. We
dualize the concept of a local pseudoequational T–theory as follows.

Definition 160. Let C be a concrete category such that its forgetful functor pre-
serves monos, B a comonad on C, Y ∈ C and (E ,M ) a factorization system on C.
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Assume (bf1) and that B preserves the morphisms in M . A local pseudocoequa-
tional B–theory on Y is a nonempty collection RY of B–coalgebra morphisms in M
with codomain BY and finite domain such that:

i) For every finite set I and fi ∈ RY , i ∈ I, there exists f ∈ RY such that fi factors
through f , i ∈ I.

ii) For every m ∈ RY with domain A and every B–coalgebra morphism m′ ∈ M
with codomain A we have that m ◦m′ ∈ RY .

iii) For every f ∈ RY and h ∈ Coalg(T)(BY,BY) we have that mh◦f ∈ RY where
h ◦ f = mh◦f ◦ eh◦f is the factorization of h ◦ f .

With the previous definition, Theorem 140 and duality, we have the following.

Proposition 161 (Abstract Eilenberg–type correspondence for pseudovarieties of
X–generated T–algebras). Let D be a concrete complete category such that its for-
getful functor preserves epis, monos and products, T a monad on D, (E ,M ) a factor-
ization system on D and X ∈ D. Assume (bf1) to (bf3). Let C be a category that
is dual to D, Y the corresponding dual object of X and let B be the comonad on C
that is dual to T which is defined as in Proposition 96. Then there is a one–to–one
correspondence between local pseudovarieties of X–generated T–algebras and local
pseudocoequational B–theories on Y .

For the case of pseudovarieties of X–generated monoids we get the following
Eilenberg–type correspondence.

Example 162 (cf. [43]). Let D = Set, T be the free monoid monad on Set,
E = surjections and M = injections. Then, by fixing an object X ∈ Setf , we get
a one–to–one correspondence between pseudovarieties of X–generated monoids
and Boolean algebras S that are subalgebras of the complete atomic Boolean alge-
bra Set(X∗, 2) such that:

i) Every element in S is a recognizable language on X.

ii) S is closed under left and right derivatives. That is, for every L ∈ S and x ∈ X,
xL,Lx ∈ S.

iii) S is closed under morphic preimages. That is, for every homomorphism of
monoids h : X∗ → X∗ and L ∈ S, we have that L ◦ h ∈ S.

6.4 Syntactic algebras

In this section, we study the concept of syntactic algebras, a concept which is usu-
ally defined (but not necessary) when studying Eilenberg–type correspondences.
Syntactic monoids played a fundamental role in the proof for Eilenberg’s variety
theorem [36, Theorem VII.3.4]. In fact, given a variety of languages L , the pseu-
dovariety of monoids that corresponds to L is generated by the syntactic monoids
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of languages in L , and, given a pseudovariety of monoids K, the variety of lan-
guages that corresponds to K is given by the languages whose syntactic monoid
is in K. This kind of technique was also used in order to prove Eilenberg–type
correspondences for other kinds of algebraic structures [74, 72, 70, 90].

As we showed in the previous sections, syntactic algebras are not necessary in
order to establish Eilenberg–type correspondences. Nevertheless, syntactic alge-
bras have their own interest in language theory and categorical approaches such as
[22, 89, 30, 78] have considered the same idea of using syntactic algebras in order
to establish Eilenberg–type correspondences. In this section, we define the general
concept of a syntactic algebra and some of its main properties. The work in this
section is based on [78]. We start by defining the abstract concept of a T–language.

Definition 163. Let D be a category, T a monad on D and C an object in D. A
T–language over X ∈ D with colours in C is a morphism L ∈ D(T (X), C).

As examples of T–languages we have the following.

Example 164. Classical languages correspond to the setting D = Set, T the free
monoid monad and C = 2. We can also make other choices of C such as C = [0, 1],
the closed interval from zero to one, to obtain fuzzy languages as in [26]. In
general, a canonical choice of the object C is such that there is a category C that
is dual to D and the contravariant functor D( , C) : D×−→C is part of the duality
(for the case of classical languages we have the functor Set( , 2) : Set×−→ CABA

which is part of the duality between Set and CABA)

Now, we proceed to define the concepts of syntactic algebra and syntactic mor-
phism of a given language.

Definition 165 (Syntactic algebra and syntactic morphism). Let D be a cate-
gory, (E ,M ) be a factorization system on D, T a monad on D and C an object
in D. Let L ∈ D(T (X), C) be a T–language over X ∈ D with colours in C.
The syntactic algebra of L is an algebra RL ∈ Alg(T) together with a morphism
eL ∈ Alg(T)(TX,RL) ∩ E , called its syntactic morphism such that:

i) L is recognized by RL through eL. That is, there exists g ∈ D(RL, C) such
that g ◦ eL = L.

ii) For every A ∈ Alg(L) and e ∈ Alg(T)(TX,A) ∩ E such that A recognizes
L through e, there exists a necessarily unique g ∈ Alg(T)(A,RL) such that
eL = g ◦ e.

Note that syntactic algebras and syntactic morphisms, when they exist, are
unique up to isomorphism. The following settings for syntactic algebras have been
studied in the literature.

Example 166. The following are some settings in which syntactic algebras have
been studied:
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i) The case D = Set, E = surjections, M = injections, T the free monoid monad
and C = 2. In this case we get the notion of syntactic algebra for classical
languages [36, Chapter VII].

ii) The case D = VecK, E = surjective linear maps, M = injective linear maps,
C = K and T the monad such that T (V (X)) = V (X∗), where X ∈ Set and
V (X) denotes the vector space in VecK with basis X. In this case we get
syntactic algebras for power series [74].

iii) The case D = Poset, E = surjections, M = embeddings, T the free monoid
monad and C = 2, the two–element chain. In this case we get the notion
of syntactic algebra for classical languages recognized by ordered monoids
[70].

Syntactic algebras, as in [36, 74, 70, 72, 90], have been constructed as a quo-
tient of TX by a certain equivalence class (congruence) which is defined in terms
of L. Categorical approaches such as [22, 89] have generalized such constructions
by considering polynomials, in the case of [22], and unary representations, in the
case of [89]. Here we study the abstract construction of syntactic algebras by using
pushouts [78]. It is worth mentioning that syntactic algebras do not always exist,
see, e.g., [22, Example 2].

We will prove that the defining properties of a syntactic algebra are exactly the
ones of being a wide pushout of a special family. In order to do this, we fix a
category D, an object X ∈ D, T a monad on D and a factorization system (E ,M )
on D. We will use the following assumptions:

(S1) D has generalized pushouts and T preserves weak generalized pushouts whose
arrows are all in E .

(S2) The factorization system is proper and T preserves morphisms in E .

(S3) There is, up to isomorphism, only a set of T–algebra morphism in E with
domain TX.

We will use the following fact about factorization systems (see, e.g., [4, 14.15
Proposition]).

Lemma 167. Let D be a category and (E ,M ) be a factorization system on D such
that every morphism in M is mono. Then E is closed under the formation of general-
ized pushouts.

We have the following lemma that gives sufficient conditions for existence of
syntactic algebras.

Lemma 168. Let D be a category, (E ,M ) a factorization system on D, let X,C ∈ D
and T a monad on D. Assume (S1), (S2) and (S3). Let L ∈ D(T (X), C) be a
T–language over X with colours in C. Then the syntactic algebra RL exists.
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Proof. Consider the collection {T (X)
ei−→→Ai}i∈I , where ei ∈ Alg(T)(TX,Ai) ∩ E ,

up to isomorphism, that are factors of L, i.e., each of them recognizes L. The previ-
ous collection is a set by (S3) and it is nonempty since idTX ∈ Alg(T)(TX,TX) is
one of them. Let the codomain of ei be Ai = (Ai, ai) ∈ Alg(T). Let {Ai

qi−→→Q}i∈I
be the generalized pushout of {T (X)

ei−→→Ai}i∈I in D. By Lemma 167, every qi ∈ E

since every ei ∈ E . As T preserves weak generalized pushouts then {T (Ai)
T (qi)−→

T (Q)}i∈I is a weak generalized pushout of the family {TT (X)
T (ei)−→ T (Ai)}i∈I .

Now, since the family {T (Ai)
qi◦ai−−−→ Q}i∈I is such that qi◦ai◦T (ei) = qj ◦aj ◦T (ej),

i, j ∈ I, there exists αQ ∈ D(T (Q), Q) such that αQ ◦ T (qi) = qi ◦ ai. That is we
have the following situation:

T (X)

Ai

Aj

Q
...

ei

ej

qi

qj

QTT (X)

T (Ai)

T (Aj)

T (Q)
...

T (ei)

T (ej)

T (qi)

T (qj)

αQ

qi ◦ ai

qj ◦ aj

†

We prove that Q = (Q,αQ) ∈ Alg(T). In fact, from the commutative diagram:

Q Ai

T (Ai)

T (Q) Q Ai

qi

Tqi

qi

αQ

ai

ηAi

ηQ

idAi

†

nat. η

We conclude that αQ ◦ ηQ = idQ since qi is epi. Now, from the commutative
diagram:
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T 2(Q) T (Q) Q

T 2(Ai) T (Ai) Ai

T (Ai)

T (Q)

T 2(qi) T (qi) qi

T (qi)

µQ αQ

µAi ai

ai
T (αi)

αQT (αQ)

nat. µ

†

†T †

We conclude that αQ ◦ µQ = αQ ◦ T (αQ) (start at Q following the external arrows
and then compose with T 2(qi). Then use the fact that T 2(qi) is epi by (S2) since qi
is epi). This concludes the proof that Q = (Q,αQ) ∈ Alg(T).

To finish the proof, take RL = Q and eL = qi ◦ ei, for some i ∈ I (re-
member that qi ◦ ei = qj ◦ ej since {Ai

qi−→→Q}i∈I is the generalized pushout of
{T (X)

ei−→→Ai}i∈I). We have eL ∈ E by Lemma 167. The fact that L factors
through eL follows from the fact that each ei is a factor of L and the property
of {Ai

qi−→→Q}i∈I being the generalized pushout of {T (X)
ei−→→Ai}i∈I . Also, we have

that eL = qi ◦ ei ∈ Alg(T)(TX,RL) since we have the following commutative
diagram:

T (X) Ai Q

T 2(X) T (Ai) T (Q)

ei qi

Tei T (qi)

µX ai αQ†

As we mentioned in the proof of Lemma 146, and also in the remark before
Corollary 156, the syntactic algebra of a language L ∈ Set(X∗, 2) is the dual of the
coalgebra 〈〈L〉〉 generated by L, i.e., the least object in CABA containing L which is
closed under left and right derivatives. This property was also already mentioned
in [42, Section 6]. In general, under the hypothesis of Lemma 168, if we have
a T–language L over X and we assume that there is a concrete category C that
is dual to D such that the underlying set of the dual object of TX ∈ Alg(T) is
C(TX,C) (see, e.g., [29]), then the syntactic algebra RL ∈ Alg(T) of L is the dual
of the B–coalgebra 〈〈L〉〉 generated by L, where B is the comonad that is dual to
the monad T (see Section 4.4.2).
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Notice that the property of T preserving weak generalized pushouts whose ar-
rows are all in E is, by duality, the property of B preserving weak generalized
pullbacks whose arrows are all in M ′, where (E ′,M ′) is the factorization system
on C that is dual to (E ,M ) on D. This requirement of preserving weak generalized
pullbacks in order to guarantee the existence of the least subcoalgebra containing
an element has been mentioned and studied in [76, 47].

Another related subject in connection with the notion of syntactic algebras is
that of a subdirectly irreducible algebra [27, II.8]. In fact, for the case of the
monad Tτ asssociated to a finitary signature τ it is shown in [86, 8.10 Proposition]
that every subdirectly irreducible algebra is syntactic. Also, a generalization of
the syntactic congruence θL of a language L over X is given in [86], i.e., the
congruence θL such that TX/θL is the syntactic algebra of L.

Additionally, for coalgebras on Set, the notion of conjunctly irreducible is the
same as being one–generated [49, Proposition 2.4], where conjunctly irreducible is
the dual notion of being subdirectly irreducible.

6.5 Discussion

There are some works in which categorical approaches to derive Eilenberg–type
correspondences are used, notably [5, 22, 89, 78]. The work in [89] subsumes
[5, 22] and the present one subsumes [78, 22]. The kind of algebras considered
in [5] are algebras with a monoid structure which restricts the kind of algebras
one can consider, e.g., Eilenberg’s theorem [36, Theorem 34s] for pseudovarieties
of semigroups cannot be derived from [5]. A different approach to get a general
Eilenberg–type theorem is [22], were the algebras considered are algebras for a
monad T on SetS , for a fixed set S. The fact that all the monads considered are on
SetS was not general enough to cover cases such as [70, 72] in which the varieties
of languages are not necessarily Boolean algebras. The approach in [22] of con-
sidering algebras for a monad T is also considered and generalized in [78, 89] as
well as in the present thesis. One of the main challenges in categorical approaches
to Eilenberg–type correspondences is to define the right concept of a “variety of
languages”. The definition of a “variety of languages” given in [89] depends of
finding what they call a “unary representation”, which is a set of unary operations
on a free algebra satisfying certain properties, see [89, Definition 3.7.]. From this
“unary representation” one can construct syntactic algebras and define the kind of
derivatives that define a “variety of languages”. The definition of a “variety of lan-
guages” in the present thesis is a categorical one which avoids the explicit definition
of derivatives and existence of syntactic algebras. In the present chapter, deriva-
tives are captured coalgebraically and syntactic algebras are not used to prove the
abstract Eilenberg–type correspondences theorems, but both of those concepts can
be easily obtained via duality in each concrete case. Coalgebraic approaches, from
which one can easily define the concept of a “variety of languages”, are not used
in [22, 89] and it is a new point of view and contribution in this thesis. Another
important related work is [13], in which an Eilenberg–type correspondence for va-



6.5. Discussion 157

rieties of monoids is shown, which is an Eilenberg–type correspondence that can
be derived from the present chapter but not from [5, 22, 89]. This motivates the
study of Eilenberg–type correspondences for other classes of algebras different than
pseudovarieties. It is worth mentioning that in [13] the duality between equations
and coequations is studied for the first time in the context of an Eilenberg–type
correspondence.

Another important observation and remark is regarding the use of syntactic al-
gebras. In Eilenberg’s original proof [36, Theorem 34] the use of syntactic monoids
(semigroups) [36, VII.1] helped to prove his theorem. As in Eilenberg’s proof, the
use of syntactic algebras was also made in [22, 70, 72, 74, 89, 78] for establish-
ing Eilenberg–type correspondences. Categorical approaches such as [22, 78, 89]
generalized the concept of syntactic algebra. In [22, 89] syntactic algebras are ob-
tained, under mild assumptions, by means of a congruence, while in [78] are ob-
tained by using generalized pushouts, under the condition that T preserves weak
generalized pushouts. As we saw in the present thesis, the use of syntactic alge-
bras is not necessary in order to establish abstract Eilenberg–type correspondences.
Nonetheless, the study of syntactic algebras has their own importance in language
theory and some categorical properties and facts about them were shown in the
previous section.

Applications and theorems we can derive form the abstract Eilenberg–type cor-
respondences showed in this section are countless. Nevertheless, in the next chap-
ter we will derive some particular Eilenberg–type correspondences to show the
generality of the theorems presented in this chapter. We will discover and redis-
cover different kinds of Eilenberg–type correspondences.

The present chapter helped us to understand the general picture regarding
Eilenberg–type correspondences. This not only gave us an answer to the question
where varieties of languages come from but also gave us a more direct and general
way to obtain Eilenberg–type correspondences. This understanding allowed us to
be able to construct abstract theorems not only for the case of pseudovarieties of
algebras but also for other kind of classes of algebras such as varieties and also
local (pseudo)varieties. It is worth mentioning that other classes of algebras can
be considered with this approach such as implicational classes, in which implica-
tions are considered instead of equations. The implicational case can be studied by
omitting the requirement in an equational theory of having a free and projective
domain. A categorical approach of implicational classes has been already studied
in [15]. The study of Eilenberg–type correspondences for implicational classes is
left as future work.

Another new subject that can be derived from this chapter is the study of the
dual of an Eilenberg–type correspondence, a coEilenberg–type correspondence.
The concept of a coEilenberg–type correspondence can be defined as a one–to–one
correspondence between covarieties of coalgebras and equational theories. We also
leave this as future work. The contents of this chapter were based on [82].





Chapter 7

Applications

In this chapter, we show applications of the Eilenberg–type correspondences we
obtained in Chapter 6. The table below summarizes the examples given and their
corresponding citation, if any, for existing results. Roughly, we show a total of 64
correspondences, less than a half of them are known in the literature and most of
them were proved and published separately in at least 12 different papers. Most
of the new results that we show in this chapter are for varieties and local varieties.
The only variety case known in the literature is the case of varieties of monoids
in [13], which motivates the study of Eilenberg–type correspondences for varieties
and also for local varieties. In the case of the correspondence shown in [13],
we show a more simplified, but equivalent, definition of a variety of languages.
Note that in the last two rows of the table there is no variety version since the
corresponding class of algebras do not form a variety.

Eilenberg–type corre-
spondence for...

Pseudovarieties Local pseu-
dovarieties

Varieties Local
varieties

Semigroups [36, Thm. 34s]
((2) after Ex.
176)

[43] (Sec. 7.3) (1) after
Ex. 169

Sec. 7.3

Ordered semigroups [70] (Ex. 178) [43] (Sec. 7.3) after Ex.
170

Sec. 7.3

Monoids [36, Thm. 34]
((1)after Ex.
176)

[43] (Sec. 7.3) [13,
Thm.
39] (Ex.
144)

Sec. 7.3

Ordered monoids [70] (Ex. 178) [43] (Sec. 7.3) after Ex.
170

Sec. 7.3

Groups (3) after Ex.
176

Sec. 7.3 (2) after
Ex. 169

Sec. 7.3

Ordered groups Ex. 178 Sec. 7.3 after Ex.
170

Sec. 7.3

Monoid actions (dy-
namical systems)

(4) after Ex.
176

Sec. 7.3 (3) after
Ex. 169

Sec. 7.3

Semigroups with infi-
nite exponentiation

cf. [90] ((5)
after Ex. 176)

cf. [89, Thm.
6.3] (Sec. 7.3)

(4) after
Ex. 169

Sec. 7.3
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Eilenberg–type corre-
spondence for...

Pseudovarieties Local pseu-
dovarieties

Varieties Local
varieties

K–algebras for a finite
field K

[74] (Ex. 181) [1] for K = Z2
(Sec. 7.3)

Ex. 173 Sec. 7.3

Idempotent semirings [72] (Ex. 182) [1] (Sec. 7.3) Ex. 174 Sec. 7.3
Algebras of type τ in a
variety

[85] (Ex. 176) Sec. 7.3 Ex. 169 Sec. 7.3

Ordered algebras of
type τ in a variety

Ex. 177 Sec. 7.3 Ex. 170 Sec. 7.3

Multi–sorted algebras
of type τ

[30] (Ex. 179) Sec. 7.3 Ex. 171 Sec. 7.3

Fuzzy languages [69] (Ex. 180) Sec. 7.3 Ex. 172 Sec. 7.3
Commutative fuzzy
languages

[6] (Ex. 180) Sec. 7.3 Ex. 172 Sec. 7.3

Aperiodic fuzzy lan-
guages

[7] (Ex. 180) Sec. 7.3 – –

Commutative aperi-
odic fuzzy languages

Ex. 180 Sec. 7.3 – –

7.1 Eilenberg–type correspondences for varieties of
algebras

In this section, we derive Eilenberg–type correspondences for varieties of algebras
by using Proposition 143. It is worth mentioning that Eilenberg–type correspon-
dences for varieties of algebras, with the exception of the one showed in [13],
have not been studied in the literature. Nevertheless, there is a similarity with
Eilenberg–type correspondences for pseudovarieties of algebras, which are com-
monly studied, in the sense that the properties for closure under derivatives and
closure under homomorphic images are the same. We start by describing explicitely
Eilenberg–type correspondences for varieties of algebras of a given type τ in which
each function symbol in τ has finite arity.

Example 169. Let τ be a type of algebras where each function symbol g ∈ τ has
arity ng ∈ N and let K be a variety of algebras of type τ . Consider the case
D = D0 = Set, E = surjections, M = injections and let TK be the monad
such that for every X ∈ Set, TK(X) is the underlying set of the free algebra in
K on X generators (see [27, Definition II.10.9] and [66, VI.8]). Now, in order
to derive Eilenberg–type correspondences for this case, we need to characterize
the TK–algebra morphisms in E with domain TKX, X ∈ Set. For this we de-
fine the notion of a τ–congruence. A τ–congruence on an algebra A of type τ is
an equivalence relation θ ⊆ A × A on A such that for every g ∈ τ of arity ng,
every 1 ≤ i ≤ ng and aj ∈ A, 1 ≤ j ≤ ng, j 6= i, the property (u, v) ∈ θ im-
plies (g(a1, . . . ai−1, u, ai+1, . . . ang ), g(a1, . . . ai−1, v, ai+1, . . . ang )) ∈ θ. (cf. [27,
Definition II.5.1]). We have that congruences on a TK–algebra A are in one–to–
one correspondence with TK–algebra morphisms e : A−→→B in E with domain
A. In fact, every τ–congruence θ on A induces the canonical TK–algebra mor-
phism νθ : A−→→A/θ such that νθ(a) = a/θ and every TK–algebra morphisms
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e : A−→→B in E with domain A induces the τ–congruence ker(e) of A. Further-
more, a surjective morphism eX : TK(X)−→→QX between TK–algebras is a TK–
algebra morphism if and only if for every operation symbol g ∈ τ and 1 ≤ i ≤ ng
the following diagram commutes:

QX

QX

TK(X)

TK(X)

(†)

eX

gQX (eX(t1), . . . , , . . . , eX(tn))gTK(X)(t1, . . . , , . . . , tn)

eX

where the parameter in the vertical arrows in in the i–th position.
Now, we have that CABA is dual to Set, so we can consider C = C0 = CABA.

By using the duality between CABA and Set, each coequational B–theory can be in-
dexed by D0 = Set and can be presented, up to isomorphism, as a family {SX

mX
↪−−→

2TK(X)}X∈Set of injective B–coalgebra morphism, where B is the comonad on CABA

that is dual to TK . From this, we present coequational B–theories as operators L
on Set given by L (X) := Im(mX). Then, we get a one–to–one correspondence
between varieties of algebras in K and operators L on Set such that for every
X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete atomic Boolean algebra
Set(TK(X), 2) of subsets of TK(X).

ii) L (X) is closed under derivatives with respect to τ . That is, for every g ∈ τ
of arity ng, every 1 ≤ i ≤ ng, every t̃ = (tj)1≤j≤ng,j 6=i, tj ∈ TK(X), and
every L ∈ L (X) we have that L(i)

(g,t̃)
∈ L (X) where L(i)

(g,t̃)
∈ Set(TK(X), 2) is

defined as
L
(i)

(g,t̃)
(t) = L(g(t1, . . . , ti−1, t, ti+1, . . . , tng ))

t ∈ TK(X). That is, for every function symbol g ∈ τ we get ng kinds of
derivatives.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homomor-
phism of TK–algebras h : TK(Y ) → TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

In fact, for each coequational B–theory {SX
mX
↪−−→ 2TK(X)}X∈Set, if we define the

operator L on Set as L (X) := Im(mX), then we have that L satisfies the condi-
tions i), ii) and iii) above as follows:

a) Condition i) above follows from the fact that L (X) = Im(mX) ∼= SX ∈ CABA

and Im(mX) ⊆ Set(TK(X), 2).

b) Condition ii) above follows from lifting the duality between Set and CABA to
a duality between Alg(TK) and Coalg(B). In fact, every surjective TK–algebra
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morphism eX : TK(X)−→→QX defines the injective morphism Set(eX , 2) in
Coalg(B) which is defined as Set(eX , 2)(f) = f ◦ eX , f ∈ Set(QX , 2), and from
this we have:

L (X) = Im(Set(eX , 2)) = {f ◦ eX | f ∈ Set(QX , 2)}.

Closure of L (X) under under derivatives with respect to τ follows from the
fact that eX is a TK–algebra morphism. In fact, from diagram (†), by duality, it
follows that L (X) is closed under derivatives with respect to τ .

c) Condition iii) above is the commutativity of the diagram in Definition 142.

Conversely, each operator L on Set with the properties i), ii) and iii) above defines

the family of injective morphisms {L (X)
iX
↪−→ 2TK(X)}X∈Set in CABA where iX is

the inclusion morphism. Now, we have that the family {L (X)
iX
↪−→ 2TK(X)}X∈Set

is a coequational B–theory. In fact, for every X ∈ Set, the morphism iX defines, by
duality, the canonical surjective function eL (X) : TK(X) → TK(X)/θL (X) where
θL (X) ⊆ TK(X)× TK(X) is defined as:

θL (X) := {(v, w) ∈ TK(X)× TK(X) | ∃A ∈ At(L (X)) s.t. A(w) = A(v) = 1}

where At(L (X)) is the set of atoms of L (X). Clearly, θL (X) is an equivalence
relation on TK(X) since At(L (X)) is a partition of TK(X). We only need to show
that θL (X) is an τ–congruence on TKX. In fact, let g ∈ τ of arity ng, 1 ≤ i ≤ ng,
t̃ = (tj)1≤j≤ng,j 6=i, tj ∈ TK(X), and assume (u, v) ∈ θL (X), i.e., there exists
A ∈ At(L (X)) such that A(u) = A(v) = 1. Assume, towards a contradiction, that:

(g(t1, . . . ti−1, u, ti+1, . . . tng ), g(t1, . . . ti−1, v, ti+1, . . . tng )) /∈ θL (X)

then there exists B ∈ At(L (X)) such that:

B(g(t1, . . . ti−1, u, ti+1, . . . tng )) 6= B(g(t1, . . . ti−1, v, ti+1, . . . tng ))

which means that B(i)

(g,t̃)
(u) 6= B

(i)

(g,t̃)
(v) with B

(i)

(g,t̃)
∈ L (X) by closure under

derivatives with respect to τ . Therefore A ∩ B(i)

(g,t̃)
is an element in L (X) such

that 0 < A∩B(i)

(g,t̃)
< A which contradicts the fact that A is an atom. This previous

reasoning proves that (g(t1, . . . ti−1, u, ti+1, . . . tng ), g(t1, . . . ti−1, v, ti+1, . . . tng )) ∈
θL (X), which means that eL (X) is a surjective TK–algebra morphism. Therefore,

every iX is a B–coalgebra morphism and hence the family {L (X)
iX
↪−→ 2TK(X)}X∈Set

is, by closure under morphic preimages, a coequational B–theory. Note that con-
ditions i) and ii) above are exactly the properties that L (X) is a B–subcoalgebra
of Set(TK(X), 2). Finally, the one–to–one correspondence follows from the duality
between Set and CABA.

It is worth mentioning that the notion of derivatives given in ii) above follows
exactly from the defining properties of a τ–congruence on TKX and diagram (†).
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This kind of derivatives already appeared in [85] and are different than the kind
of derivatives considered in [22] which are, in general, compositions of derivatives
in ii) above.

From the previous general example we can provide details for the properties i),
ii) and iii) given in Example 144. In fact, for the case of monoids we have the type
τ = {e, ·} where e is a nullary function symbol and · is a binary function symbol.
We write x · y for ·(x, y). By considering the variety K of monoids, we get the
monad TK such that TK(X) = X∗, where X∗ is the free monoid on X. Then, we
have:

1) Properties i) and iii) in Example 169 trivially become properties i) and iii) in
Example 144.

2) Property ii) in Example 169 does not give us any kind of derivatives for the
nullary function symbol e ∈ τ , but will give us the derivatives L(1)

(·,u) and L(2)
(·,u)

for the binary function symbol · ∈ τ , u ∈ TK(X) = X∗, which are defined for
every w ∈ X∗ as

L
(1)
(·,u)(w) = L(w · u) = L(wu) and L

(2)
(·,u)(w) = L(u · w) = L(uw).

The previous two derivatives are, respectively, the left and right derivatives of
L with respect to u. That is, we get the familiar derivatives uL(w) = L(wu) =

L
(1)
(·,u)(w) and Lu(w) = L(uw) = L

(2)
(u,·)(w).

In a similar way, from Example 169, we get the following Eilenberg–type corre-
spondences (note that the notation for derivatives is changed in order to use a
more familiar notation).

(1) A one–to–one correspondence between varieties of semigroups and operators
L on Set such that for every X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete atomic Boolean alge-
bra Set(X+, 2) of subsets ofX+, i.e., every element in L (X) is a language
on X not containing the empty word.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X+.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, ho-
momorphism of semigroups h : Y + → X+ and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

(2) A one–to–one correspondence between varieties of groups and operators L
on Set such that for every X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete Boolean algebra
Set(FG(X), 2) of subsets of the free group FG(X) on X.
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ii) L (X) is closed under left and right derivatives and inverses. That is, if
L ∈ L (X) and x ∈ X then xL,Lx, L

−1 ∈ L (X), where xL(w) = L(wx),
Lx(w) = L(xw) and L−1(w) = L(w−1), w ∈ FG(X).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of groups h : FG(Y ) → FG(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

(3) For a fixed monoid M = (M, e, ·), a one–to–one correspondence between va-
rieties of M–actions, i.e., dynamical systems on M, and operators L on Set

such that for every X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete atomic Boolean alge-
bra Set(M ×X, 2) of subsets of M ×X.

ii) L (X) is closed under translations. That is, if L ∈ L (X) and m ∈M then
mL ∈ L (X), where mL(n, x) = L(m · n, x), (n, x) ∈M ×X.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, ho-
momorphism of M–actions h : M × Y → M × X (i.e., h(m · (n, y)) =
m · h(n, y)) and L ∈ L (X), we have that L ◦ h ∈ L (Y ).

(4) Consider the type of algebras τ = {·, ( )ω} where · is a binary operation and
( )ω is a unary operation. Now, let T be the free monad on Set for the algebras
of type τ that satisfy the following equations:

(x · y) · z = x · (y · z) xω · y = xω (y · xω)ω = y · xω

(xn)ω = xω, n ≥ 1 (x · y)ω = x · (y · x)ω

Here x ·y is the product of x and y, in that order, and xω represents the infinite
product x · x · · · · . Hence, for every X ∈ Set the algebra TX has as carrier set
the set X+ ∪X(ω), where X(ω) represents the set of all ultimately periodic se-
quences in Xω, i.e., every element in X(ω) is of the form uvω for some u ∈ X∗
and v ∈ X+, and X+ ∪X(ω) has the natural operations · of concatenation and
( )ω of “infinite power”.
In this case, we get a one–to–one correspondence between varieties of semi-
groups with infinite exponentiation and operators L on Set such that for every
X ∈ Set:

i) L (X) ∈ CABA and it is a subalgebra of the complete atomic Boolean alge-
bra Set(X+ ∪X(ω), 2) of subsets of X+ ∪X(ω).

ii) L (X) is closed under left and right derivatives and infinite exponenti-
ation. That is, if L ∈ L (X) and u ∈ X+ ∪ X(ω) then uL,Lu, L

ω ∈
L (X), where uL(w) = L(wu), Lu(w) = L(uw) and Lω(w) = L(wω),
w ∈ X+ ∪X(ω).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of T–algebras h : Y + ∪ Y (ω) → X+ ∪X(ω) and L ∈ L (X), we
have that L ◦ h ∈ L (Y ).
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We can do a similar work as in Example 169 to get Eilenberg–type correspon-
dences for varieties of ordered algebras for a given type.

Example 170. Let τ be a type of algebras where each function symbol g ∈ τ has
arity ng ∈ N and let K be a variety of ordered algebras of type τ . Consider the case
D = Poset, D0 = discrete posets, E = surjections, M = embeddings and let TK
be the monad such that for every X = (X,≤) ∈ Poset, TK(X) := (TK(X),≤TKX)
is the underlying poset of the free ordered algebra in K on X generators (see, e.g.,
[21, Proposition 1]). We have that AlgCDL is dual to Poset, so we can consider
C = AlgCDL, C0 = CABA. Similar to Example 169, by using the duality between
Poset and AlgCDL, each coequational B–theory can be indexed by Set (i.e., we
consider every object X ∈ Set as the object (X,=) ∈ Poset, which is in D0) and
can be presented, up to isomorphism, as a family {SX

mX
↪−−→ 2TK(X)}X∈Set, then

we present coequational B–theories as operators L on Set given by L (X) :=
Im(mX). Hence, we get a one–to–one correspondence between varieties of ordered
algebras in K and operators L on Set such that for every X ∈ Set:

i) L (X) ∈ AlgCDL and it is a subalgebra of the algebraic completely distributive
lattice Poset(TK(X),2c) ∼= Set(TK(X), 2) of subsets of TK(X). Here 2c ∈
Poset is the two–element chain.

ii) L (X) is closed under derivatives with respect to the type τ . That is, for every
g ∈ τ of arity ng, every 1 ≤ i ≤ ng, every t̃ = (tj)1≤j≤ng,j 6=i, tj ∈ TK(X), and
every L ∈ L (X) we have that L(i)

(g,t̃)
∈ L (X) where L(i)

(g,t̃)
∈ Set(TK(X), 2) is

defined as
L
(i)

(g,t̃)
(t) = L(g(t1, . . . , ti−1, t, ti+1, . . . , tng ))

t ∈ TK(X). That is, for every function symbol g ∈ τ we get ng kinds of
derivatives.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homomor-
phism of TK–algebras h : TK(Y ) → TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

From the previous example we can obtain Eilenberg–type correspondences for
varieties of ordered semigroups, varieties of ordered monoids, varieties of ordered
groups, and so on. For instance, for the case of varieties of ordered semigroups
we can consider the type τ = {·} where · is a binary function symbol and K is
the variety of ordered semigroups. Then we get a one–to–one correspondence
between varieties of ordered semigroups and operators L on Set such that for
every X ∈ Set:

i) L (X) ∈ AlgCDL and it is a subalgebra of the algebraic completely distributive
lattice Set(X+, 2) of subsets of X+, i.e. every element in L (X) is a language
on X not containing the empty word. In particular, L (X) is closed under
unions and intersections.
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ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X+.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of semigroups h : Y + → X+ and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

The following example shows a similar general result for many–sorted algebras.

Example 171 (cf. [30]). For this example we assume the reader has some knowl-
edge on many–sorted universal algebra, see, e.g., [87] and its references. Let S
be a set of sorts and consider the category D = D0 = SetS of S–sorted sets with
S–sorted functions, E = S–sorted surjections, and M = S–sorted injections. We
have that CABAS is dual to SetS , so we can consider C = C0 = CABAS . For any
many–sorted signature τ on S, define the monad Tτ on SetS such that Tτ (X) is
the S–sorted set of τ–terms on X. Then we get a one–to–one correspondence be-
tween varieties of many–sorted algebras of type τ and operators L on SetS such
that for every X ∈ SetS:

i) L (X) ∈ CABAS and it is a subalgebra of the algebra SetS(Tτ (X),2) ∈ CABAS .
Here 2 ∈ SetS is the S–sorted set such that for every sort s ∈ S we have
2s = 2 = {0, 1}.

ii) L (X) is closed under derivatives with respect to τ . That is, for every operation
symbol g ∈ τ of sort (w, s′) (i.e., w ∈ S∗ and s′ ∈ S) with w = s1 · · · sn, every
1 ≤ i ≤ n, every t = (tj)1≤j≤n,j 6=i where tj ∈ Tτ (X)sj , 1 ≤ j ≤ n, j 6= i,
and every L ∈ L (X) we have that L(i)

(g,t) ∈ L (X) where for every s ∈ S,(
L
(i)
(g,t)

)
s
∈ Set(TK(X)s, 2) is defined as

(
L
(i)
(g,t)

)
s

(p) =

{
0 if s 6= s′

Ls′(g(t1, . . . , ti−1, p, ti+1, . . . , tn)) if s = s′

p ∈ TK(X)si . That is, for every function symbol g ∈ τ we get n kinds of
derivatives. Note that w and s′ above depend on g (and therefore n also
depends on g).

iii) L is closed under morphic preimages. That is, for every Y ∈ SetS , homo-
morphism of Tτ–algebras h : TK(Y ) → TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

Note that properties i) and iii) follow in a similar way as in Example 169. Now,
closure under derivatives with respect to τ follow from the fact the morphisms
eX : TX → QX in an equational T–theory are homomorphisms of many–sorted
algebras. In fact, since eX is a many–sorted homomorphism then we have that the
following diagram commutes:
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(QX)s′

(QX)si

Tτ (X)s′

Tτ (X)si
(eX)si

gQX ((eX)s1(t1), . . . , , . . . , (eX)sn(tn))gTτ (X)(t1, . . . , , . . . , tn)

(eX)s′

where the parameter in the vertical arrows is in the i–th position. From that di-
agram, by duality, it follows that L (X) is closed under derivatives with respect
to τ . Conversely, if L (X) is closed under derivatives with respect to τ , then the
dual of the inclusion ι : L (X) → SetS(Tτ (X),2) is a surjective function whose
kernel is a congruence. In fact, assume by contradiction that it is not a congru-
ence, i.e., there exists an operation symbol g ∈ τ of sort (w, s′), with w = s1 · · · sn,
and there exists t = (tj)1≤j≤n,j 6=i, tj ∈ Tτ (X)sj , and p, p′ ∈ Tτ (X)si such that
(p, p′) ∈ ker(CABAS(ι,2)) but (gTτ (X)(t1, . . . , p, . . . , tn), gTτ (X)(t1, . . . , p

′, . . . , tn)) /∈
ker(CABAS(ι,2)). That is, there exists an atom A ∈ CABA(ιs′ , 2) such that A ∩
{gTτ (X)(t1, . . . , p, . . . , tn), gTτ (X)(t1, . . . , p

′, . . . , tn)} has only one element. Now, we
have that the object L ∈ SetS(Tτ (X),2) defined for every s ∈ S as:

Ls =

{
0 if s 6= s′

A if s = s′

is an element in L (X). Hence by closure under derivatives L(i)
(g,t) ∈ L (X) and

by assumption
(
L
(i)
(g,t)

)
si

either contains both p and p′ or none of them. But p ∈(
L
(i)
(g,t)

)
s′

iff Ls′(gTτ (X)(t1, . . . , p, . . . , tn)) = 1 iff Ls′(gTτ (X)(t1, . . . , p
′, . . . , tn)) = 0

iff p′ /∈
(
L
(i)
(g,t)

)
s′

which is a contradiction.

This Eilenberg–type correspondence is the version shown in [30] but for the
case of varieties of many–sorted algebras, instead of pseudovarieties.

The following example shows a correspondence for fuzzy languages.

Example 172 (cf. [69]). Consider the case D = D0 = Set, E = surjections, M =
injections and let T be the free monoid monad, i.e., T (X) = X∗, X ∈ Set. Now,
consider the set S = [0, 1] and let C = C0 be a category such that every object is
isomorphic to an object of the formXS and a morphism between an objectA ∼= XS

and an object B ∼= Y S is isomorphic to fS for some f ∈ Set(Y,X). Then, each
coequational B–theory can be indexed by D0 = Set and can be presented, up to
isomorphism, as a family {SX

mX
↪−−→ SX

∗}X∈Set of injective B–coalgebra morphism,
where B is the comonad on C that is dual to T. Elements in SX

∗
= Set(X∗, S)

are called fuzzy languages on X. From this, we present coequational B–theories
as operators L on Set given by L (X) := Im(mX). Then, we get a one–to–one
correspondence between varieties of monoids and operators L on Set, which we
call varieties of fuzzy languages (cf. [69]), such that for every X ∈ Set:
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i) L (X) is a subset of Set(X∗, S) such that B(L (X))
def
= {supp(g) | g ∈

L (X)} ⊆ Set(X∗, 2) is an object in CABA with the usual set–theoretic op-
erations, and the set L (X) is determined by the atoms CABA(B(L (X)), 2) of
B(L (X)) in the sense that

L (X) =

g ∈ SX∗
∣∣∣∣ g =

∨
k∈CABA(B(L (X)),2)

skk, sk ∈ S

 ,

where in the expression above, g(w) = sk if and only if w ∈ k.

ii) L (X) is closed under left and right derivatives. That is, if g ∈ L (X) and
u ∈ X∗ then ug, gu ∈ L (X), where ug(v) = g(vu) and gu(v) = g(uv), v ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, every
monoid homomorphism h : Y ∗ → X∗ and g ∈ L (X), we have that g ◦ h ∈
L (Y ).

Note that conditions i) and ii) above are exactly the conditions that L (X) ∈ C is a
closed subsystem of Set(X∗, S) (see Lemma 62 and the comments after its proof).

Additionally, by restricting the elements in L (X) to commutative fuzzy lan-
guages we get an Eilenberg–type correspondence for varieties of commutative
fuzzy languages. A fuzzy language g : X∗ → [0, 1] on X is commutative if for
every u, v ∈ X∗ we have that g(uv) = g(vu), cf. [6]. Note that a commutative
version can also be obtained by considering the monad T such that T (X) is the
free commutative monoid on X, but in this case elements in L (X) are in ST (X)

instead of SX
∗
.

Now, we derive correspondences for varieties of K–algebras over a finite field
K.

Example 173 (cf. [74, Théorème III.1.1.]). Let K be a finite field. Consider the
case D = D0 = VecK, E = surjections, and M = injections. We have that StVecK is
dual to VecK, so we can consider C = C0 = StVecK. For every setX denote by V(X)
the K–vector space with basis X. Consider the monad T (V(X)) = V(X∗), where
X∗ is the free monoid on X. Then we get a one–to–one correspondence between
varieties of K–algebras and operators L on Set such that for every X ∈ Set:

i) L (X) ∈ StVecK and it is a subspace of the space VecK(V(X∗),K) where the
topology on VecK(V(X∗),K) is the subspace topology of the product KV(X∗)

and K has the discrete topology.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
v ∈ V(X∗) then vL,Lv ∈ L (X), where vL(w) = L(wv) and Lv(w) = L(vw),
w ∈ V(X∗).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, K–linear
map h : V(Y ∗)→ V(X∗) and L ∈ L (X), we have that L ◦ h ∈ L (Y ).
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Remark. Note that to consider the case in which K is an infinite field we need
to consider C = C0 to be the category of linearly compact spaces (see, [16]).
In this case, we will only require L (X) to be a linearly compact subspace of
VecK(V(X∗),K) in contition i).

The next example, shows a correspondence for varieties of idempotent semir-
ings.

Example 174 (cf. [72, Theorem 5 (iii)]). Consider the case D = JSL, D0 = free
join semilattices, i.e., D0 = {(Pf (X),∪, ∅) | X ∈ Set}, where Pf (X) is the set of all
finite subsets ofX, E = surjections and M = injections. We have that StJSL is dual
to JSL, so we can consider C = StJSL and C0 = {JSL((Pf (X),∪, ∅), 2) | X ∈ Set}.

Define the monad T = (T, η, µ) on JSL as T (X,∨, 0) = (Pf (X∗)/θ,∪θ, ∅/θ)
where θ is the least equivalence relation on Pf (X∗) such that:

i) for every x, y ∈ X {x ∨ y}θ{x, y},

ii) for every A,B,C,D ∈ Pf (X∗), AθB and CθD imply ACθBD, and

iii) for every A,B,C,D ∈ Pf (X∗), AθB and CθD imply A ∪ CθB ∪D.

and ∪θ is defined as A/θ ∪θ B/θ = (A ∪ B)/θ which is well–defined by property
iii). We should use a notation like θ(X,∨,0) for the relation defined above, but we
will denote it by θ for simplicity. It will be clear from the context to which θ we are
refering to in each case. If h ∈ JSL((X,∨, 0), (Y,∨, 0)) then T (h) is defined as

T (h)({w1. . . . , wn}/θ) = {h∗(w1), . . . , h∗(wn)}/θ.

The unit of the monad is defined as η(X,∨,0)(x) = {x}/θ and the multiplication as:

µ(X,∨,0)({W1, . . .Wn}/θ) =

 n⋃
i=1

mi∏
j=1

W
(i)
j

/θ
where each Wi ∈ (Pf (X∗))∗ is such that Wi = W

(i)
1 · · ·W

(i)
mi , W

(i)
j ∈ Pf (X∗),

1 ≤ i ≤ n and 1 ≤ j ≤ mi.

We have that Alg(T) is the category of idempotent semirings.

Lemma 175. Consider the object (Pf (X),∪, ∅) ∈ JSL, then T (Pf (X),∪, ∅) is iso-
morphic to (Pf (X∗),∪, ∅) in JSL.

Proof. By definition we have that

T (Pf (X),∪, ∅) = (Pf (Pf (X)∗) /θ,∪θ, ∅/θ)

Now, every element in Pf (X) is of the form {x1, . . . , xn} = {x1}∪· · ·∪{xn}, which
by property i) and iii) of the definition of θ we have that:

{{x1, . . . , xn}}θ{{x1}, . . . , {xn}}



170 Chapter 7. Applications

Therefore, by using the defining properties of θ we have that every element in
Pf (Pf (X)∗) is equivalent to a unique element of the form:{{

x
(1)
1

}
· · ·
{
x(1)n1

}
, . . . ,

{
x
(m)
1

}
· · ·
{
x(m)
nm

}}
where uniqueness follows since (Pf (X),∪, ∅) is the free join semilattice. Hence,
the join semilattice homomorphism ϕ : (Pf (X∗),∪, ∅)→ T (Pf (X),∪, ∅) given by:

ϕ({x(1)1 · · ·x(1)n1
, . . . , x

(m)
1 · · ·x(m)

nm }) =
{{

x
(1)
1

}
· · ·

{
x(1)n1

}
, . . . ,

{
x
(m)
1

}
· · ·

{
x(m)
nm

}}/
θ

is an isomorphism in JSL.

We considered D0 = {(Pf (X),∪, ∅) | X ∈ Set}. As every semiring is an E –
quotient of (Pf (X∗),∪, ∅), by the previous Lemma we have that condition (B3) is
satisfied.

Now, an equational T–theory E = {Pf (X∗)
eX−→→QX}X∈Set on D0 can be equiv-

alently given as E = {X∗ ηX∗−→ Pf (X∗)
eX−→→QX}X∈Set where η is the unit of the

adjunction Pf ( ) a U and U : JSL → Set is the forgetful functor. Therefore,
for a given equational T–theory as above, we define the operator L on Set as
L (X) := Im(eX ◦ ηX∗ , 2) ⊆ Set(X∗, 2). Note that Set(X∗, 2) is isomorphic
to JSL(Pf (X∗),2) in StJSL under the correspondence f 7→ f ◦ ηX∗ and L 7→
L], f ∈ JSL(Pf (X∗),2) and L ∈ Set(X∗, 2), where ηX∗ and L] are defined as
ηX∗(w) = {w} and L]({w1, . . . , wn}) =

∨n
i=1 L(wi).

Therefore, we get a one–to–one correspondence between varieties of idempo-
tent semirings and operators L on Set such that for every X ∈ Set:

i) L (X) ∈ StJSL and it is a subspace of Set(X∗, 2) where the topology given on
Set(X∗, 2) is the subspace topology of the product 2X

∗
and 2 has the discrete

topology. In particular, L (X) is closed under unions.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, semiring
homomorphism h : Pf (Y ∗) → Pf (X∗) and L ∈ L (X), we have that L] ◦ h ◦
ηY ∗ ∈ L (Y ). Note that the composite L] ◦ h ◦ ηY ∗ is the same as h(−1)(L)
defined in [72]. The reason of the exponent ] and the use of ηY ∗ is that we
are using the isomorphism:

JSL(Pf (X∗),2) ∼= Set(X∗, 2)

f 7→ f ◦ ηX∗

L] ←[ L
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Closure of L (X) under left and right derivatives follows from the fact that
each morphism eX in an equational T–theory is a homomorphism of idempotent
semirings. In fact, for every v, w ∈ X∗ and f ∈ JSL(QX ,2) we have that

(f ◦ eX ◦ ηX∗)v(w) = (f ◦ eX ◦ ηX∗)(vw) = (feX({v}) ◦ eX ◦ ηX∗)(w)

where the function feX({v}) ∈ Set(QX , 2) is defined as feX({v})(q) = f(eX({v}) ·q),
where · is the product operation in QX, q ∈ QX . Note that feX({v}) ∈ JSL(QX ,2)
since for any p, q ∈ QX we have that

feX({v})(p ∨ q) = f(eX({v}) · (p ∨ q)) = f(eX({v}) · p) ∨ f(eX({v}) · q)
= feX({v})(p) ∨ feX({v})(q)

since f ∈ JSL(QX ,2). Therefore, (f ◦ eX ◦ ηX∗)x = fx ◦ eX ◦ ηX∗ ∈ L (X), i.e.,
L (X) is closed under right derivatives. Closure under left derivatives is proved in
a similar way.

Conversely, any S ∈ StJSL closed under left and right derivatives such that
S is a subspace of JSL(Pf (X∗),2) ∈ StJSL will define, by duality, the surjective
function eS : Pf (X∗) → StJSL(S,2) such that eS({w})(L) = L({w}), w ∈ X∗

and L ∈ S, which is a morphism in JSL(Pf (X∗), StJSL(S,2)). We only need to
show that for every w ∈ X∗ and U, V ∈ Pf (X∗) the equality eS(U) = eS(V ) im-
plies that eS({w}U) = eS({w}V ) and eS(U{w}) = eS(V {w}). In fact, assume
that eS(U) = eS(V ), i.e., for every L ∈ S we have that L(U) = L(V ). Now,
assume by contradiction that eS({w}U) 6= eS({w}V ), i.e., there exists L′ ∈ S
such that L′({w}U) 6= L′({w}V ), i.e., (L′ ◦ ηX∗)w(u) 6= (L′ ◦ ηX∗)w(v) with
(L′ ◦ ηX∗)w ∈ S by closure under right derivatives, which is a contradiction. The
equality eS(U{w}) = eS(V {w}) is proved in a similar way by using closure under
left derivatives. Therefore eS is a T algebra morphism in E .

Remark. Note that Eilenberg–type correspondences for varieties of K–algebras and
idempotent semirings can also be obtained from Example 169.

7.2 Eilenberg–type correspondences for pseudovari-
eties of algebras

In this section, we derive Eilenberg–type correspondences for pseudovarieties of
algebras by using Proposition 153. Eilenberg–type correspondences for pseudova-
rieties of algebras have been broadly studied in the literature, e.g., [36, 74, 72, 90,
70, 30]. There is a similarity with Eilenberg–type correspondences for the case of
varieties of algebras, and the finiteness condition will only change the kind of ob-
ject L (X) that a pseudocoequational theory has. We start by describing explicitely
Eilenberg–type correspondences for pseudovarieties of algebras of a given type τ
in which each function symbol in τ has finite arity.
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Example 176 (cf. Example 169, cf. [85, 86]). Let τ be a type of algebras where
each function symbol g ∈ τ has arity ng ∈ N and let K be a variety of algebras for
of type τ . Consider the case D = Set, D0 = Setf , E = surjections, M = injections
and let TK be the monad such that for every X ∈ Set, TK(X) is the underlying
set of the free algebra in K on X generators (see [27, Definition II.10.9] and [66,
VI.8]). We have that CABA is dual to Set, so we can consider C = CABA and C0 =
CABAf . In this case, we get a one–to–one correspondence between pseudovarieties
of algebras in K and operators L on Setf such that for every X ∈ Setf :

i) L (X) is a Boolean algebra and it is a subalgebra of the complete atomic
Boolean algebra Set(TK(X), 2) of subsets of TK(X) such that for every L ∈
L (X) there exists a finite algebra A inK, a morphism h ∈ Alg(TK)(TKX,A)
and L′ ∈ Set(A, 2) such that L = L′ ◦ h.

ii) L (X) is closed under derivatives with respect to the type τ . That is, for every
g ∈ τ of arity ng, every 1 ≤ i ≤ ng, every t̃ = (tj)1≤j≤ng,j 6=i, tj ∈ TK(X), and
every L ∈ L (X) we have that L(i)

(g,t̃)
∈ L (X) where L(i)

(g,t̃)
∈ Set(TK(X), 2) is

defined as
L
(i)

(g,t̃)
(t) = L(g(t1, . . . , ti−1, t, ti+1, . . . , tng ))

t ∈ TK(X). That is, for every function symbol g ∈ τ we get ng kinds of
derivatives.

iii) L is closed under morphic preimages. That is, for every Y ∈ Setf , homo-
morphism of TK–algebras h : TK(Y )→ TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

In fact, let P be a pseudoequational TK–theory on Setf and let L be an operator
on Setf satisfying the three properties above. Then:

a) Define the operator L P on Setf as L P(X) :=
⋃
e∈P(X) Im(Set(e, 2)). We claim

that L P satisfies the three properties above. In fact, as the family P(X) is di-
rected in the sense of Definition 119 i), then the union

⋃
e∈P(X) Im(Set(e, 2)) ⊆

Set(TK(X), 2) is a directed union of finite objects in CABA which is a Boolean
subalgebra of Set(TK(X), 2). As each e ∈ P(X) has as codomain a finite alge-
bra in K then Im(Set(e, 2)) is a subset of Set(TK(X), 2) which is closed under
derivatives with respect to the type τ (see Example 169). The previous argu-
ment shows that L P satisfies properties i) and ii) above. Now, closure under
morphic preimages follows from property iii) in Definition 119. Therefore, L P

satisfies the three properties above.

b) Define the operator PL on Setf such that PL (X) is the collection of all TK–
algebra morphisms e ∈ E with domain TKX and finite codomain such that
Im(Set(e, 2)) ⊆ L (X). We claim that PL is a pseudoequational TK–theory. In
fact, we have that PL (X) is nonempty since e : TKX−→→1 ∈ PL (X), where
1 is the one–element TK–algebra. By definition, we have that PL (X) satis-
fies property ii) in Definition 119, and, it also satisfies property iii) in Defini-
tion 119 since L is closed under morphic preimages. Now, consider a family
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{TK(X)
ei−→→Ai}i∈I in PL (X) with I finite such that Im(Set(ei, 2)) ⊆ L (X), we

need to find a morphism e ∈ PL (X) such that every ei factors through e. In
fact, let A be the product of

∏
i∈I Ai with projections πi : A→ Ai, then, by the

universal property of A there exists a TK–algebra morphism f : TK(X) → A
such that πi ◦ f = ei, for every i ∈ I. Let f = mf ◦ ef be the factorization of f
in Alg(TK). We claim that e = ef is a morphism in PL (X) such that every ei
factors through e. Clearly, from the construction above, each ei factors through
e = ef . Now, let us prove that Im(Set(e, 2)) ⊆ L (X). In fact, let S be the
codomain of e = ef and let g ∈ Set(S, 2). We have to prove that g ◦ e ∈ L (X)
which follows from the following straightforward identity:

g ◦ e =
⋃
s∈g

(⋂
i∈I

hi,s ◦ ei

)

where hi,s ∈ Set(Ai, 2) is the set {πi(mf (s))} (i.e., we express the subset g of
S as the union of its points and each point s ∈ S is represented as

⋂
i∈I hi,s ◦

πi ◦mf ). Now, for every s ∈ S and i ∈ I the composition hi,s ◦ ei belongs to
L (X) since hi,s ◦ ei ∈ Im(Set(ei, 2)) ⊆ L (X). Finally, as S and I are finite
then g ◦ e ∈ L (X) because L (X) is a Boolean algebra.

c) We have that P = PL P
. In fact, for everyX ∈ Setf the inclusion P(X) ⊆ PL P

(X)
is obvious. Now, to prove that PL P

(X) ⊆ P(X), let e′ ∈ Alg(T)(TKX,A) ∩
E with finite codomain such that e′ ∈ PL P

(X), i.e., we have the inclusion
Im(Set(e′, 2)) ⊆

⋃
e∈P(X) Im(Set(e, 2)). Then the previous inclusion means that

for every f ∈ Set(A, 2) there exists ef ∈ P(X) and gf such that f ◦ e′ = gf ◦ ef .
As {ef | f ∈ Set(A, 2)} is finite, then there exists e ∈ P(X) such that each
ef factors through e. We will prove that e′ factors through e ∈ P(X) which
will imply that e′ ∈ P(X), since P is a pseudoequational TK–theory. It is
enough to show that ker(e) ⊆ ker(e′). In fact, assume that (u, v) ∈ ker(e)
and define f ′ ∈ Set(A, 2) as f ′(x) = 1 iff x = e′(u). Then, as ef ′ factors
through e we have that ker(e) ⊆ ker(ef ′) which implies (u, v) ∈ ker(ef ′). But
ker(ef ′) ⊆ ker(gf ′ ◦ ef ′) = ker(f ′ ◦ e′), which implies that (u, v) ∈ ker(f ′ ◦ e′),
i.e., 1 = f ′(e′(u)) = f ′(e′(v)), but the later equality means that e′(u) = e′(v) by
definition of f ′, i.e., (u, v) ∈ ker(e′) as desired.

d) We have that L = L PL . In fact, for every X ∈ Setf the inclusion L PL (X) ⊆
L (X) is obvious. Now, to prove L (X) ⊆ L PL (X) we need to find for every
L ∈ L (X) a surjective homomorphism e : TK(X) → A with A ∈ K such that
L ∈ Im(Set(e, 2)) ⊆ L (X). In fact, for L ∈ L (X) let e′ : TK(X) → B be a
homomorphism with B ∈ K and g ∈ Set(B, 2) such that L = g ◦ e′, this can
be done by property i) above. Let 〈〈L〉〉 be the subset of Set(TK(X), 2) obtained
from {L} which is closed under Boolean combinations and derivatives with
respect to the type τ . We show that 〈〈L〉〉 ∈ Coalgf (B), that is, we show that 〈〈L〉〉
is a finite object in CABA that is closed under derivatives with respect to the type
τ . In fact, Im(Set(e′, 2)) ∈ Coalgf (B) is such that 〈〈L〉〉 ⊆ Im(Set(e′, 2)), which
implies that 〈〈L〉〉 is a finite Boolean algebra, i.e., an object in Coalgf (B). By
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construction of 〈〈L〉〉we have that L ∈ 〈〈L〉〉 ⊆ L (X) since L satisfies properties
i) and ii) above. Now, let i ∈ Coalg(B)(〈〈L〉〉, Set(TK(X), 2)) be the inclusion
morphism, then by duality we have that the dual morphism e in Alg(TK) of i is
such that L ∈ Im(Set(e, 2)) ⊆ L (X) (in fact, Im(Set(e, 2)) = 〈〈L〉〉). Note that
the codomain of e is in K since it is an E –quotient of B ∈ K.

Remark. Note that, for every “language” L ∈ Set(TK(X), 2), the object 〈〈L〉〉 in d)
above is the B–subcoalgebra of Set(TK(X), 2) generated by L which implies, by
duality, that its dual is the syntactic algebra SL of L. Additionally, by using duality
and the construction of 〈〈L〉〉, we have that every “language” in Im(Set(e, 2)) (i.e.,
recognized by the syntactic algebra of L) is a Boolean combination of derivatives
of L, where e is the dual of the inclusion i ∈ Coalg(B)(〈〈L〉〉, Set(TK(X), 2)).

Additionally, if we consider K to be the variety of all algebras of type τ then we
get the correspondence given in [85, 86].

From the previous example, we get the following Eilenberg–type correspon-
dences:

(1) [36, Theorem 34] A one–to–one correspondence between pseudovarieties of
monoids and operators L on Setf such that for every X ∈ Setf :

i) L (X) is a Boolean subalgebra of Set(X∗, 2) such that for every L ∈
L (X) there exists a finite monoid M, a monoid homomorphism h : X∗ →
M and L′ ∈ Set(M, 2) such that L′ ◦ h = L, i.e., L is a recognizable lan-
guage on X.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, ho-
momorphism of monoids h : Y ∗ → X∗ and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

(2) [36, Theorem 34s] A one–to–one correspondence between pseudovarieties of
semigroups and operators L on Setf such that for every X ∈ Setf :

i) L (X) is a Boolean subalgebra of Set(X+, 2) such that for every L ∈
L (X) there exists a finite semigroup S, a semigroup homomorphism h :
X+ → S and L′ ∈ Set(S, 2) such that L′ ◦ h = L, i.e., L is a recognizable
language on X not containing the empty word.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X+.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, ho-
momorphism of semigroups h : Y + → X+ and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).
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(3) A one–to–one correspondence between pseudovarieties of groups and opera-
tors L on Setf such that for every X ∈ Setf :

i) L (X) is a Boolean subalgebra of Set(FG(X), 2) such that for every L ∈
L (X) there exists a finite group G, a group homomorphism h : FG(X)→
G and L′ ∈ Set(G, 2) such that L′ ◦ h = L.

ii) L (X) is closed under left and right derivatives and inverses. That is, if
L ∈ L (X) and x ∈ X then xL,Lx, L

−1 ∈ L (X), where xL(w) = L(wx),
Lx(w) = L(xw) and L−1(w) = L(w−1), w ∈ FG(X).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of groups h : FG(Y ) → FG(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

(4) For a fixed monoid M = (M, e, ·), a one–to–one correspondence between pseu-
dovarieties of M–actions, i.e., dynamical systems on M, and operators L on
Setf such that for every X ∈ Setf :

i) L (X) is a Boolean subalgebra of Set(M ×X, 2) such that for every L ∈
L (X) there exists a finite M–action S, an M–action homomorphism h :
M ×X → S and L′ ∈ Set(S, 2) such that L′ ◦ h = L.

ii) L (X) is closed under translations. That is, if L ∈ L (X) and m ∈M then
mL ∈ L (X), where mL(n, x) = L(m · n, x), (n, x) ∈M ×X.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, ho-
momorphism of M–actions h : M × Y → M × X (i.e., h(m · (n, y)) =
m · h(n, y)) and L ∈ L (X), we have that L ◦ h ∈ L (Y ).

(5) (cf. [90]) A one–to–one correspondence between pseudovarieties of semi-
groups with infinite exponentiation and operators L on Setf such that for
every X ∈ Setf :

i) L (X) is a Boolean subalgebra of Set(X+ ∪ X(ω), 2) such that for every
L ∈ L (X) there exists a finite semigroup with infinite exponentiation S,
a morphism h ∈ Alg(T)(TX,S) and L′ ∈ Set(S, 2) such that L′ ◦ h = L.

ii) L (X) is closed under left and right derivatives and infinite exponenti-
ation. That is, if L ∈ L (X) and u ∈ X+ ∪ X(ω) then uL,Lu, L

ω ∈
L (X), where uL(w) = L(wu), Lu(w) = L(uw) and Lω(w) = L(wω),
w ∈ X+ ∪X(ω).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of T–algebras h : Y + ∪ Y (ω) → X+ ∪X(ω) and L ∈ L (X), we
have that L ◦ h ∈ L (Y ).

In the next example we obtain an Eilenberg–type correspondence for pseudova-
rieties of ordered algebras of a given type τ such that each function symbol in τ
has a finite arity.
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Example 177 (cf. Example 170). Let τ be a type of algebras where each function
symbol g ∈ τ has arity ng ∈ N and let K be a variety of ordered algebras of type τ .
Consider the case D = Poset, D0 = finite discrete posets, E = surjections, M =
embeddings and let TK be the monad such that for every X = (X,≤) ∈ Poset,
TK(X) := (TK(X),≤TKX) is the underlying poset of the free ordered algebra in K
on X generators (see [21, Proposition 1]). We have that AlgCDL is dual to Poset,
so we can consider C = AlgCDL, C0 = CABAf . In this case, we get a one–to–one
correspondence between pseudovarieties of ordered algebras in K and operators
L on Setf such that for every X ∈ Setf :

i) L (X) is a distributive sublattice of Poset(TK(X),2c) ∼= Set(TK(X), 2) of
subsets of TK(X) such that for every L ∈ L (X) there exists a finite ordered
algebra A in K, a morphism h ∈ Alg(TK)(TKX,A) and L′ ∈ Poset(A,2c)
such that L = L′ ◦ h. Here 2c ∈ Poset is the two–element chain.

ii) L (X) is closed under derivatives with respect to τ . That is, for every g ∈ τ
of arity ng, every 1 ≤ i ≤ ng, every t̃ = (tj)1≤j≤ng,j 6=i, tj ∈ TK(X), and
every L ∈ L (X) we have that L(i)

(g,t̃)
∈ L (X) where L(i)

(g,t̃)
∈ Set(TK(X), 2) is

defined as
L
(i)

(g,t̃)
(t) = L(g(t1, . . . , ti−1, t, ti+1, . . . , tng ))

t ∈ TK(X). That is, for every function symbol g ∈ τ we get ng kinds of
derivatives.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homomor-
phism of TK–algebras h : TK(Y ) → TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

Example 178 ([70, Theorem 5.8]). From the previous example we can obtain
Eilenberg–type correspondences for pseudovarieties of ordered semigroups, pseu-
dovarieties of ordered monoids, pseudovarieties of ordered groups, and so on. For
instance, for the case of pseudovarieties of ordered monoids we can consider the
type τ = {e, ·} where e is a nullary function symbol, · is a binary function symbol
and K is the variety of ordered monoids. Then we get a one–to–one correspon-
dence between pseudovarieties of ordered monoids and operators L on Setf such
that for every X ∈ Setf :

i) L (X) is a distributive sublattice of the distributive lattice Set(X∗, 2) of sub-
sets of X∗, i.e., every element in L (X) is a language on X, such that every
L ∈ L (X) is a regular language.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, homo-
morphism of monoids h : Y ∗ → X∗ and L ∈ L (X), we have that L ◦ h ∈
L (Y ).
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Next, we get an Eilenberg–type correspondence for pseudovarieties of many–
sorted algebras.

Example 179 ([30], cf. Example 171). For this example we assume the reader
has some knowledge on many–sorted universal algebra, see, e.g., [87] and its ref-
erences. Let S be a set of sorts and consider the category D = SetS of S–sorted
sets with S–sorted functions, D0 = SetSf , the finite S–sorted sets 1, E = S–sorted
surjections, and M = S–sorted injections. We have that CABAS is dual to SetS ,
so we can consider C = CABAS and C0 = CABASf . For any many–sorted signature
τ on S, define the monad Tτ on SetS such that Tτ (X) is the S–sorted set of τ–
terms on X. Then we get a one–to–one correspondence between pseudovarieties
of many–sorted algebras of type τ and operators L on SetSf such that for every
X ∈ SetSf :

i) L (X) is a Boolean subalgebra of the algebra SetS(Tτ (X),2) ∈ CABAS such
that for each s ∈ S the Boolean algebra L (X)s has only recognizable lan-
guages.

ii) L (X) is closed under derivatives with respect to τ . That is, for every operation
symbol g ∈ τ of sort (w, s′) (i.e., w ∈ S∗ and s′ ∈ S) with w = s1 · · · sn, every
1 ≤ i ≤ n, every t = (tj)1≤j≤n,j 6=i where tj ∈ Tτ (X)sj , 1 ≤ j ≤ n, j 6= i,
and every L ∈ L (X) we have that L(i)

(g,t) ∈ L (X) where for every s ∈ S,(
L
(i)
(g,t)

)
s
∈ Set(TK(X)s, 2) is defined as

(
L
(i)
(g,t)

)
s

(p) =

{
0 if s 6= s′

Ls(g(t1, . . . , ti−1, p, ti+1, . . . , tn)) if s = s′

p ∈ TK(X)si . That is, for every function symbol g ∈ τ we get n kinds of
derivatives.

iii) L is closed under morphic preimages. That is, for every Y ∈ SetSf , homo-
morphism of Tτ–algebras h : TK(Y ) → TK(X) and L ∈ L (X), we have that
L ◦ h ∈ L (Y ).

This Eilenberg–type correspondence is exactly the version shown in [30]. In this
case, condition i) is equivalent to conditions (BPS 1) and (BPS 3) in [30], condition
ii) is equivalent to condition (BPS 2) of closure under translations, and condition
iii) is equivalent to condition (BPS 4). This kind of correspondence was also ob-
tained in [89].

The following example shows a correspondence for fuzzy languages.

Example 180 ([69, Theorem 7]). Consider the case D = Set, D0 = Setf , E =
surjections, M = injections and let T be the free monoid monad, i.e., T (X) = X∗,

1An S–sorted set X = (Xs)s∈S is finite if ∪s∈S{s} ×Xs is finite.
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X ∈ Set. Now, consider the set S = [0, 1], let C be a category such that every
object is isomorphic to an object of the form XS and a morphism between an
object A ∼= XS and an object B ∼= Y S is isomorphic to fS for some f ∈ Set(Y,X),
and let C0 be the dual of D0. We use a similar argument as in Example 176 and
use the correspondence between pseudoequational T–theories P and operators L
on Setf by defining L (X) :=

⋃
e∈P(X) Im(Set(e, S)). From this setting, we get

a one–to–one correspondence between varieties of monoids and operators L on
Setf , which we call pseudovarieties of fuzzy languages (cf. [69]), such that for every
X ∈ Setf :

i) L (X) is a subset of Set(X∗, S) in which for each g ∈ L (X) there exists a
finite monoid A, a monoid homomorphism h : X∗ → A and g′ ∈ Set(A,S)

such that g = g′ ◦ h, B(L (X))
def
= {supp(g) | g ∈ L (X)} ⊆ Set(X∗, 2) is

an object in BA with the usual set–theoretic operations, and the set L (X) is
determined by B(L (X)) in the sense that

L (X) =

g ∈ SX∗
∣∣∣∣ g =

∨
k∈K0⊆B(L (X))

skk, sk ∈ S,K0 finite

 ,

where
∨

in the expression above is the maximum, i.e., g(w) = max{skk(w) |
k ∈ K0}. Elements in Set(X∗, S) are called fuzzy languages on X.

ii) L (X) is closed under left and right derivatives. That is, if g ∈ L (X) and
u ∈ X∗ then ug, gu ∈ L (X), where ug(v) = g(vu) and gu(v) = g(uv), v ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, every
monoid homomorphism h : Y ∗ → X∗ and g ∈ L (X), we have that g ◦ h ∈
L (Y ).

Note that the three conditions above are equivalent to those that define a “variety
of fuzzy languages” in the sense of [69]. In fact, in [69] it is shown that the
operator B defined in i) above is a “variety of languages” in the classical sense
[36], and that each “variety of languages” will induce a pseudovariety of fuzzy
languages by the equality given above. Moreover, this correspondence is bijective
[69, Theorem 6]. A “variety of fuzzy languages” in the sense of [69] is closed
under unions, intersections, complements, multiplications by constants, quotients,
inverse homomorphic images and cuts, see [69, Section 3]. We can prove those
closure properties as follows:

a) Closure under unions, where by the union of g1, g2 ∈ L (X) is defined by taking
their maximum componentwise. So, given g1, g2 ∈ L (X) means that there
exists ei ∈ P(X) with finite codomain Ai and fi ∈ Set(Ai, S) such that fi ◦ ei =
gi, i = 1, 2. Then, as P is a pseudoequational T–theory then there exists e ∈ P

with finite codomain A such that ei factors through e, say ei = hi ◦ e. Define
f ∈ Set(A,S) as f(a) = max{(f1 ◦ h1)(a), (f2 ◦ h2)(a)}, then

(g1 ∨ g2)(w) = max{g1(w), g2(w)} = max{(f1 ◦ h1 ◦ e)(w), (f2 ◦ h2 ◦ e)(w)}
= f(e(w)) = (f ◦ e)(w)
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that is, g1 ∨ g2 = f ◦ e ∈ L (X). Therefore, L (X) is closed under unions.

b) Closure under intersections, complements, multiplication by constants and cuts
follow from a similar argument as in a) by defining the appropiate f as we did
above. If fact, by using the notation above, for the intersection of g1 and g2
define f(a) = min{(f1 ◦ h1)(a), (f2 ◦ h2)(a)}, for the complement of g1 define
f(a) = 1 − (f1 ◦ h1)(a), for multiplication of g1 by a constant c ∈ S define
f(a) = c(f1 ◦ h1)(a), for the c–cut of g1 define f(a) = 1 if (f1 ◦ h1)(a) ≥ c and
f(a) = 0 otherwise.

c) Closure under inverse homomorphic images is the same as condition iii) above.

d) Closure under quotients is proved in [69, Lemma 3].

Additionally, in the setting of this example, if we consider the pseudoequational
T–theory that corresponds to the pseudovariety of commutative monoids satisfy-
ing some identity xn = xn+1, n = 1, 2 = . . ., see Example 129, then we get
an Eilenberg–type correspondence for commutative aperiodic fuzzy languages, cf.
[7, 6]. A fuzzy language g : X∗ → S on X is commutative if for every u, v ∈ X∗ we
have that g(uv) = g(vu). A fuzzy language g : X∗ → [0, 1] on X is aperiodic if for
every u, v, w ∈ X∗ we have g(uvnw) = g(uvn+1w) for some n ∈ N+. In a similar
way, we can get the Eilenberg–type correspondence for aperiodic fuzzy languages
shown in [7].

The next example shows a correspondence for pseudovarieties of K–algebras
over a finite field K.

Example 181 (cf. [74, Théorème III.1.1.] and Example 173). Let K be a finite
field. Consider the case D = VecK, D0 = finite K–vector spaces, E = surjections
and M = injections. We have that StVecK is dual to VecK, so we can consider
C = StVecK and C0 = finite K–vector spaces. For every set X denote by V(X)
the K–vector space with basis X. Consider the monad T (V(X)) = V(X∗), where
X∗ is the free monoid on X. Then we get a one–to–one correspondence between
pseudovarieties of K–algebras and operators L on Setf such that for every X ∈
Setf :

i) L (X) is a K–vector space which is a subspace of VecK(V(X∗),K) such that
every element S in L (X) is a recognizable series on X, i.e., there exists a K–
algebra morphism h : TX→ A, with A finite, and S′ ∈ VecK(A,K) such that
S′ ◦ h = S.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
v ∈ V(X∗) then vL,Lv ∈ L (X), where vL(w) = L(wv) and Lv(w) = L(vw),
w ∈ V(X∗).

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, K–linear
map h : V(Y ∗)→ V(X∗) and L ∈ L (X), we have that L ◦ h ∈ L (Y ).
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Remark. Note that to consider the case in which K is an infinite field we need to
consider C to be the category of linearly compact spaces and C0 the dual of D0 (see,
[16]).

The next example shows a correspondence for pseudovarieties of idempotent
semirings.

Example 182 ([72, Theorem 5 (iii)] cf. Example 174). Consider the caseD = JSL,
D0 = finite free join semilattices, i.e., D0 = {(P(X),∪, ∅) | X ∈ Setf}, where P is
the powerset operator, E = surjections and M = injections. We have that StJSL
is dual to JSL, so we can consider C = StJSL and C0 = {JSL((P(X),∪, ∅), 2) |
X ∈ Setf}. Let T be the monad on JSL such that T (S,∨, 0) is the free idempotent
semiring on (S,∨, 0) ∈ JSL. Then we get a one–to–one correspondence between
pseudovarieties of idempotent semirings and operators L on Setf such that for
every X ∈ Setf :

i) L (X) is a join subsemilattice of Set(X∗, 2) such that every L ∈ L (X) is a
regular language. In particular, L (X) is closed under unions.

ii) L (X) is closed under left and right derivatives. That is, if L ∈ L (X) and
x ∈ X then xL,Lx ∈ L (X), where xL(w) = L(wx) and Lx(w) = L(xw),
w ∈ X∗.

iii) L is closed under morphic preimages. That is, for every Y ∈ Set, semiring
homomorphism h : Pf (Y ∗) → Pf (X∗) and L ∈ L (X), we have that L] ◦ h ◦
ηY ∗ ∈ L (Y ) (see Example 174).

Remark. Note that Eilenberg–type correspondences for pseudovarieties of K–alge-
bras and idempotent semirings can also be obtained from Example 176.

7.3 Local Eilenberg–type correspondences

In this section, we derive local Eilenberg–type correspondences for varieties and
pseudovarieties ofX–generated T–algebras. Local Eilenberg–type correspondences
for pseudovarieties of algebras have been studied in [1, 43]. As we noted, this cases
are particular cases for which the categoryD0 has only one object, namelyX. Thus,
the defining properties for their corresponding coequational theories and pseudo-
coequational theories are given only in terms of the objectX, i.e., we consider local
coequational theories and local pseudocoequational theories, respectively (see Def-
inition 157 and Definition 160).

We can consider the same settings as in Section 7.1 to obtain local Eilenberg–
type correspondences for varieties of X–generated T–algebras. That is, we fix an
object X ∈ D satisfying the hypothesis of Proposition 158 to obtain the respec-
tive local versions. For example, the local version for the case of varieties of X–
generated ordered groups reads as follows: There is a one–to–one correspondence
between varieties of X–generated ordered groups and subalgebras S ∈ AlgCDL of
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the completely distributive lattice Set(F(X), 2), where F(X) is the free group on
X, such that:

i) S is closed under left and right derivatives and inverses. That is, for every
L ∈ S and x ∈ X we have that xL,Lx, L−1 ∈ S. Here L−1(w) = L(w−1).

ii) S is closed under morphic preimages. That is, for every homomorphism of
groups h : F(X)→ F(X) and L ∈ S, we have that L ◦ h ∈ S.

Now, in a similar way, we can consider the same settings as in Section 7.2 to
obtain local Eilenberg–type correspondences for pseudovarieties of X–generated
T–algebras. For example, the local version for the case of pseudovarieties of X–
generated K–algebras reads as follows: There is a one–to–one correspondence be-
tween varieties of X–generated K–algebras and subspaces S ∈ VecK of the space
VecK(V(X∗),K) such that:

i) Every element L ∈ S is a recognizable series on X.

ii) S is closed under left and right derivatives. That is, for every L ∈ S and x ∈ X
we have that xL,Lx ∈ S.

iii) S is closed under morphic preimages. That is, for every K–linear map h :
V(X∗)→ V(X∗) and L ∈ S, we have that L ◦ h ∈ S.

7.4 Discussion

In this chapter, we showed some applications of the results we obtained in Chapter
6 on Eilenberg–type correspondences. We mainly focused on deriving Eilenberg–
type correspondences for most of the known cases studied in the literature in order
to show the generality of the abstract Eilenberg–type correspondences we showed
in Chapter 6, although more than a half of them are new. In our case, the main du-
alities on which we based our examples were the ones between Set and CABA, be-
tween Poset and AlgCDL, between JSL and StJSL, and between VecK and StVecK,
where K is a finite field. All those dualities were described in Section 1.4.

It is worth mentioning that we can even get more correspondences from the
examples we showed in the present chapter. For instance, from Example 169 we
can use the class K as a parameter to get correspondences for different kinds of
varieties such as, e.g., abelian groups, quasigroups, rings, modules over a fixed
ring, lattices, Heyting algebras, and so on (see, e.g., [27]). A similar comment
applies for the case of Example 176, which will give correspondences for the case of
pseudovarieties. Furthermore, more Eilenberg–type correspondences are obtained
if we consider different dualities than the ones mentioned in Section 1.4, e.g.,
Stone duality, Stone duality for nominal Boolean algebras [40], Priestley duality,
or any other kind of duality of interest (see, e.g., [29, 32]). In this sense, the
number of specific correspondences we can derive is countless.
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Even though our correspondences were derived in a straightforward way, the
work in this thesis shows that in order to obtain the general results shown in Chap-
ter 6 we need to understand the general theory of equations, coequations, vari-
eties, pseudovarieties, Birkhoff’s theorem, duality and their relationship by using
categorical methods. A key concept that helped us to gain more understanding was
that of an equational T–theory, which is a categorical generalization of an equa-
tional theory and played an important role in this work. Our easy to understand
slogan that “Eilenberg–type correspondences = Birkhoff’s theorem for (finite) alge-
bras + duality” and other contributions such as “varieties of languages = duals of
equational theories” have helped to unveil Eilenberg–type correspondences, which
has been an active field during more than forty years and its full understanding
had not been accomplished until the present thesis.



Final remarks

The notion of coequations, which is the dual notion of equations, has been explic-
itly studied in the search of a dual of Birkhoff’s theorem [61, 62, 3, 2, 11, 75, 31,
46, 49, 84, 76]. In this sense, covarieties of coalgebras are characterized as classes
of coalgebras described by coequations. In this thesis, besides of broading the study
of coequations and showing some applications in which coequations can be used,
we showed that coequations (or more precisely, coequational theories) implicitly
appeared in Eilenberg–type correspondences since Eilenberg’s variety theorem [36]
under the name of varieties of languages.

This not only allowed us to unveil Eilenberg–type correspondences but also to
obtain simpler proofs and to fully explain the defining properties of a variety of
languages. All of this was done in the present thesis for the case of varieties of
algebras, pesudovarieties of algebras and their corresponding local versions.

We now proceed to dicuss some of the ideas for future work that are based on
the ideas presented in this thesis. They include the following:

1) To derive different Eilenberg–type correspondences than the ones shown in the
last chapter. We could, for instance, consider other kinds of algebraic structures
such as, e.g., abelian groups, quasigroups, rings, modules over a fixed ring, lat-
tices, Heyting algebras, and so on (see, e.g., [27]). Note that Eilenberg–type
correspondences for the just mentioned algebraic structures can be obtained
from Example 169 and Example 176, but the defining properties for the cor-
responding operators L are in each case different and can give more intuition
and lead to some applications if they are worked out individually. Similarly, an-
other kind of algebras that can be considered are nominal algebras [63, 39, 41].
A different direction is to apply the results of Chapter 6 by considering different
dualities than the ones we used, for instance, to consider Stone duality, Stone
duality for nominal Boolean algebras [40], Priestley duality, or dualities such as
the ones presented in [29, 32].

2) To establish new kinds of Eilenberg–type correspondences for different classes
of algebraic structures, see, e.g., [8, 67]. A natural next step in this direction is
to consider implicational classes, in which implications are considered instead
of equations. The implicational case can be studied by omitting the require-
ment in an equational theory of having free projective domain. A categorical
approach of implicational classes has been already studied in [15].

183



184 Final remarks

3) To study coEilenberg–type correspondences, that is, duals of Eilenberg–type
correspondences. From the understanding and explanation for Eilenberg–type
correspondences given in this thesis, the notion of a coEilenberg–type corre-
spondence can naturally be defined as one–to–one correspondences between
covarieties of coalgebras and equational theories. As in the case of Eilenberg–
type correspondences, we can study this concept together with its finite version,
local version and also a dual of the implicational case (cf. [48]).

4) To study and understand the concept of a coequational theory. Equations and
defining properties of an equational theory are easily understood and have been
broadly studied in the literature. The case of coequations and coequational
theories is less known and some studies of this case include [61, 62, 3, 2, 11,
75, 31, 46, 49, 84, 76]. The concept of a coequational theory presented in this
thesis, which is defined as the dual concept of an equational theory, is new and
can be studied to get more intuition and understanding on coequations, their
logic and its relation with existing work such as [3, 61, 84].

5) Connections of the present work with modal logic. Modal logic has algebraic
and coalgebraic perspectives [19, Chapter 6]. The work done in this thesis,
which also has an algebraic and coalgebraic flavour, can lead us to new appli-
cations either in the field of modal logic or in the field of Eilenberg–type corre-
spondences. This can give us new perspectives, applications or developments
in the area.
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[5] Jǐrí Adámek, Stefan Milius, Robert S.R. Myers, and Henning Urbat. Vari-
eties of languages in a category. In Catuscia Palamidessi, editor, Proc. 30th
Annual Symposium on Logic in Computer Science (LICS’15), pages 414–425.
IEEE Computer Society, 2015.

[6] V. P. Archana. Commutative fuzzy languages and their generalizations. In An-
nals of Fuzzy Mathematics and Informatics, volume 9, pages 355–364, 2015.

[7] V. P. Archana. Variety of aperiodic fuzzy languages. In Annals of Fuzzy Math-
ematics and Informatics, volume 11, pages 967–972, 2016.

[8] C. J. Ash. Pseudovarieties, generalized varieties and similarly described
classes. Journal of Algebra, 92(1):104 – 115, 1985.

[9] Steve Awodey. Category Theory, volume 49 of Oxford Logic Guides. Oxford,
2006.

[10] Steve Awodey and Jesse Hughes. The Coalgebraic Dual of Birkoff’s Variety
Theorem. Carnegie Mellon Technical Report No. CMU-PHIL-109, 2000.

185



186 References

[11] Steve Awodey and Jesse Hughes. Modal operators and the formal dual of
Birkhoff’s completeness theorem. Mathematical Structures in Computer Sci-
ence, 13(2):233–258, 2003.

[12] John T. Baldwin and Joel Berman. Varieties and finite closure conditions.
Colloquium Mathematicae, 35(1):15–20, 1976.

[13] Adolfo Ballester-Bolinches, Enric Cosme-Llópez, and Jan Rutten. The dual
equivalence of equations and coequations for automata. Inf. Comput.,
244:49–75, 2015.

[14] Bernhard Banaschewski. The Birkhoff Theorem for varieties of finite algebras.
Algebra Universalis, 10:360–368, 1983.

[15] Bernhard Banaschewski and Horst Herrlich. Subcategories Defined By Impli-
cations. Houston Journal Mathematics, 2:149–171, 1976.

[16] Michael Barr. Duality of vector spaces. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 17(1):3–14, 1976.

[17] Michael Barr. HSP subcategories of Eilenberg-Moore algebras. Theory and
Applications of Categories [electronic only], 10:461–468, 2002.

[18] Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceed-
ings of the Cambridge Philosophical Society, 31(4):433–454, 10 1935.

[19] Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook
of Modal Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier
Science Inc., New York, NY, USA, 2006.

[20] Stephen L. Bloom. Varieties of ordered algebras. Journal of Computer and
System Sciences, 13(2):200 – 212, 1976.

[21] Stephen L. Bloom and Jesse B. Wright. P-varieties - a signature independent
characterization of varieties of ordered algebras. Journal of Pure and Applied
Algebra, 29(1):13 – 58, 1983.
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dziȩkujȩ Kasia!

I also thank all the institutions and organizational structures that have been
present during this time, without them this work would have not been possible. I
thank CWI and all the staff involved for providing me an excellent working envi-
ronment and services, NWO for the funding of my project and most importantly
for supporting scientific research, the research school IPA for supporting scientific
activities, Radboud Universiteit and people involved in different conferences I have
attended such as MPC, MFCS, CMCS and CALCO.

All of this was a very pleasant journey with many different experiences for
which I feel privileged and thankful. This thesis and the acknowledgements I just
made barely represent the whole journey I lived.

Julian Salamanca
Amsterdam, October 2017



Curriculum vitae

2004 – 2008: BSc in Mathematics, Universidad Nacional de Colombia,
Bogota, Colombia.

2008 – 2010: MSc in Mathematics, Universidad de los Andes, Bogota,
Colombia.

2011 – 2012: Full time lecturer, Politécnico Grancolombiano, Bogota,
Colombia.

2012 – 2014: PhD student, University of Manitoba, Winnipeg, Canada.

2014 – 2017: PhD student, Centrum Wiskunde & Informatica, Amster-
dam, Netherlands.

2017 – present: Scientific assistant, University of Warsaw, Poland.

201





Summary

An Eilenberg–type correspondence is a one–to–one correspondence between vari-
eties of algebras and the so–called “varieties of languages”. They have been broadly
studied in the literature since Eilenberg’s variety theorem in the 1970s. The con-
cept of a variety of algebras is a well–known concept in universal algebra which, by
Birkhoff’s theorem, is the same as a class of algebras satisfying some given equa-
tions. However, the concept of a variety of languages is less known and its defining
properties have not been fully explained in the literature, they have been ad hoc
definitions. The work in this thesis fully explains what varieties of languages are
and where their defining properties come from. In fact, varieties of languages are
duals of equational theories, that is, coequational theories.

The fact that varieties of languages are duals of equational theories not only
allows us to fully understand Eilenberg–type correspondences, but also to get a
general categorical version for Eilenberg–type correspondences from which we can
derive countless instances. Some of those instances have been proved separately
and published in different papers. Another advantage of this understanding is the
simplification of proofs for particular Eilenberg–type corerspondences found in the
literature. Most of the proofs in the literature follow the same idea as Eilenberg
by proving the existence of syntactic algebras in order to obtain the desired corre-
spondence. The work in this thesis shows that existence of syntactic algebras is not
a necessary condition for the existence Eilenberg–type correspondences.

After introducing some basic concepts and fixing the notation, we start by study-
ing two particular structures: deterministic automata and weighted automata. In
both cases we show what equations and coequations for these automata are and
what it means for an automaton to satisfy them. The concept of a coequation,
which is the dual of an equation, is less known in the literature and we fully explain
them for the cases of deterministic automata and weighted automata. Additionally,
we show duality results between equations and coequations for automata.

We develop a general abstract theory of equations and coequations in Chapter 4.
In the case of equations, we define equations for algebras for an endofunctor and
also equations for Eilenberg–Moore algebras. We present a similar work for the
case of coequations, that is, coequations for coalgebras for an endofunctor and
coequations for Eilenberg–Moore coalgebras. We define categories of equations
and coequations. Then, we show how dualities on the base categories can be
lifted, under mild assumptions, to a duality between the categories of algebras
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204 Summary

and coalgebras and also how the duality is lifted to categories of equations and
coequations. We also obtain the previous liftings for the case of Eilenberg–Moore
algebras and coalgebras.

In Chapter 5, we provide a categorical version of Birkhoff’s theorem which,
for the purpose of this thesis, we state as a one–to–one correspondence between
varieties of algebras and equational theories. We introduce the categorical concept
of an equational theory, which is a new definition whose main purpose is to explain
the concept of a variety of languages used in Eilenberg–type correspondences. We
also provide a Birkhoff’s theorem for varieties of finite algebras, for local varieties
of algebras and for local varieties of finite algebras.

In Chapter 6, we collect all general background and categorical development
of equations, coequations and Birkhoff’s theorem to obtain abstract theorems for
Eilenberg–type correspondences. All of this is represented by the slogan

“Eilenberg–type correspondences = Birkhoff’s theorem for (finite)
algebras + duality”,

which explains the real nature of Eilenberg–type correspondences. We state a gen-
era theorem for Eilenberg–type correspondences for the following four cases: va-
rieties of algebras, pseudovarieties of algebras, local varieties of algebras and local
pseudovarieties of algebras.

As an application of our general results we show, in Chapter 7, some of the
particular instances we can get from our general theorems from Chapter 6. We
derive a total of 64 correspondences. To the best of our knowledge, only 20 of
them are known in the literature. Most of these known correspondences were
proved and published separately in at least 12 different papers. The remaining 44
new correspondences that we show are for varieties and local varieties of algebras,
which have been less studied in the literature.



Samenvatting

Een Eilenberg-achtige correspondentie is een een-op-een-relatie tussen variëteiten
van algebra’s en de zogeheten “variëteiten van talen”. Deze correpondenties zijn
uitgebreid bestudeerd in de literatuur sinds de variëteiten stelling van Eilenberg
in de jaren 70. Het concept van een variëteit is een algemeen begrip in de uni-
versele algebra die, volgens de stelling van Birkhoff, overeenkomt met de klasse
van algebra’s die aan zekere vergelijkingen voldoen. Echter, het concept van een
variëteit van talen is minder bekend en hun definities in de literatuur zijn ad hoc en
onvoldoende gemotiveerd. Het werk in dit proefschrift beschrijft precies wat var-
iëteiten van talen zijn en waar hun definiërende eigenschappen vandaan komen.
In feite zijn variëteiten van talen de dualen van theorieën van vergelijkingen, ofwel
variëteiten van talen zijn theorieën van covergelijkingen.

Het feit dat variëteiten van talen de dualen zijn van theorieën van vergelijkin-
gen stelt ons niet alleen in staat om Eilenberg-achtige correspondenties volledig te
begrijpen, maar ook om een algemene categorische versie te krijgen waaruit we
talloze voorbeelden kunnen afleiden. Sommige van deze gevallen zijn afzonderlijk
bewezen en in verschillende artikelen gepubliceerd. Een ander voordeel van dit
begrip is de vereenvoudiging van bewijzen van bepaalde Eilenberg-achtige corre-
spondenties die in de literatuur voorkomen. De meeste bewijzen in de literatuur
volgen hetzelfde idee als Eilenberg door het bestaan syntactische algebra’s aan te
tonen om het gewenste resultaat te verkrijgen. Het werk in dit proefschrift laat
zien dat het bestaan van syntactische algebra’s geen noodzakelijk voorwaarde is
voor het bestaan van Eilenberg-achtige correspondenties.

Na het introduceren van enkele basisbegrippen en het vastleggen van de no-
tatie, beginnen we met het bestuderen van twee bepaalde structuren: determin-
istische automaten en automaten met gewichten. In beide gevallen laten we zien
wat vergelijkingen en covergelijkingen voor deze automaten zijn en wat het voor
een automaat betekent om hieraan te voldoen. Het concept van een covergelijk-
ing, ofwel de duale van een vergelijking, is minder bekend in de literatuur en we
behandelen dit uitvoerig voor de gevallen van deterministische automaten en au-
tomaten met gewichten. Bovendien bespreken we resultaten over dualiteit tussen
vergelijkingen en covergelijking voor automaten.

We ontwikkelen een algemene abstracte theorie van vergelijkingen en covergeli-
jking in Hoofdstuk 4. In het geval van vergelijkingen definiëren we vergelijkingen
voor algebra’s over een endofunctor en ook voor vergelijkingen voor Eilenberg-
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Moore-algebra’s. We doen een soortgelijk werk voor het geval van covergelijking,
dat wil zeggen, covergelijking voor coalgebras over een endofunctor en covergeli-
jking voor Eilenberg-Moore coalgebras. We definiëren categorieën van vergelijkin-
gen en covergelijkingen. Vervolgens laten we zien hoe dualiteiten op basis van
categorieën, onder milde aannames, kunnen worden uitgebreid tot een dualiteit
tussen de categorieën van algebra’s en coalgebras en ook hoe de dualiteit wordt
uitgebreid in categorieën van vergelijkingen en covergelijkingen. De eerdere uit-
breidingen worden ook verkregen voor het geval van Eilenberg-Moore-algebra’s en
coalgebras.

In Hoofdstuk 5 geven we een categorische versie van de stelling van Birkhoff die
we, ten behoeve van dit proefschrift, poneren als een een-op-een-correspondentie
tussen variëteiten van algebra’s en theorieën van vergelijkingen. We introduceren
het categorische concept van een theorieën van vergelijkingen; een nieuwe defini-
tie met als belangrijkste doel het verklaren van het concept van een variëteit van
talen dat gebruikt wordt in Eilenberg-achtige correspondenties. We presenteren
ook versies van de stelling van Birkhoff voor variëteiten van eindige algebra’s, voor
lokale variëteiten van algebra’s en voor lokale variëteiten van eindige algebra’s.

In Hoofdstuk 6 voegen we de algemene achtergrond en de categorische behan-
deling van vergelijkingen, covergelijkingen en de stelling van Birkhoff samen om
abstracte stellingen voor Eilenberg-achtige correpondenties te verkrijgen. Dit alles
wordt vertegenwoordigd door de slogan

“Eilenberg-achtige correspondenties = stelling van Birkhoff voor
(eindige) algebra’s + dualiteit ”,

wat de ware aard van Eilenberg-achtige correspondenties verklaart. We poneren
een algemene stelling voor Eilenberg-achtige correspondenties voor de volgende
vier gevallen: variëteiten van algebra’s, pseudovariëteiten van algebra’s, lokale
variëteiten van algebra’s en lokale pseudovariëteiten van algebra’s.

Als een toepassing van onze algemene resultaten laten we in Hoofdstuk 7 enkele
specifieke voorbeelden zien die we kunnen afleiden uit onze algemene stellingen
uit Hoofdstuk 6. In totaal presenteren we 64 correspondenties, waarvan, voor
zover bij ons bekend, slechts 20 reeds bekend zijn in de literatuur. De meeste
van de bekende correspondenties zijn afzonderlijk bewezen en gepubliceerd in ten
minste 12 verschillende artikelen. De resterende 44 door ons aangetoonde niewe
correspondenties hebben betrekking tot variëteiten en lokale variëteiten van alge-
bra’s die minder bestudeerd zijn in de literatuur.
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