
 

 

 University of Groningen

Minimisation in Logical Form
Bezhanishvili, Nick; Bonsangue, Marcello; Hansen, Helle Hvid; Kozen, Dexter; Kupke,
Clemens; Panangaden, Prakash; Silva, Alexandra
Published in:
Samson Abramsky on Logic and Structure in Computer Science and Beyond

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bezhanishvili, N., Bonsangue, M., Hansen, H. H., Kozen, D., Kupke, C., Panangaden, P., & Silva, A.
(Accepted/In press). Minimisation in Logical Form. In A. Palmigiano, & M. Sasdrzadeh (Eds.), Samson
Abramsky on Logic and Structure in Computer Science and Beyond (Vol. (to appear)). (Outstanding
Contributions to Logic). Springer. https://arxiv.org/abs/2005.11551

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/dd1133e3-f0ef-4757-94f6-26f6ff18df31
https://arxiv.org/abs/2005.11551


ar
X

iv
:2

00
5.

11
55

1v
1 

 [
cs

.F
L

] 
 2

3 
M

ay
 2

02
0

Minimisation in Logical Form

Nick Bezhanishvili Marcello Bonsangue Helle Hvid Hansen
Dexter Kozen Clemens Kupke Prakash Panangaden

Alexandra Silva

May 26, 2020

1 Introduction

The role of category theory, algebra, and logic in deepening our understanding of se-
mantics and algorithms in Computer Science has long been one of Samson’s flagships.
His seminal paper Domain Theory in Logical Form [1] studies the connection between
program logic and domain theory via Stone duality. This is an example of a fundamen-
tal duality in Computer Science between semantics, operational or denotational, and
syntax, provided as a logic or specification language.

Building on Stone’s celebrated representation theorems for Boolean algebras [68]
and distributive lattices [69], categorical dualities linking algebra and topology [43] have
been widely used in logic and theoretical computer science [19, 27, 35]. With algebras
corresponding to the syntactic, deductive side of logical systems, and topological spaces
to their semantics, Stone-type dualities provide a powerful mathematical framework for
studying various properties of logical systems. More recently, it has also been fruit-
fully explored in more algorithmic applications, notably in understanding minimisation
of various types of automata [2, 16, 20, 21, 31, 48, 58]. Among these, [16] and [20] had
striking similarities in the approach yet it was not clear whether the differences could
be harmonised in a uniform way. The main aim of this paper is to find a unifying per-
spective on the minimisation constructions in [16] and [20]. Duality will play a central
role in achieving our aim of unification of approaches, which puts us on the path forged
by Samson.

In [16], the authors adopt the coalgebraic perspective on automata and use a dual
equivalence between the category of coalgebras and a category of algebras to explain
minimisation. The key observation is that the algebras considered provide semantics
of a modal logic. This algebraic semantics is dual to coalgebraic semantics in which
logical equivalence coincides with trace equivalence. From this coalgebra-algebra duality
it follows that maximal quotients of coalgebras correspond to minimal subobjects of
algebras. In order to explain the minimisation algorithm, the authors exploit duality
to prove that the maximal quotient of a coalgebra can be constructed by computing
the subalgebra of definable predicates in the dual modal algebra. The examples in [16]
include partially observable DFAs, linear weighted automata viewed as coalgebras over

1

http://arxiv.org/abs/2005.11551v1


finite-dimensional vector spaces, and belief automata which are coalgebras on compact
Hausdorff spaces.

In [20], Brzozowski’s double-reversal minimisation algorithm for deterministic finite
automata (with both initial and final states) was described categorically and its correct-
ness explained via the duality between reachability and observability, whose origins trace
back to seminal work of Kalman in control theory [45]. Kalman’s work was extended to
automata theory in a collection of papers by Arbib and Manes [6–12]. The work of [20] is
closely related to these and includes generalisations of Brzozowski’s algorithm to Moore
and weighted automata over commutative semirings.

The contributions of the present paper are as follows.

1. A categorical framework within which minimisation algorithms can be understood
and different approaches unified (Section 3). We start with a comparison between
the approaches in [16] and [20] (Section 3.1) and then proceed to a general setup
for different automata types based on algebra and coalgebra (Section 3.2). Sec-
tion 3.3 includes the categorical picture that unifies the work in [16] and [20]: in
a nutshell, it is a stack of three interconnected adjunctions. It starts with a base
dual adjunction that is subsequently lifted to a dual adjunction between coalge-
bras and algebras, and finally to a dual adjunction between automata. Section 3.4
extends this categorical picture place to include trace logic. Section 3.5, presents
an abstract understanding of reachability and observability, and finally everything
is summarised and abstract minimisation algorithms are stated in Section 3.6.

2. A thorough illustration of the general framework instantiated to concrete examples.
In Section 4), we revisit a range of examples stemming from previous approaches:
deterministic Kripke frames, weighted automata, and topological automata (belief
automata). In Section 5, we include an extensive new example on alternating
automata, which uses the duality of complete atomic Boolean algebras and sets.
For weighted automata, we use our framework to extend a well-known result for
weighted automata over a field [65] to weighted automata over a principal ideal
domain: the minimal weighted automaton over a principal ideal domain always
exists, and, as expected, it has a state space smaller or equal than that of the
original automaton.

We conclude the paper with a review of related work (Section 6).

2 Preliminaries

In this section, we fix notation and recall basic definitions of coalgebras and algebras. For
a more detailed introduction to coalgebra, we refer to [60]. For general categorical no-
tions, see e.g. [3]. We assume familiarity with classic automata such as (non)deterministic
finite automata, and Moore automata.

Categories are denoted by C,D, . . ., objects of categories by X,Y,Z, . . ., and ar-
rows/morphisms of categories by f, g, h, . . . . We denote by Set the category of sets and

2



functions. Let X1,X2 be in C. The product of X1 and X2 (if it exists) is denoted by
X1×X2 with projection maps πi : X1×X2 → Xi, i = 1, 2. Similarly, their coproduct (if
it exists) is written X +Y with coprojection maps ini : Xi → X1 +X+2. In Set, X ×Y
and X + Y are the usual constructions of cartesian product and disjoint union. Let X
be an object in C and A be a set. Assuming C has products, then XA :=

∏

AX denotes
the A-fold product of X with itself. Similarly, if C has coproducts, then A ·X :=

∐

AX
denotes the A-fold coproduct of X with itself.

The covariant powerset functor P : Set→ Set sends a set X to its powerset P(X) and
a function f : X → Y to the direct-image map P(f) : P(X) → P(Y ). The contravariant
powerset functor Q : Set→ Setop also sends a set X to its powerset, now denoted Q(X),
and a function f : X → Y to its inverse-image map Q(f) : P(Y )→ P(X).

2.1 Coalgebras, Algebras and Monads

Given an endofunctor F : C → C, an F -coalgebra is a pair (X, γ : X → FX), where
X is a C-object and γ : X → FX is a C-arrow. The functor F specifies the type of
the coalgebra (which may be thought of as the type of observations and transitions),
and the structure map γ specifies the dynamics. An F -coalgebra morphism from an
F -coalgebra (X, γ) to an F -coalgebra (Y, δ) is a C-arrow h : X → Y that preserves the
coalgebra structure, i.e., δ ◦ h = Fh ◦ γ. F -coalgebras and F -coalgebra morphisms form
a category denoted by CoalgC(F ). A final F -coalgebra is a final object in CoalgC(F ), i.e.,
an F -coalgebra (Ω, ω) is final if for all T -coalgebras (X, γ) there is a unique F -coalgebra
morphism h : (X, c)→ (Ω, ω).

An F -algebra is the dual concept of an F -coalgebra. An F -algebra is a pair (X,α),
where X is a C-object and α : FX → X is a C-arrow. Now, the functor F can be seen
to specify the type of operations of the algebra. An F -algebra morphism from an F -
algebra (X,α) to an F -algebra (Y, β) is a C-arrow h : X → Y that preserves the algebra
structure, i.e., h ◦ α = β ◦ Fh. F -algebras and F -algebra morphisms form a category
denoted by AlgC(F ). An initial F -algebra is an initial object (A,α) in AlgC(F ), i.e., for
all F -algebras (X,β) there is a unique F -algebra morphism h : (A,α)→ (X,β).

A monad (on C) is a triple (T, η, µ) consisting of a functor T : C→ C and two natural
transformations η : Id → T (the unit) and µ : TT → T (the multiplication) satisfying
µ ◦ ηT = idT = µ ◦ Tη and µ ◦ Tµ = µ ◦ µT . For brevity, we will sometimes refer to
a monad simply by its functor part, leaving the unit and multiplication implicit. An
Eilenberg-Moore T -algebra is a T -algebra (A,α) such that α ◦ ηA = idA and α ◦ µA =
α ◦ Tα. Eilenberg-Moore T -algebras and T -algebra morphisms form a category denoted
by EM(T ). In particular, for every X in C, (TX,µX ) is the free Eilenberg-Moore T -
algebra on X, i. e., for every (A,α) in EM(T ) and every C-arrow f : X → A there is a
unique T -algebra morphism (called the free extension of f) f ♯ : (TX,µX)→ (A,α) such
that f ♯ ◦ ηX = f . Notice also that we have f ♯ = α ◦ Tf .

3



2.2 Determinisation

Let (T, η, µ) be a monad on Set and F : Set → Set a functor given by FX = B × XA

where A is a set and B is the carrier of an Eilenberg-Moore T -algebra (B, β). Then FT -
coalgebras can be seen as automata with input alphabet A, output in B and branching
structure given by T . For example, nondeterministic automata are FP-coalgebras where
FX = 2 × XA and β = ∨ : P2 → 2 is the join (or max). Such FT -coalgebras can
be “determinised” using a generalisation of the classic powerset construction [67], and
the result can be seen as an F -coalgebra in the category EM(T ). We follow [15, 41] in
explaining this general construction. As shown in [41], there is a so-called distributive
law λ : TF ⇒ FT of the monad (T, η, µ) over the functor F given by

λX : T (B ×XA)
〈Tπ1,Tπ2〉

// TB × T (XA)
β×st

// B × (TX)A (2.1)

where st : T ◦ (−)A ⇒ (−)A ◦ T is the strength natural transformation that exists for
all monads on Set. Such a distributive law λ corresponds to a lifting of F : Set → Set

to a functor Fλ : EM(T ) → EM(T ) [44], and it induces a functor (−)♯ : CoalgSet(FT ) →
CoalgEM(T )(Fλ) which sends an FT -coalgebra γ = 〈o, t〉 : X → B × (TX)A to its deter-

minisation γ♯ = FµX ◦ λTX ◦ Tγ, that is,

γ♯ = TX
Tγ

// T (B × (TX)A)
λTX // B × (TTX)A

B×(µX )A
// B × (TX)A (2.2)

Another perspective is that λ induces an Eilenberg-Moore T -algebra structure α on
FTX, and γ♯ : (TX,µS)→ (FTX,α) is the free extension of γ induced by α. This also
justifies our use of the notation (−)♯.

The determinisation γ♯ can be seen as a Moore automaton in EM(T ). We will use
the determinisation construction in order to place alternating automata and weighted
automata in our general minimisation framework.

3 Minimisation via Dual Adjunctions

3.1 Unifying Previous Approaches

One aim of this paper is to find a unifying perspective on the automata minimisation
constructions in [16] and [20]. We therefore start by summarising the two papers, and
discuss the differences and similarities.

First we establish some terminology regarding key notions. A classic DFA is reachable
if all states are reachable by reading some word from the initial state, it is observable
if no two states accept the same language, and it is minimal if it is both reachable and
observable. These notions can be generalised to other types of automata using that
automata are in a sense both algebras and coalgebras as we will explain in Section 3.2.
We will call an algebra reachable if it has no proper subalgebras, and a coalgebra is
observable if it has no proper quotients. A (generalised) automaton is then minimal

4



if its algebra part is reachable and its coalgebra part is observable. Note that in the
literature, observable coalgebras are usually called minimal coalgebras.

In [16], (generalised) Moore automata (without initial state) are modelled as coalge-
bras for a functor F = B × (−)Σ on base categories of algebras or topological spaces.
The main observation used in [16] is that for many types of such coalgebras, one can de-
fine a category of algebras that is dually equivalent to the category of coalgebras. This
dual equivalence can be seen as a generalisation of the Jonsson-Tarski duality known
from modal logic, which in turn arises from Stone duality. The algebras in [16] are
therefore understood as modal algebras, i.e., they consist of an algebra (that describes a
propositional logic, e.g., Boolean logic) expanded with the modal operators. From this
coalgebra-algebra duality it follows that maximal quotients of coalgebras correspond to
minimal subobjects of algebras.

The main contribution of [16] can then be formulated as follows: Letting γ be a
coalgebra, the minimal subalgebra of its dual modal algebra α consists of the predicates
over γ that are definable in the modal logic. Hence to make γ observable, compute
the subalgebra of definable subsets (which is reachable by construction), and dualise to
obtain an observable coalgebra. Although, this is not stated in [16], for classic automata
the computation of definable subsets corresponds to the partition refinement algorithm.

The minimisation-via-duality approach of [16] was shown to apply to partially ob-
servable DFAs (using duality of finite sets and finite Boolean algebras), linear weighted
automata (using the self-duality of vector spaces), and belief automata viewed as coalge-
bras on compact Hausdorff spaces (using Gelfand duality). Moreover, for each of these
examples it is shown that the definable subsets are determined by the subsets definable
in the trace logic fragment consisting of formulas of the shape [a0] · · · [an]p

In [20], Brzozowski’s double-reversal minimisation algorithm [26] for classic automata
was described categorically. The Brzozowski algorithm works as follows. Starting with
a classic, finite (possibly nondeterministic) automaton accepting a language L, reverse
the transitions, swap initial and final states, and make the result deterministic using
the subset construction. This reversed automaton accepts the reversed language rev (L).
Take the reachable part of the reversed automaton. Now, do all of this again. The
result will be a reachable and observable (i.e., minimal) classic deterministic automaton
accepting L. The correctness of the algorithm was explained in [20] via the duality
between reachability and observability known from control theory (cf. [6, 9, 45]. This
duality arises from a dual adjunction between algebras and coalgebras, and therefore only
works in one direction, so to speak, namely, a reachable algebra dualises to an observable
coalgebra, but not vice versa. This, however, is sufficient to formalise Brzozowski’s
algorithm in terms of a dual adjunction between categories of automata (with both
initial and final states).

Generalisations of the Brzozowski algorithm were then formulated in [20] for Moore
automata (over Set) and weighted automata, which include nondeterministic and linear
weighted automata as instances. More precisely, weighted automata were first deter-
minised into Moore automata over semimodules, and after the reverse-determinise step,
the semimodule structure is forgotten in order to take the reachable part. Example 8.3

5



in [20] illustrates that one generally wants to take a subsemimodule that spans the reach-
able part, but this was not fully formalised. One aim of the present paper is to make
this part precise.

We summarise the main differences and similarities. In [16], the minimisation-via-
duality approach produces from a coalgebra (with structured state space), an observ-
able coalgebra of the same type. In [20], the Brzozowski-based approach starts with
a Set-based automaton that possibly has branching structure specified by a monad T .
This automaton is determinised to yield a Moore automaton over the category EM(T )
of Eilenberg-Moore algebras for T , and the result is a reachable and observable (i.e.,
minimal) Moore automaton over EM(T ). If the automaton has no branching, we just
proceed with Brzozowki over Set. In Appendix A.1, we give a small example illustrating
the difference between the two minimisation constructs on a concrete DFA. In [16], the
perspective is based on modal logic. Language semantics and reachability of automata is
not an explicit part of the story, although it is implicitly present via trace logic, however
the connection to reachability (in the usual set-theoretic sense) is not made. In [20], the
perspective is language-based. No link is made to modal logic.

In the remainder of this section, we present a categorical picture that unifies both
approaches. In particular, our picture formalises the role of trace logic in the minimisa-
tion algorithms. Some of the technical details of this part are known from [20,39,46,58]
– precise connections are detailed throughout the sections and in Section 6.

3.2 Automata, Algebras and Coalgebras

Throughout this paper, we let Σ be a finite set. We will consider different types of
automata, but they will all have input alphabet Σ.

A classic deterministic automaton (on alphabet Σ) consists of a set X (the state
space), a transition map t : X → XΣ (or equivalently t : Σ × X → X), an acceptance
map f : X → 2, and an initial state i : 1 → X. We generalise this basic definition to
arbitrary categories as follows.

Definition 3.1 Let C be a category, and let I and B be objects in C. A C-automaton
(with initialisation in I and output in B) is a quadruple X = (X, t, i, f) consisting
of a state space object (or carrier) X in C, a Σ-indexed set of transition morphisms
{ta : X → X | a ∈ Σ}, an initialisation morphism i : I → X, and an output morphism
f : X → B. A C-automaton morphism from X1 = (X1, t1, i1, f1) to X2 = (X2, t2, i2, f2)
is a C-morphism h : X1 → X2 such that for all a ∈ Σ, h ◦ t1,a = t2,a ◦ h, f1 = f2 ◦ h,
and h◦ i1 = i2. Together, C-automata with initialisation in I and output in B, and their
morphisms form a category which we denote by Aut

I,B
C

.

A classic deterministic automaton is then easily seen to be a Set-automaton with
output in 2 and initialisation in 1.

A central observation in [20] is that automata can be seen as coalgebras with initiali-
sation, or dually, as algebras with output, as we briefly recall now. Assuming that C has

6



products and coproducts, the transition morphisms {ta : X → X | a ∈ Σ} correspond
uniquely to morphisms of the following type:

〈ta〉a∈Σ : X → XΣ

[ta]a∈Σ : Σ ·X → X
(3.1)

Letting F and G be endofunctors on C given by FX = B×XΣ and GX = I+Σ ·X,
we see that a C-automaton is an F -coalgebra 〈f, 〈ta〉a∈Σ〉 : X → B×XΣ with intialisation
i : I → X. Or equivalently, a G-algebra [i, [ta]a∈Σ] : GX → X with output f : X → B.

3.3 Dual Adjunctions of Coalgebras, Algebras and Automata

The categorical picture that unifies the work in [16] and [20] is sketched in the diagram
(3.2) below. This picture starts with a base dual adjunction that is lifted to a dual
adjunction between coalgebras and algebras. This adjunction captures the construction
in [16] for obtaining observable coalgebras via duality. The coalgebra-algebra adjunction
is then lifted to a dual adjunction between automata which captures the formalisation
of the Brzozowski algorithm from [20], which uses automata with initial states. In the
remainder of the section, we will explain the details of how this picture comes about.

(

Aut
I,R(O)
C

)op
P

′

++

⊤

��

Aut
O,L(I)
D

S
′

mm

��

CoalgC(FC)
op

P
++

⊤

��

AlgD(GD)

S

kk

��

Cop
F op
C

++
P

))
⊤ D GD

ww

S

jj

FC = S(O)× (−)Σ, GD = O +Σ · (−)

(3.2)

3.3.1 Base dual adjunction

Our starting point is a dual adjunction S ⊣ P between categories C and D as in the
above picture. We will generally try to avoid the use of superscript op, and treat P and S
as contravariant functors. The units of the dual adjunction will be denoted η : Id ⇒ PS
and ε : Id ⇒ SP . The natural isomorphism of Hom-sets θX,Y : C(X,SY ) → D(Y, PX),
will sometimes be written in both directions simply as f 7→ f ♭. For f : X → SY , its
adjoint is f ♭ = Pf ◦ ηY , and for g : Y → PX, its adjoint is g♭ = Sg ◦ εX .

7



In all our examples, C and D are concrete categories, and the dual adjunction arises
from homming into a dualising object ∆ (cf. [57]), i.e., P = C(−,∆) and S = D(−,∆),
and we will often denote both of them by ∆(−). This means that adjoints are obtained
simply by swapping arguments. E.g., for f : Y → ∆X we have f ♭(x)(y) = f(y)(x).

Moreover, the units are given by evaluation. E.g. ηX : X → ∆∆X
is defined by

ηX(x)(f) = f(x).

Example 3.2 A central example is the self-dual adjunction of Set given by the con-
travariant powerset functor Q = Set(−, 2) which maps a set X to its powerset 2X and
a function f : X → Y to its inverse image map f−1 : 2Y → 2X . The functor Q is
dually self-adjoint with Qop ⊣ Q, and the isomorphism of Hom-sets is given by taking
exponential transposes, i.e., for f : X → 2Y we have f ♭ : Y → 2X .

Dual adjunctions are also called logical connections as they form the basis of seman-
tics for coalgebraic modal logics [22, 42, 47]. In this logic perspective, C is a category
of state spaces, D is a category of algebras (e.g. Boolean algebras) encoding a proposi-
tional logic, and the functor GD encodes a modal logic. Intuitively, the adjoint P maps
a state space C to the predicates over C, and S maps a predicate A to the theories of
A. The logic given by GD can be interpreted over FC-coalgebra by providing a so-called
one-step modal semantics in the form of a natural transformation ̺ : GDP ⇒ PFC, or
equivalently via its mate ξ : FCS ⇒ SGD. The pair (GD, ̺) is referred to as a logic.
By assuming that the initial GD-algebra (A0, α0) exists, and viewing its elements as
formulas, the semantics of formulas in a FC-coalgebra is (C, γ) is obtained by initiality:
sGD : (A0, α0)→ P (γ) ◦ ̺C , i.e., as an underlying D-map, it has type sGD : A0 → P (C).
Alternatively, the semantics can be specified by the theory map thGD : C → S(A0) which
is defined as the adjoint of sGD . We refer to [22,42,47] for a more detailed introduction
to coalgebraic modal logic via dual ajdunctions.

3.3.2 Dual adjunction between coalgebras and algebras

We lift the base dual adjunction to coalgebras and algebras using some some basic
results from [39, 46]. We assume that C has products, D has coproducts, and that we
have functors FC and GD as given above, i.e.,

FC(C) = S(O)× CΣ and GD(D) = O +Σ ·D

We know from [39, Cor. 2.15] (see also [46, Thm. 2.5]), that the dual base adjunction
S ⊣ P lifts to a dual adjunction S ⊣ P between CoalgC(FC) = AlgCop(F

op
C
) and AlgD(GD)

if there is a natural isomorphism ξ : FCS
∼
⇒ SGD. We have for all D ∈ D,

SGD(D) = S(O +Σ ·D) ∼= S(O)× S(D)Σ = FCS(D) (3.3)

since S (as a dual adjoint functor) turns colimits into limits. Hence there is a natural
isomorphism ξ : FCS

∼
⇒ SGD. Let ̺ : GDP ⇒ PFC be the mate of ξ, i.e., the adjoint of

ξP ◦ FCε:
̺ = PFCε ◦ PξP ◦ ηGDP (3.4)

8



The lifted adjoint functors are defined for all FC-coalgebras γ : C → FC(C), all FC-
coalgebra morphisms f , all GD-algebras α : GD(D)→ D, and all GD-algebra morphisms
g by:

P (γ) = Pγ ◦ ̺C : GDPC → PC, P (f) = P (f)

S(α) = ξD ◦ Sα : SD → FCSD, S(g) = S(g)
(3.5)

Remark 1 If F ′
C
: C→ C is F ′

C
(C) = B×CΣ with B ∼= S(O), then F ′

C

∼
⇒ FC, and hence

CoalgC(F
′
C
) ∼= CoalgC(FC), so we can think of F ′

C
-coalgebras as FC-coalgebras.

The isomorphism θ of Hom-sets for S ⊣ P is simply the restriction of the isomorphism
θ of Hom-sets for S ⊣ P to the relevant morphisms.

The natural transformation ̺ : GDP ⇒ PFC provides the one-step semantics for a
modal logic for FC-coalgebras as described at the end of Section 3.3.1. This makes most
sense when the dual adjunction arises from a dualising object ∆ in which case ∆ is a
domain of truth-values, i.e., the logic is ∆-valued, and when D is category of algebras
with operations given by a signature Sgn. The algebra functor GD = O + Σ · (−) then
corresponds to a modal language L(GD) that has atomic propositions from O, labelled
modalities [a], a ∈ Σ, and the propositional connectives are the operations from Sgn.
That is, formulas in L(GD) are generated by the following grammar:

ϕ ::= q ∈ O | [a]ϕ, a ∈ Σ | σ(Ψ), σ ∈ Sgn

where Ψ is a set of formulas of cardinality matching the arity of the operation σ.
For our specific choice of functors FC and GD, and when the adjunction arises from

a dualising object ∆, we can compute the concrete definition of ̺ from (3.4) (see Ap-
pendix A.2) and we get the following ∆-valued modal semantics of the language L(GD):

JqK(x) = j(q), where γ(x) = 〈j : ∆O, d : XΣ〉
J[a]ϕK(x) = JϕK(d(a)), where γ(x) = 〈j : ∆O, d : XΣ〉

Jσ(Ψ)K(x) = σ({JψK(x) | ψ ∈ Ψ})

This shows that ̺ gives the expected modal semantics for FC-coalgebras viewed as
deterministic Σ-labelled Kripke frames with observations from O. In particular, the
modalities are “deterministic” Kripke box/diamond-modalities.

Example 3.3 We consider the case of classic deterministic automata. Here C = D =
Set, FSet = 2× (−)Σ and GSet = 1+Σ · (−), and the self-dual adjunction of Set is given
by the contravariant powerset functor Q = Set(−, 2) (Example 3.2). The logic we obtain
is trace logic [47], but here interpreted over DFAs rather than labelled transition systems
as in [47]. The initial GSet-algebra is Σ∗, the set of finite words over Σ, and these are
the formulas L(GD), since D = Set means that there are no propositional connectives.

The natural transformation ̺ has type ̺X : 1 + Σ · 2X → 22×XΣ
, and is given concretely

here together with the induced semantics, where we write x  ϕ iff JϕK(x) = 1:

̺X(∗) = {(b, d) ∈ 2×XΣ | b = 1}
̺X(a, U) = {(b, d) ∈ 2×XΣ | d(a) ∈ U}

x  ∗ ⇐⇒ x is accepting

x  [a]ϕ ⇐⇒ x
a
−→ y and y  ϕ

9



3.3.3 Dual adjunction between automata

In order to obtain the upper adjunction in (3.2) (which formalises Brzozowski), we will
use algebra and coalgebra structure on both sides, hence we assume that C and D both
have products and coproducts. The lifting is a small extension of S ⊣ P obtained
by defining how an initialisation map I → C for an FC-coalgebra γ is turned into an
observation map PC → PI for the GD-algebra P (γ), and vice versa for S.

Theorem 3.4 Under the assumptions of section 3.3.2, the dual adjunction S ⊣ P be-
tween CoalgC(FC) and AlgD(GD) lifts to a dual adjunction S

′
⊣ P

′
between Aut

I,SO
C

and

Aut
O,PI
D

by defining P
′
and R

′
as follows for all γ : C → FCC and α : GDD → D:

P
′
(γ, i : I → C) = (P (γ) : GDPC → PC,P (i) : PC → PI), P

′
(f) = P (f)

S(α, j : D → PI) = (R(α) : SD → FCSD, j
♭ : I → SD), S

′
(g) = S(g)

Proof. This is a minor generalisation of Prop. 9.1 in [20]. It suffices to show that for all
C-arrows i : I → C, and all D-arrows g : D → PI and h : D → PX: g = Pi ◦ h iff g♭ =
h♭ ◦ i. First, if g = Pi ◦ h, then g♭ = Sg ◦ εI = Sh ◦ SPi ◦ εI = Sh ◦ εX ◦ i = h♭ ◦ i,
where the third equality follows from naturality of ε. Conversely, if g♭ = h♭ ◦ i, then
g = Pg♭ ◦ ηD = Pi ◦ Ph♭ ◦ ηD = Pi ◦ h. qed

It is straightforward to verify that for our choice of FC, the final FC-coalgebra exists,
and we usually view it as having carrier S(O)Σ

∗

, hence for γ : C → FC(C), the final
morphism !γ : C → S(O)Σ

∗

assigns to each state in C what can be seen as an S(O)-

weighted language. For X = 〈γ, i〉 ∈ Aut
I,S(O)
C

, we define its language semantics as the

composition I
i
→ C

!γ
→ S(O)Σ

∗

. This C-morphism can be seen as an Σ∗-indexed family
of C-morphisms 〈|X|〉w : I → SO defined for all w = a1 · · · ak ∈ Σ∗ by

〈|X|〉w = I
i
−→ X

ta1−→ · · ·
tak−→ X

f
−→ S(O)

Computing the adjoint transpose 〈|X|〉♭w = P 〈|X|〉 ◦ ηO, we get the D-morphism:

〈|X|〉♭w = P (I)
i
←− P (X)

Pta1←− · · ·
Ptak←− P (X)

f♭

←− O

Hence 〈|X|〉♭w = 〈|P
′
(X)|〉wR where wR = ak · · · a1 is the reversal of w. Similarly, we

find that for all Y ∈ Aut
O,P (I)
D

, 〈|Y|〉♭w = 〈|S
′
(Y)|〉wR . In the case of classic DFAs from

Example 3.3 where I = O = 1 and S(O) = P (I) ∼= 2, the above says that the adjoint
functors reverse the language accepted by the automaton.

3.4 Language Semantics and Trace Logic

In this section, we give a general condition on the output sets that ensures that we can
link trace logic with the full modal logic via an adjunction. This places trace logic in the
general picture. In [16], it was shown in each of the concrete examples that trace logic

10



is equally expressive as the full modal logic. The results of this section give a general
explanation of this fact.

Assume that the category D is monadic over Set with adjunction ΦD : D Set : UD

This adjoint situation allows us to relate the Set-based language semantics to the final
FC-coalgebra semantics as we will show now.

Consider the functor G : Set → Set defined as G(X) = Ω + Σ · X = Ω + Σ × X
where Ω is a finite set of observations. Then the set Σ∗Ω is an initial G-algebra with
algebra structure Ω+Σ× (Σ∗Ω)→ Σ∗Ω given by prefixing ω ∈ Ω with the empty word
ω 7→ εω and concatenation (a,w) 7→ aw. Let ΦD ⊣ UD be an adjunction between Set and
D. Then we can compose with the dual adjunction S ⊣ P to obtain a dual adjunction
between C and Set as follows:

Cop
F op
C

++
P

''
⊤ D

GD

YY

S

gg

UD

((
⊤ Set G

ss

ΦD

gg (3.6)

Lemma 3.5 Assume we have the situation in (3.6), and that FC, GD, G are defined by:

FC(C) = SΦD(Ω)× C
Σ, GD(D) = ΦD(Ω) + Σ ·D, G(X) = Ω + Σ ·X.

Then (3.6) lifts to

CoalgC(FC)
op

P
++

⊤ AlgD(GD)

S

kk

UD

++

⊤ AlgSet(G)

ΦD

kk
(3.7)

Proof. The dual adjunction on the left lifts because of a special case of (3.3). For
similar reasons, the adjunction on the right lifts, because there is a natural isomorphism
κ : ΦDG

∼
⇒ GDΦD that can be obtained as follows

κ : ΦDGX = ΦD(Ω + Σ ·X) ∼= ΦD(Ω) + Σ · ΦD(X) = GDΦD(X), (3.8)

since ΦD (being a left adjoint) preserves colimits. By [39, Thm. 2.14], ΦD ⊣ UD lifts to
an adjunction between ΦD ⊣ UD between AlgD(GD) and AlgSet(G) where the functor ΦD

maps a G-algebra (X,α) to the GD-algebra (ΦD(X),ΦDα ◦ κ
−1).

By composition of adjunctions, also SΦD ⊣ UDP lifts. This could also be verified by
noticing that for all sets X, there is natural isomorphism

ξtrc := Sκ ◦ ξΦD : FCSΦD
∼
⇒ SΦDG (3.9)

where ξ : FCS
∼
⇒ SGD from (3.3) is the mate of the modal logic (GD, ̺). Hence by [39,

Thm. 2.14,Cor. 2.15] (see also [46, Thm. 2.5]), the adjunction SΦD ⊣ UDP lifts to one
between CoalgC(FC)

op and AlgSet(G). qed

11



Letting ̺trc : GUDP ⇒ UDPFC be the mate of ξtrc from (3.9), then (G, ̺trc) is a
modal logic for FC-coalgebras. Since its formulas are the elements of the intial G-algebra
of traces, we refer to (G, ̺trc) as a trace logic.

Lemma 3.6 The theory maps thG and thGD of the logics (G, ̺trc) and (GD, ̺) coincide.

Proof. Due to the adjunctions in (3.6), the intial G-algebra Σ∗Ω of traces is mapped by
ΦD to an initial GD algebra, which in turn is mapped by S to a final FD-coalgebra. The
coincidence of the theory maps follows from them being adjoints of the initial maps. A
more detailed argument is given in Appendix A.3. qed

Since the mates ξ and ξtrc are both natural isomorphisms, it follows from [42, 47]
(and C having a suitable factorisation system, cf. Theorem 3.10) that the full modal
logic (GD, ̺) and trace logic (G, ̺trc) are both expressive for FC-coalgebras. In other
words, the propositional connectives from D-structure in the logic language L(GD) do
not add any epxressive power to L(G) = Σ∗Ω. In summary, we arrive at the following
proposition.

Proposition 3.7 With the above assumptions, the trace logic (G, ̺trc) and the full logic
(GD, ̺) are equally expressive over FC-coalgebras, meaning that for all FC-coalgebras
γ : C → FC(C), and all states c1, c2 in C (recall that C is a concrete category), c1 and c2
are logically equivalent for (G, ̺trc) iff they are logically equivalent for (GD, ̺).

By the uniqueness of final coalgebras up to isomorphism, it follows that there is
an isomorphism σ : SΦD(Ω)

Σ∗ ∼
→ S ΦD(Σ

∗Ω) which links the language semantics in the
automata/coalgebraic sense with trace logic semantics given by initiality.

Proposition 3.8 For all FC coalgebras γ, its language semantics defined as the unique
morphism into the final FC-coalgebra SΦD(Ω)

Σ∗

corresponds to the trace theory map
thG into the final FC-coalgebra S ΦD(Σ

∗Ω), (and with the theory map thGD) via the
isomorphism σ.

We remark that it is straightforward to extend ΦD ⊣ UD to an adjunction of automata
by taking adjoints of additional output maps to the algebras. We omit the details.

Finally, we show that trace logic expressiveness can be extended to coalgebras for
what we can think of as subfunctors of FC. This will be needed for the topological
automata in section 4.3.

Remark 2 Let F ′
C be a functor on C which preserves monos and such that there is a

natural transformation τ : F ′
C ⇒ FC which is abstract mono, i.e., all components are

mono. Assume that C has factorisation system (E,M) with E ⊆ Epi and M ⊆ Mono.
Defining ξ′ = ξtrc ◦ τS, then ξ′ : F ′

CSΦD ⇒ SΦDG defines semantics of trace formulas
over F ′

C-coalgebras which is essentially the same as the semantics over FC-coalgebras.
Since τ is abstract mono and ξtrc is a natural iso, it follows that ξ′ is abstract mono,
and hence the asscoiated logic is expressive [42,47].

12



3.5 Reachability and Observability

A main point emphasised in [20] is that reachability is an algebraic concept, and ob-
servability is a coalgebraic concept, and both concepts apply to automata as they are
both coalgebras and algebras. We will call an algebra reachable if it has no proper
subalgebras, and a coalgebra is observable if it has no proper quotients.

Both [16] and [20] use that a reachable algebra dualises to an observable coalgebra,
only the perspectives differ. Note that in [16], observable coalgebras are referred to as
minimal automata. In [16], the reachable part of a GD-algebra is defined as its least
subalgebra, and its existence was ensured by assuming that C is wellpowered. In [20],
automata were generally considered as automata over Set, and the reachable part of
an automaton was defined as the image of the initial G-algebra inside the automaton
(using its G-algebra structure, after possibly forgetting D-structure). In Appendix A.4,
we show that the two reachability notions in [16] and [20] coincide when conditions for
both are satisfied.

In [16], the least GD-algebra of the dual GD-algebra P (γ) was characterised as the
subalgebra αDef of L(GD)-definable subsets of C (or more abstractly ∆-valued predicates
on C). It was observed that αDef is generated by subsets definable by trace formulas on
(C, γ). The general statement of this fact is Proposition 3.7. Hence to compute αDef ,
it suffices to compute trace logic definable subsets. In the case of classic DFA, these
subsets are precisely the reachable states (in the usual transition-sense) of P (γ).

The general setup described in Lemma 3.5 is most closely related to that of [20],
as we have an initial G-algebra and an initial GD-algebra. The latter is mapped by
S to a final FC-coalgebra since the dual adjoint functors turn colimits into limits. For
this reason, S maps epis to monos, but monos are not necessarily mapped to epis. In
particular, we cannot argue that a least subalgebra of P (γ) is mapped by S to a largest
quotient of γ. But using factorisation and existence of an initial GD-algebra, we obtain
that the reachable part of P (γ) is mapped by S to an observable coalgebra.

Proposition 3.9 Under the assumptions of Lemma 3.5, and assuming further that D
has a factorisation system (E,M) such that E ⊆ Epi and M ⊆Mono, we then have:

For all (D, δ) ∈ AlgD(GD), let reach(D, δ) be the reachable part of (D, δ) obtained by
(E,M)-factorisation of the initial morphism:

ΦD(Σ
∗Ω, α)

e
։ reach(D, δ)

m
→֒ (D, δ).

Then S(reach(D, δ)) is an observable FC-coalgebra.

Proof. The epimorphism e : ΦD(Σ
∗Ω, α) ։ reach(D, δ) is mapped by S to a monomor-

phism
S(e) : S(reach(D, δ)) →֒ SΦD(Σ

∗Ω, α).

Since SΦD(Σ
∗Ω, α) is a final FC-coalgebra, we can conclude that S(reach(D, δ)) is an

observable FC-coalgebra. qed

13



The above proposition thus tells us how to obtain an observable FC-coalgebra, and
hence also an observable C-automaton, by taking the reachable part on the dual side.

Extending the notion of reachable part to D-automata is done simply by taking the
reachable part of their GD-algebraic part and restricting the output map. Brzozowski’s
algorithm produces a minimal C-automaton by taking the reachable part of the resulting
observable C-automaton, that is, with respect to the algebraic structure of C-automata
given by GC = I + Σ · (−). In order to do so, we need that also C has an suitable
factorisation system.

3.6 Abstract minimisation algorithms

We now put everything together into one diagram with which we can describe both
approaches from [16] and [20] including the role of trace logic.

(

Aut
I,SΦD(Ω)
C

)op
P

′

,,

⊤

��

Aut
ΦD(Ω),P (I)
D

S
′

mm

UD

′

,,

⊤

��

Aut
Ω,UDP (I)
Set

ΦD

′

ll

��

CoalgC(FC)
op

P
++

⊤

��

AlgD(GD)

S

ll

UD

++

⊤

��

AlgSet(G)

ΦD

kk

��

Cop
F op
C

++
P

**
⊤ D

GD

YY

S

jj

UD

**
⊤ Set G

ss

ΦD

ii

FC(C) = SΦD(Ω)× C
Σ, GD(D) = ΦD(Ω) + Σ ·D, G(X) = Ω + Σ ·X.

(3.10)

Theorem 3.10 Let C,D be concrete categories, both having products and coproducts,
and both having factorisation systems (E,M) such that E ⊆ Epi and M ⊆ Mono. Let
Ω be a finite set (of observations), and I an (initialisation) object in C, and assume that
we have the adjoint situation between C, D, Set and functors as described at the bottom
level of (3.10). Then the lower adjunctions lift to the upper two levels in (3.10) as shown
in sections 3.3.2, 3.3.3 and 3.4, and we have the following abstract algorithms:

Algo1 Given an FC-coalgebra γ, compute S(reach(P (γ))) which will be an observable
FC-coalgebra.

Algo2 Given a C-automaton (γ, i), compute reach(S
′
(reach(P

′
(γ, i)))), which will be a

reachable and observable (i.e., minimal) C-automaton.

14



Of course, the abstract algorithms only become actual algorithms, when all structures
involved have finite representations. Furthermore, we note that the one could consider
an algorithm that uses the horizontally composed adjunction in (3.10), i.e., compute
SΦD(reach(UDP (γ))). Although, the result will be an observable coalgebra, this is,
however, not a good choice in general, because the reachable part is now computed over
Set, and this may yield an infinite coalgebra/automaton whereas it might have been
finitely generated as a coalgebra/automaton over D. An example where this happens is
found in Example 8.3 of [20].

Although [16] does not describe a concrete algorithm, the implicit abstract algo-
rithm is essentially Algo1, since the conceptual emphasis is placed on computing the
least GD-subalgebra of P (γ) as the subalgebra of (GD, ̺)-definable subsets/predicates.
The characterisation of this GD-subalgebra as being freely generated by the least G-
subalgebra of UDP (γ) (i.e. the reachable part in the usual set-theoretic sense) can be
viewed as an optimisation: to determine the reachable part of a given GD-algebra it
suffices to compute the part that can be “reached”/defined via trace formulas. This is
the information contained in the right-hand side of the diagram.

In comparison, Brzozowski’s algorithm and its generalisation to weighted automata
in Section 4.2 are instances of Algo2 as they use initial states. Classic Brzozowski
is the case C = D = Set, GD = G, and Ω = I = 1. The set-based algorithm for
weighted automata in [20] is neither of the above algorithms, but it can be described as

constructing reach(UD
′
P

′
(γ, i)), and then dualise back (without going through SMod) to

get a Set-based Moore automaton. As mentioned above, this may result in the reachable
part of the reversed automaton being infinite.

In the case where the dual adjunction is a full duality, the initial state is easily found
back in the observable coalgebra resulting from Algo1 as its language equivalence class,
so the extension to Algo2 seems almost trivial. In case the dual adjunction is not a full
duality, the transformation of the initial state goes via the adjunction, and factorisation
on the dual side, and this is what Theorem 3.4 formalises.

We end this section by observing that the requirements regarding products, coprod-
ucts and factorisation systems hold in all our examples, since C and D are monadic
over Set meaning that they are equivalent to an Eilenberg-Moore category EM(T ) for
a Set-monad T . For such a category EM(T ), we know that it is complete, cocomplete
and exact [24, Thm 4.3.5]. W.r.t factorisation systems, (Epi,Mono) is generally not a
factorisation system for EM(T ), rather (RegEpi,Mono) is. Using that regular epis are
the surjective morphisms, and monos are the injective morphisms, one can prove that
in CoalgC(FC) and AlgD(GD) the surjective and injective morphisms form a factorisation
system. We refer to Lemma A.2.

15



4 Revisiting Examples

4.1 Deterministic Kripke Models

A central example from [16] are deterministic Kripke models (in loc.cit referred to as
PODFAs, i.e., partially observable DFAs). We will first recall the definitions of deter-
ministic Kripke models and their dual Boolean algebras with operators corresponding
to a modal logic of tests. After that we will see how this duality can be seen as a
special case of our general duality picture, which has as immediate corollary a minimisa-
tion algorithm for the case of finite models. In addition, results from Section 3.4 entail
that the modal test language without propositional operators is sufficiently expressive to
specify deterministic Kripke models up to bisimulation and to compute their observable
quotient.

Definition 4.1 We define deterministic Kripke models to be quintuples S = (S,Σ,Ω, γ :
S → 2Ω, δ : S → SΣ) where S is a finite set of states, Σ is a finite set of actions, Ω is
a finite set of observations, δ is a transition function and γ is an observation function.
A function f : S1 → S2 is a morphism between Kripke models (S1,Σ,Ω, γ1, δ1) and
(S2,Σ,Ω, γ2, δ2) if for all s ∈ S1 and all a ∈ Σ we have γ1(s) = γ2(s) and f(δ1(s)(a)) =
δ2(f(s))(a). We let DKM denote the category of deterministic Kripke models.

In other words, deterministic Kripke models are Kripke models where for each action
a ∈ Σ the corresponding relation is the graph of a (total) function. It is well-known that
there is a duality between DKM and a suitable category BAO of Boolean algebras. We
will now recall the definition of BAO and some known facts concerning this duality.

Definition 4.2 The category BAO of (deterministic) Boolean algebras with operators
(BAOs) has as objects Boolean algebras B with the usual operators ∧ and ¬ with a
greatest element ⊤ and least element ⊥ together with unary operators (a) : B → B, for
each action a ∈ Σ, such that (a) is a Boolean homomorphism. For each observation
ω ∈ Ω, we also have constants ω. We denote an object of BAO by

B = (B, {(a)|a ∈ Σ}, {ω|ω ∈ Ω},⊤,∧,¬).

The BAO morphisms are the usual Boolean homomorphisms preserving, in addition, the
constants and commuting with the unary operators. Finally we denote by FBAO the
category of finite Boolean algebras with operators.

The following fact is well-known (cf. e.g. [19, 36]).

Fact 4.3 There is a dual adjunction between Set and BA as depicted in Figure 1 given
by the contravariant functor P that maps a set to its Boolean algebra of subsets and the
functor Uf := Hom(−,2), ie., the contravariant functor the maps a Boolean algebra to
its collection of ultrafilters.This adjunction restricts to a dual equivalence between the
category FSet of finite sets and the category FBA of finite Boolean algebras.

16



Setop

F op

��
P

((
⊤ BA

GBA

��

Uf

ii

F (X) = 2Ω ×XΣ GBA(X) = ΦBA(Ω) + Σ ·X
I = 1 Uf(ΦBA(Ω)) ∼= 2Ω

Figure 1: Functors and base adjunction for deterministic Kripke frames

We are now going to show how this example fits into our general framework. As a
corollary we obtain a minimisation procedure for finite deterministic Kripke models.

Proposition 4.4 We have the following equivalences:

1. DKM ∼= CoalgSet(F ) for F = 2Ω ×XΣ

2. BAO ∼= AlgBA(GBA) for GBA = ΦBA(Ω) + Σ ·X

Both equivalences are an immediate consequence of the definitions. In the sequel,
we will make no distinction between F -coalgebras and deterministic Kripke models and,
likewise, between GBA-algebras and BAOs. As a consequence of the proposition we
obtain the following duality results by applying our general framework.

Proposition 4.5 The dual adjunction Uf ⊣ P lifts to a dual adjunction between DKM

and BAO and to an adjunction between Aut
1,2Ω

Set and Aut
2,FΦBA(Ω)
BA . If we start with the

dual equivalence FSet ∼= FBA, both liftings are dual equivalences as well.

Proof. For the dual adjunction between DKM and BAO recall from Proposition 4.4
that both categories are equivalent to categories of F -coalgebras and GBA-algebras for
certain functors F andGBA, respectively. Furthermore, we have Uf(ΦBA(Ω)) ∼= 2Ω, which
follows from the well-known fact that the set of homomorphisms of type ΦBA(Ω) → 2

(i.e., ultrafilters) is in one-one correspondence with the set of functions of type Ω →
2. Therefore the functors F and GBA have the shape required by our general lifting
result from Section 3.3.2 and we obtain functors P : Coalg(F )op → Alg(GBA) and Uf :
Alg(GBA)→ Coalg(F )op with Uf ⊣ P.

To extend the adjunction Uf ⊣ P between Coalg(F ) and Alg(GBA) further to a dual

adjunction Uf
′
⊣ P

′
between Aut

1,2Ω

Set and Aut
2,ΦBA(Ω)
BAop - the latter is a slight extension of

the former by adding a initial state to deterministic Kripke models and by viewing BAOs
as some kind of automata with acceptance predicate - it suffices to note that P1 ∼= 2
such that the result follows from the general theorem in Section 3.3.3.

The fact that the obtained adjunctions restrict to equivalences when we replace the
base categories Set and BA with FSet and FBA, respectively, is a matter of routine
checking. qed

17



This shows, in particular, that we get a duality between finite deterministic Kripke
models and FBAO s. This is the key for obtaining a minimal realization via logical
theories.

Definition 4.6 Consider the language L(GBA):

ϕ ::= ⊤ | ω̂, ω ∈ Ω | [a]ϕ, a ∈ Σ | ϕ1 ∧ ϕ2 | ¬ϕ.

with semantics defined as below (A.1) on page 39. For a given automaton S = (S, γ, δ)
we say that a subset U of S is definable by L(GBA) if U = JϕKfor some ϕ ∈ L(GBA)
where we identify the predicate JϕK : S → 2 with the set {s ∈ S | JϕK(s) = 1} . We let
Def(S) = (Def(S), {(a)S}a∈Σ, {Jω̂K}ω∈Ω) be the BAO based on the definable subsets of S,
where (a)S(JϕK) = J[a]ϕK.

In other words, the modal logic is the modal logic with (deterministic) Σ-indexed modali-
ties and atomic propositions from Ω. For a given deterministic Kripke model, the algebra
of definable subsets yields the reachable part (=zero generated subalgebra) of the dual
automaton (=algebra).

Proposition 4.7 Let S = (S, γ, δ) ∈ DKM be a deterministic Kripke model, sI ∈ S an
initial state and let Def(S) ∈ BAO the dual algebra of definable subset. Then Def(S) ∈
BAO is isomorphic to the reachable part reach(P(S)) of P(S) ∈ BAO.

Proof. The result follows from the fact that the unique morphism iDef(S) from the initial
GBA-algebra I to Def(S) together with the embedding m : Def(S) → P(S) is the image-
factorisation of i

P(S) : I→ P(S), which is the (E,M)-factorisation obtained from the fac-

torisation system of surjective and injective Boolean homomorphisms (cf. Lemma A.2).
qed

Definition 4.8 We call a formula ϕ of the form [a1] . . . [an]ω for some n ∈ N and ai ∈ Σ
for i ∈ {1, . . . , n} a trace formula. For a DKM S we denote by Def∗(S) the collection of
trace-definable subsets of S, i.e, the collection of subsets definable by a trace formula.

Proposition 4.9 For all DKMs S we have

Uf(reach(P(S))) ∼= (Uf(Def(S)) ∼= (Uf(ΦBA(Def∗(S))).

Proof. By the results in Section 3.4, we have ΦBAΣ
∗Ω is isomorphic to the Lindenbaum

algebra of L(GBA). Therefore the reachable part of P(S) is obtained as the image of
ΦBAΣ

∗Ω under the initial morphism from ΦBAΣ
∗Ω to P(S) which can be easily checked

to be ΦBA(Def∗(S)). qed

We finish with a key observation from [16] that allows to compute quotients of finite
DKMs via duality.

Corollary 4.10 Given a finite DKM S, the quotient of S modulo bisimulation is iso-
morphic to (Uf(ΦBA(Def∗(S))).

Proof. By Prop 3.9 we have that (Uf(Def(S)) and thus (Uf(ΦBA(Def∗(S))) is ob-
servable. As FSet and FBA are dually equivalent, we get that (Uf(Def(S)) and thus
(Uf(ΦBA(Def∗(S))) are the maximal quotient of S. qed

18



4.2 Weighted Automata

4.2.1 Semirings and semimodules

We need some basic definitions on semirings and semimodules to present the example of
weighted automata.

Recall that a semiring is a tuple (S,+, ·, 0, 1) where (S,+, 0) and (S, ·, 1) are monoids,
the former of which is commutative, and multiplication distributes over finite sums:

r · 0 = 0 = 0 · r r · (s+ t) = r · s+ r · t (r + s) · t = r · t+ s · t

We just write S to denote a semiring. Examples of semirings are: every field, the Boolean
semiring 2, the semiring (N,+, ·, 0, 1) of natural numbers, and the tropical semiring
(N ∪ {∞},min,+,∞, 0). All these semirings are examples of commutative semirings, as
the · operation is also commutative.

For a semiring S, an S-semimodule is a commutative monoid (M,+, 0) with a left-
action S ×M → M denoted by juxtaposition rm for r ∈ S and m ∈ M , such that for
every r, s ∈ S and every m,n ∈M the following laws hold:

(r + s)m = rm+ sm r(m+ n) = rm+ rn
0m = 0 r0 = 0
1m = m r(sm) = (r · s)m

Every semiring S is an S-semimodule, where the action is taken to be just the semir-
ing multiplication. Semilattices are another example of semimodules (for the Boolean
semiring S).

An S-semimodule homomorphism is a monoid homomorphism h : M1 → M2 such
that h(rm) = rh(m) for each r ∈ S and m ∈ M1. S-semimodule homomorphisms are
also called S-linear maps or simply linear maps. The set of all linear maps from a
S-semimodule M1 to M2 is denoted by SMod(M1,M2).

Free S-semimodules over a set X exist and can be built using the functor VS : Set→
Set defined on sets X and maps h : X → Y as follows:

VS(X) = {ϕ : X → S | ϕ has finite support},

VS(h(ϕ)) =
(

y 7→
∑

x∈h−1(y) ϕ(x)
)

,

where a function ϕ : X → S is said to have finite support if ϕ(x) 6= 0 holds only for
finitely many elements x ∈ X. VS(X) is the free S-semimodule on X when equipped
with the following pointwise S-semimodule structure:

(ϕ1 + ϕ1)(x) = ϕ1(x) + ϕ2(x) (sϕ1)(x) = s · ϕ1(x) .

We sometimes write the elements of VS(X) as formal sums s1x1+ . . .+ snxn with si ∈ S

and xi ∈ X. VS(X) is a monad and the category of Eilenberg-Moore algebras is SMod,
the category of S-semimodules and S-linear maps. As usual, free S-semimodules enjoy
the following universal property: for every function h : X → M from a set X to a

19



semimodule M , there exists a unique linear map h♯ : VS(X) → M that is called the
linear extension of h.

We can define for an S-semimodule M its dual space M⋆ to be the set SMod(M,S)
of all linear maps between M and S, endowed with the S-semimodule structure obtained
by taking pointwise addition and monoidal action: (g + h)(m) = g(m) + h(m), and
(sh)(m) = s · h(m). Note that S ∼= V (1) and that S⋆ = SMod(S,S) ∼= S.

4.2.2 Weighted automata and weighted languages

A weighted automaton with finite input alphabet Σ and weights over a semiring S is
given by a set of states X, a function t : X → VS(X)Σ (encoding the transition relation
in the following way: the state x ∈ X can make a transition to y ∈ X with input
a ∈ Σ and weight s ∈ S if and only if t(x)(a)(y) = s), a final state function f : X → S

associating an output weight with every state, and an initial state function i : 1→ VS(X).
Diagrammatically:

1
i

!!❇
❇❇

❇❇
❇❇

❇ S

X

f
==⑤⑤⑤⑤⑤⑤⑤⑤

t
��

VS(X)Σ

The function t : X → VS(X)Σ can be inductively extended to words w ∈ Σ∗:

t(x)(ε) = 1.x

t(x)(aw) = v1t(x1)(w) + · · ·+ vnt(xn)(w), where t(x)(a) = v1x1 + · · ·+ vnxn

Weighted automata recognise functions in S
Σ∗

, or formal power series over S. More
precisely, the formal power series recognised by a weighted automaton X = (X, t, i, f)
is the function L(X) : Σ∗ → S that maps w ∈ Σ∗ to f(t(i)(w)) ∈ S. More concretely,
the value L(X)(w), for w = a1a2 · · · an, is the sum of all v1 · . . . · vn · f(xn+1) over all

paths pw = x1
a1,v1
−−−→ . . .

an,vn
−−−→ xn+1 labelled by w. The value of L(X)(w) can be easily

computed using the usual matrix representation of linear maps: the initial state function
i is then a column vector, the final state function f is a row vector, and the transition
relation t can be represented as a Σ-indexed collection of X × X-matrices ta where
ta(y, x) = t(x)(a)(y) for all x, y ∈ X. L(X)(w) is then obtained by the following matrix
multiplication f × tan × . . .× ta0 × i.

Observe that S is (isomorphic to) the carrier of the free Eilenberg-Moore VS-algebra
on one generator VS(1). Hence, as described in Section 2.2, we can determinise a weighted
automaton 〈f, t〉 : X → S× (VSX)Σ into a Moore automaton over SMod.

20



1

i

��❄
❄❄

❄❄
❄❄

❄ S //❴❴❴❴❴❴❴❴❴❴❴❴ S

X

f

<<①①①①①①①①①①

t
��

η
// V (X)

t♯||③③
③③
③③
③③

f♯

OO

//❴❴❴❴❴❴❴ S
Σ∗

o

??⑧⑧⑧⑧⑧⑧⑧

d
��

V (X)Σ //❴❴❴❴❴❴❴❴❴❴❴ (SΣ
∗

)Σ

The unique map into final Moore automaton of weighted languages gives precisely
the language semantics concretely given above.

4.2.3 Brozowski for Weighted Automata

There is self-dual adjunction of SMod obtained by taking dual space: (−)∗ = SMod(−,S).
A special case is the self-dual adjunction of vector spaces in case S is a field, which
restricts to a duality between finite-dimensional vector spaces. This duality was used
in [16] to obtain observable Moore automata over vector spaces.

We lift the base adjunction to one between Moore automata in SMod using Theo-
rem 3.4. Let C = D = SMod = EM(VS) and FSMod(X) = S × XΣ and GSMod(X) =
S + Σ ·X. Since S

∗ ∼= S, the conditions for Theorem 3.4 hold, and the adjunction lifts,
as illustrated here:

(

Aut
S,S
SMod

)op

(−)∗
′

++

⊤

��

Aut
S,S
SMod

(−)∗
′

ll

��

SModop

FSMod

YY

(−)∗

**
⊤ SMod

G
op
SMod

YY

(−)∗

jj

We can now give the Brzozowski algorithm for weighted automata by instantiating
Algo2 of Theorem 3.10 for the determinised automaton. Start with a weighted au-
tomaton in Set, determinise it into a Moore automaton in Aut

S,S
SMod (to have a canonical

representative of the accepted language), reverse and determinise, take the reachable
part (w.r.t GSMod-structure over SMod), reverse and determinise, take the reachable
part again. Diagramatically, Algo2 is (putting op on the right-hand side to start and

21



end in Aut
S,S
SMod):

WAut over Set

(−)♯

��   

Aut
S,S
SMod

(−)∗
′

//

(

Aut
S,S
SMod

)op

reachop

��

Aut
S,S
SMod

reach

��

(

Aut
S,S
SMod

)op(−)∗
′

oo

Aut
S,S
SMod

At this point we have built a minimal Moore automaton accepting the same language
as the weighted automaton we started with and, moreover, the state space is a subsemi-
module of the semimodule generated by the original state space.

The last step missing is to recover a weighted automaton in Set, with as state space
the generators of the state space of the minimal Moore automaton resulting after apply-
ing our Brzozowski algorithm. Unfortunately, subsemimodules of free, finitely generated
semimodules are not necessarily free and finitely generated. Therefore our construction
does not guarantee, in general, that the resulting automaton is actually a weighted au-
tomaton in Set. Fortunately, we know from a result of Tan [71] that for a commutative
semiring S, every nonzero subsemimodule N of a finitely generated free S-semimodule
M is free if and only if S is a principal ideal domain ( [71, Theorem 4.3]). Furthermore,
because N is free, it follows that it is also finitely generated and of rank smaller than
that of M [( [71, Theorem 4.3]). In other words, the minimal weighted automaton over
a principal ideal domain exists and has a state space smaller or equal than that of the
original automaton if the latter is finite.

Recall that a principal ideal domain is an integral domain in which every ideal is
principal, i.e., can be generated by a single element. Examples include any Euclidean
domain, thus any field, the ring of integers, the ring of polynomials in one variable with
coefficients in a field, and the ring of formal power series over a field and one variable.
The ring of polynomials in two or more variables and the ring of polynomials with integer
coefficients are not principal ideal domains.

4.3 Topological Automata via Gelfand Duality

A very popular model heavily used in reforcement learning is the partially observable
Markov decision process (POMDP). The idea is that one can only see the observations
and not exactly which state the system is in. Many algorithms in machine learning
deal with this situation by constructing a new automaton called the belief automaton.
The state space of this automaton is the set of probability distributions on S. When
seeking to minimize this using duality [16], the original idea was to exploit the fact that
the state space of the belief automaton is a compact Hausdorff space and use Gelfand

22



duality. However, we have since felt that convex duality is a better match for this
situation. Nevertheless, the notion of a topological automaton is interesting in its own
right and may be the basis for later extensions and examples. This section, therefore
develops Gelfand duality and its application to topological automata.

Given a finite set X we write D≤1X for the set of discrete subdistributions on X
endowed with the relative topology when viewed as a subset of [0, 1]X . This is a compact
Hausdorff space.

Definition 4.11 A compact Hausdorff automaton is a 5-tuple

H = (S, t : S × Σ→ S, f : S → D≤1Ω)

where S is a compact Hausdorff space, Σ is a finite set of actions or inputs, Ω is a
finite set of observations, t is a continuous transition function and f is a continuous
observation function.

We recall a few basic facts about C∗-algebras, and refer to [13,18,43,61] for further
information. Usually C∗-algebras are considered as algebras over the complex field. Here,
we are concerned with probabilistic computation, and therefore we consider C∗-algebras
over the field R of real numbers.

A (real-valued) Banach algebra A is Banach space (complete normed real vector
space) equipped with an associative multiplication such that ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y. This requirement makes multiplication continuous in the norm topology. A (real)
C∗-algebra is a Banach algebra together with an involution (−)∗ which is a linear, norm-
preserving map on A such that (xy)∗ = y∗x∗ and (x∗)∗, and which in addition satisfies the
C∗-axiom: ‖x∗x‖ = ‖x‖2 for all x ∈ A. A C∗-algebra A is unital if it has a multiplicative
unit 1 whose norm is 1 ∈ R, and A is commutative if the multiplication is commutative.

A homomorphism of C∗-algebras is a bounded, linear map that preserves the mul-
tiplication and the involution. A homomorphism of unital C∗-algebras is additionally
required to preserve the unit. We denote by CUC∗Alg the category of unital, commuta-
tive, real-valued C∗-algebras and their homomorphisms.

In [56] it was shown 1 that U has a left adjoint M : Set→ CUC∗Alg given by

M(X) = C([0, 1]X ) = {f : [0, 1]X → R | f continuous} (4.1)

M(g : X → Y ) = f(v ◦ g) where f ∈ C([0, 1]X ), v ∈ [0, 1]Y . (4.2)

where [0, 1]X is equipped with the product topology.
We denote by KHaus the category of compact Hausdorff spaces and continuous

maps. Given a compact Hausdorff space X, the hom-set C (X) = HomKHaus(X,R)
becomes a commutative, unital, real-valued C∗-algebra by defining operations point-
wise. In particular, the unit is the constantly 1 map, and for f ∈ C (X), and the norm
is ‖f‖ = sup{|f(x)| | x ∈ X}; recall that for a compact space and a continuous function

1Strictly speaking, she showed it for complex-valued C
∗-algebras, but the result also holds for real-

valued ones.

23



the supremum is attained. For a morphism g : X → Y in KHaus, defining C (g)(h) = h◦g
makes C (−) a functor from KHaus to CUC∗Algop.

Conversely, for A ∈ CUC∗Alg, the set Â = HomCUC∗Alg(A,R) becomes a compact
Hausdorff space (called the spectrum of A) by equipping it with the weak ∗-topology
τ which is generated by the sets Ox = {Φ ∈ Â | Φ(x) 6= 0} for all x ∈ A. We define
Spec(A) = (Â, τ). For a morphism h : A → B in CUC∗Alg, defining Spec(h)(Φ) = Φ ◦ h
makes Spec a functor from CUC∗Algop to KHaus.

The functors C and Spec establish a dual equivalence between KHaus and CUC∗Alg

known as Gelfand duality

KHaus

C
))

∼= CUC∗Algop

Spec

gg (4.3)

For the purposes of this paper, we only need a dual adjunction. We will take C to be
the right adjoint. As this dual adjunction is in fact a dual equivalence, the unit and the
counit of this adjunction are natural isomomorphisms. The unit ηA : A→ C (Spec(A)) is
known as the Gelfand transform, and is given by ηA(x)(Φ) = Φ(x). For all A ∈ CUC∗Alg,
ǫA is an isometric isomorphism in CUC∗Alg.

We will lift the base dual adjunction between KHaus and CUC∗Alg to an adjunc-
tion between the category CHA of compact Hausdorff automata and CAO of CUC∗Alg-
automata. These are obtained from F -coalgebras and G-algebras, respectively, where

F : KHaus→ KHaus, F (X) = D≤1(Ω)×X
Σ

G : CUC∗Alg→ CUC∗Alg, G(A) =M(Ω)/J +Σ ·A
(4.4)

where D≤1(Ω) is the set of discrete, subdistributions on the set Ω of observations
equipped with the relative topology viewed as a subset D≤1(Ω) ⊆ [0, 1]Ω. This makes
D≤1(Ω) a compact Hausdorff space. Recall from (4.1) that M is the left adjoint of the
unit interval functor U . Finally, J ⊆ M(Ω) is an ideal of the CUC∗Alg-algebra M(Ω)
which we describe in a moment. Note that CUC∗Alg has coproducts. This can readily
be seen from the fact that KHaus has products and using Gelfand duality.

In order to lift the base dual adjunction Spec ⊣ C to a dual adjunction between
Coalg(F ) and Alg(G) as in section 3.3.2, we need to show that Spec(M(Ω)/J) ∼= D≤1(Ω).
First, we define the ideal J . Fix a finite set Y and consider the C∗-algebra M(Y ) ∈
CUC∗Alg defined by [0, 1]Y . For each y ∈ Y , we have a projection map πy ∈M(Y )→ R

given by πy(v) = v(y). Let π =
∑

y∈Y πy. Then π : [0, 1]
Y → R is linear and π ∈M(Y ).

We will take J to be the ideal corresponding to the congruence generated by the equality
obtained by rewriting π � 1 as an equality as follows:

π � 1 ⇐⇒ π ∨ 1 = 1
⇐⇒ 1

2(π + 1) + 1
2 |π + 1| = 1

⇐⇒ |1− π| = 1− π

24



Definition 4.12 We define the ideal J of M(Y ) as the principal ideal generated by the
element (|π−| − π−) where π− := 1− π. That is,

J = {m ∈M(Y ) | ∃k ∈M(Y ) : m = k(|π−| − π−)}.

The congruence relation ≡J on M(Y ) arising from the ideal J is then defined standardly
as follows: For m,n ∈ M(Y ), m ≡J n if m − n ∈ J. We write M(Y )/J for the
quotient of M(Y ) with respect to ≡J .

The rather technical proof of the following isomorphism lemma is in Appendix A.6.

Lemma 4.13 For any set Y , D≤1(Y ) ∼= Spec(M(Y )/J) in KHaus.

From Lemma 4.13 and section 3.3.2, it follows that the base dual adjunction lifts to
one between F -coalgebras and G-algebras.

CHAop

C
))

⊤

��

CAO

Spec

gg

��

KHausop

C
))

⊤ CUC∗Alg

Spec

gg

The abstract algorithm Algo1 applies since KHaus and CUC∗Alg are monadic over
Set (cf. Section 3.6) In particular, KHaus is the Eilenberg-Moore category of the ul-
trafilter monad [54]. In order to show that the associated trace logic is expressive we
need an extra argument, since the functor F defined in (4.4) does not have the shape
required by Lemma 3.5 and Theorem 3.10. However, we can apply Remark 2 after
observing the following. Let F ′ := Spec(M(Ω)) × (−)Σ. Then the associated natu-
ral isomorphism ξtrc′ : F ′SpecM ⇒ SpecMG specifies semantics of trace logic over F ′-
coalgebras. To obtain a suitable τ : F ⇒ F ′ note that quotienting with J in CUC∗Alg

yields an epi e : M(O) ։ M(O)/J from which we get a mono in KHaus Spec(e) :
Spec(M(O)/J)  Spec(M(O)). Pre-composing Spec(e) with the isomorphism h :
SubD(O)

∼
→ Spec(M(O)/J) given by Lemma 4.13 and defining τ := (Spec(e) ◦ h)× id,

it follows that τ : F ⇒ F ′ has all components mono in KHaus. It now follows that trace
logic is also expressive for F -coalgebras, i.e., for compact Hausdorff automata.

Remark 3 In order to view Gelfand duality (4.3) as a concrete dualty obtained from a
dualising object, we need to expand the setting a bit, since R is not a compact Hausdorff
space. This can be done by considering the dual adjunction between locally compact
Hausdorff spaces and not-necessarily unital commutative C∗-algebras. Gelfand duality is
a restriction of this dual adjunction.

25



5 Alternating Automata

Alternating finite automata (aka Boolean automata or parallel automata) were first stud-
ied in [25,28,29,49,53] as a finite-state analog of alternating Turing machines. Let Σ be
a fixed finite input alphabet. An alternating finite automaton (AFA) over Σ is a tuple
A = (X, ι, δ, F ), where

• X is a finite set of states,

• F ⊆ X are the final states,

• δ : Σ→ X → 2X → 2 is the transition function, and

• ι : 2X → 2 is the acceptance condition.

Intuitively, the machine A operates as follows. Let k = |X|. Initially k processes are
started, each assigned to a different state, reading the first symbol of the input word
w ∈ Σ∗. In each step, a process at state s reads the next input symbol a and spawns
k child processes, each of which moves to a different state and continues in the same
fashion, while the parent process at s waits for the child processes to report back a
Boolean value. In this way a k-branching computation tree is generated. When the
end of the input word is reached, a process at state s reports 1 back to its parent if
s ∈ F , 0 otherwise. A non-leaf process waiting at state s, having read input symbol a,
collects the k-tuple b ∈ 2X of Boolean values reported by its children, computes δasb,
and reports that Boolean value back to its parent. When the initial processes have all
received values, say c ∈ 2X , the machine accepts if ιc = 1, otherwise it rejects.

Alternating automata accept all and only regular sets. It was shown in [50] by
combinatorial means that a language L ⊆ Σ∗ is accepted by a k-state AFA iff its reverse
{wR | w ∈ L} is accepted by a 2k state deterministic finite automaton (DFA).

Our purpose in this section is to recast this result in the framework of our general
duality principle. The duality involves complete atomic Boolean algebras (CABA) and
discrete spaces (Set), which underlie powerset Boolean algebras.

5.1 CABA, EM(N), and Set
op

5.1.1 CABA

A complete Boolean algebra (CBA) is a structure (B,¬,
∨

,
∧

, 0, 1,≤), where B is a set,
¬ is a unary operation on B,

∨

and
∧

are infinitary operations on the powerset of B, 0
and 1 are constants, and ≤ is a partial order on B, such that

• (B,¬,∨,∧, 0, 1,≤) is an ordinary Boolean algebra (BA), where ∨ and ∧ are the
restrictions of

∨

and
∧

, respectively, to two-element sets; and

•
∨

A and
∧

A give the supremum and infimum of A, respectively, with respect to
≤.

26



The morphisms of CBA are BA homomorphisms that preserve
∨

and
∧

.
An atom of a BA is a ≤-minimal nonzero element. A BA is atomic if every nonzero

element has an atom ≤-below it. A complete atomic Boolean algebra (CABA) is an
atomic CBA. The morphisms of CABA are just the morphisms of CBA.

It is known that every CABA is isomorphic to the powerset Boolean algebra on its
atoms, thus every element is the supremum of the atoms below it. CBAs and CABAs
satisfy infinitary de Morgan and distributive laws:

¬
∨

a =
∧

{¬x | x ∈ a} (
∨

a) ∧ x =
∨

{y ∧ x | y ∈ a}

¬
∧

a =
∨

{¬x | x ∈ a} (
∧

a) ∨ x =
∧

{y ∨ b | y ∈ a}

as well as other useful infinitary properties such as commutativity, associativity, and
idempotence of

∨

and
∧

. The free CABA on generators X is the powerset CABA

(22
X
,
⋃

,
⋂

,∼, ∅, 2X ). See [37, 38, 55, 66] for further information on the theory of CBAs
and CABAs.

5.1.2 EM(N)

The self-dual adjunction Qop ⊣ Q of the contravariant powerset functor (Example 3.2)
gives rise to a Set-monad N = Q ◦Qop, where for X a set and f : X → Y a set function,

NX = QQopX = 22
X

Nf = (f−1)−1 : 22
X

→ 22
Y

The unit and multiplication are

ηX(x) = {a | x ∈ a}, µX(H) = {a | ηQX(a) ∈ H} = η−1
QX(H).

This is called the double powerset or neighborhood monad. The category of Eilenberg-
Moore algebras of N is denoted EM(N).

5.1.3 Equivalence of CABA, Setop, and EM(N)

It is known that the Eilenberg-Moore algebras of the double powerset monad N are
exactly the CABAs. These two categories are also dually equivalent to Set, that is,
equivalent to Setop, as observed in [72].

The equivalence of the three categories can be shown via the composition of three
faithful functors that are injective on objects:

Setop EM(N) CABA Setop.
J D At

(5.1)

Here J is the Eilenberg-Moore comparison functor [3,52]. Concretely, J sends a set X to
the CABA 2X and a function f : X → Y to its inverse image map. That is, J = Set(−, 2)
with Boolean structure. The functor At takes a CABA to its set of atoms and a CABA

morphism f : A → B to At f : At B → At A, where Atf (b) is the unique atom a of A

27



such that a↑ = f−1(b↑) and a↑ and b↑ are the principal ultrafilters on atoms a and b,
respectively. In a CABA, there is a bijection between principal ultrafilters and atoms,
and we have that At ∼= CABA(−, 2). In other words, the equivalence given by J and At
is a concrete duality with dualising object 2.

Although the equivalence between EM(N) and CABA is fairly well known, the details
are rarely provided. We therefore describe the functor D that produces a CABA from an
EM(N)-algebra (X,α). Let TX be the term monad for CABA terms over indeterminates
X.2 Let D(X,α) = (X,Dα), where

Dα : TX → X Dα = α ◦ (τN ◦ Tη)X , (5.2)

where TηX : TX → TNX substitutes ηX(x) for x ∈ X in a term and τNX : TNX →

NX is the evaluation map of the powerset CABA (22
X
,
⋃

,
⋂

,∼, ∅, 2X ). In particular
(and in more conventional notation), this gives the following definitions of the Boolean
operations:

∨

n xn = α(
⋃

n ηX(xn))
∧

n xn = α(
⋂

n ηX(xn))

¬x = α(∼ηX(x)) 0 = α(∅) 1 = α(2X).
(5.3)

The action of D on morphisms is the identity.
The natural transformation τN ◦Tη : T → N in (5.2) relating CABA terms and dou-

ble powerset is invertible up to CABA equivalence. Consider the natural transformation

υ : N → T υX(A) =
∨

a∈A

(
∧

x∈a

x ∧
∧

x 6∈a

¬x), A ∈ 22
X

.

It can be shown that

τN ◦ Tη ◦ υ = idN υ ◦ τN ◦ Tη ≡ idT .

By the latter we mean that for any term t ∈ TX, υX(τNX(TηX(t))) ≡ t modulo the
axioms of CABA. This essentially says that there is a disjunctive normal form for CABA
terms.

5.2 Language acceptance of alternating automata

Let A = (X, δ, f, ι) be an AFA with states X and components

ι : 1→ 22
X

δa : X → 22
X

, a ∈ Σ f : X → 2

where ι is the (transposed) acceptance condition, δa are the transitions, and f : X → 2
is the characteristic function for the subset F of accepting states.

2
TX consists of CBA terms with the arity of the infinitary operations bounded by 22

|X|

. There can

be no such bound for CBA in general, as there are CBAs of arbitrarily large cardinality generated by

X; thus there is no term monad for CBA. However, CABAs generated by X are of cardinality at most

double exponential in |X|, and we can bound arities accordingly.

28



The language accepted by A is L(A) , {w ∈ Σ∗ | ι(δ′w(F )) = 1}, where

δ′w : 2X → 2X δ′ε(A) = A δ′aw(A)(s) = δa(s)(δ
′
w(A)).

As constructed in [50], the associated DFA for the reverse language is A′ with states
2X and components

f ♭ : 1→ 2X δ♭a : 2X → 2X , a ∈ Σ ι♭ : 2X → 2.

This is a deterministic automaton, that is, a coalgebra for the functor F = 2 × (−)Σ

with start state f ♭, transitions δ♭a, and accept states ι♭. The language accepted by A′ is
L(A′) , {w ∈ Σ∗ | ι♭(δ♭w(f

♭)) = 1}, where

δ♭ε = id2X δ♭wa = δ♭a ◦ δ
♭
w.

The combinatorial construction of [50] amounts to recurrying the components of the
automata. Denoting the reverse of a string w by wR and using the fact that δ♭a = δ′a, it
can be shown inductively that δ♭w = δ′

wR , therefore the language accepted by A′ is the
reverse of the language accepted by A:

L(A′) = {w | ι♭(δ♭w(f
♭)) = 1} = {w | ι(δ′wR(f)) = 1} = {w | wR ∈ L(A)}.

5.3 Alternating automata as EM(N)-automata

We now show how the relationship between A and A′ comes about as an instance of a
dual adjunction of automata as described in Section 3.3, in particular Section 3.3.3. We
use the base equivalence between EM(N) and Setop described in Section 5.1. For the
sake of uniformity with the general setup in Section 3.3, we take R as the right adjoint
(hence we put the op on EM(N)), and consider R and J as contravariant functors.

(

Aut
N(1),2
EM(N)

)op
R̄

**

⊤

��

Aut
1,2
Set

J̄
nn

��

EM(N)op
R

((
∼= Set

J

jj

(5.4)

More precisely, we show thatA′ = R̄(detA), where detA is the deterministic automa-
ton over EM(N) obtained by applying the determinisation construction from Section 2.2
for N to A. The functor R is the composition R = At ◦D (see (5.1)).

Recall from Section 2.2 that determinisation for N takes free extensions of the tran-
sition function and output function. That is, given an alternating automaton A with
states X and components

ι : 1→ 22
X

δa : X → 22
X

, a ∈ Σ f : X → 2

29



over Set, we have a deterministic automaton detA with

ι♯ : 22
1
→ 22

X

δ♯a : 22
X

→ 22
X

, a ∈ Σ f ♯ : 22
X

→ 2

over EM(N), using the CABA structure on 2. In detA, we leave algebraic structure on

22
X

and 2 implicit. Formally, they are the powerset CABAs on 22
X

and 2, respectively;
these are isomorphic to the free EM(N)-algebras (NX,µX) and (N∅, µ∅) on generators
X and ∅, respectively.

We easily see that 〈22
X
, f ♯, δ♯, ι♯〉 instantiates the definition from Section 3.2 of an

EM(N)-automaton with initialisation in 22
1
and output in 2, i.e., detA is in Aut

N(1),2
EM(N).

For ease of notation, we will sometimes write the initialisation morphism ι♯ as its corre-
sponding Set-function ι.

A dual automaton in Aut
1,2
Set (with states X) is a coalgebra for F = 2× (−)Σ together

with an initial state j : 1 → X, or equivalently an algebra for G = 1 + Σ × (−) with
output f : X → 2. It is easy to check that the conditions for Theorem 3.4 hold. First
note that I = 22

1
and O = 1. We then easily verify that FEM(N)

∼= J(1) × (−)Σ by

noting that J(1) = 21 ∼= 2. Similarly, to see that G ∼= R(22
1
) + Σ · (−), we note that

R(22
1
) = At(22

1
) = 21 ∼= 2. Hence the base dual adjunction J ⊣ R lifts to J̄ ⊣ R̄ between

automata categories, and the lifted adjoints are given by (3.5) and Theorem 3.4. We
describe the reversal functor R̄ a bit more concretely as a contravariant functor from

Aut
N(1),2
EM(N) to Aut

1,2
Set. The base adjunction of (5.4) gives us a bijection of homsets:

θ : EM(N)((A,α), JX) → Set(X,R(A,α))

natural in (A,α) and X. Given an automaton in Aut
N(1),2
EM(N)

ι : 1→ (A,α) δa : (A,α)→ (A,α) f : (A,α)→ 2

(again, we leave the algebraic structure on 2 implicit), R̄ produces the deterministic
automaton over Set

θf : 1→ R(A,α) R(δa) : R(A,α)→ R(A,α) Rι♯ : R(A,α)→ 2. (5.5)

Applying R̄ to detA, which is

ι : 1→ 22
X

δ♯a : 22
X

→ 22
X

f ♯ : 22
X

→ 2

we get the reversed, deterministic automaton R̄(detA) (over Set):

θf ♯ : 1→ 2X R̄δ♯a : 2X → 2X Rι♯ : 2X → 2.

Theorem 5.1 For any alternating automaton

A = (X, {δa : X → 22
X

| a ∈ Σ}, ι : 1→ 22
X

, f : X → 2),

A′ ∼= R̄(detA).

30



Proof. The state space of A′ is 2X and the state space of R̄(detA) is the set of atoms

of the CABA D(22
X
, µX) which is the set {{a} | a ⊆ X}. The correspondence between

the initial and final states is shown in Lemmas A.4 and A.5. The transition function δ
is the tupling of maps δa : X → 22

X
, i.e., δ = 〈δa〉a∈Σ, and similarly for δ♯ and δ♭. The

result follows by applying Lemma A.5 to each δa and retupling. qed

The relationship between an AFA and its determinised version can be understood
as follows. In an AFA, when reading an input word, we generate a computation tree
downwards, and once we reach the end of the word, we evaluate the outputs going back
up using Boolean functions, and at the top all outputs are aggregated into a single
Boolean value with the acceptance condition. In the determinised AFA, we propagate
the acceptance condition forwards as a Boolean function (encapsulated in the state)
and once we reach the end of the input word, we use the Boolean function to evaluate
immediately instead of propagating back up. The dual DFA of an AFA represents its
logical semantics, or predicate transformer semantics, where the observations at the end
of the word are propagated backwards to the initial state. Since predicate transformers
move backwards, the language of an AFA is the reversed language of the dual DFA.

Finally, we note that all conditions for Theorem 3.10 hold (with D = Set and ΦD =
UD = Id). Hence we also get a Brzozowski style minimisation algorithm for alternating
automata by instantiating Algo2 of Section 3.6. Reachability in Aut

1,2
Set is just the

standard automata-theoretic notion, whereas now the more abstract algebraic notion

from Section 3.5 is relevant “on the left” in the category Aut
N(1),2
EM(N). As with weighted

automata (cf. Section 4.2), we are not guaranteed that the result of the minimisation
algorithm is again an alternating automaton (understood as an FN -coalgebra over Set),
since a subalgebra of a free CABA need not be free.

6 Conclusion and Related Work

In this paper we presented a unifying categorical perspective on the minimisation con-
structions presented in [16] and [20], revisited some examples from these two papers in
light of the general framework, and presented a new example of alternating automata.
We also filled in some details regarding topological automata (belief automata) that were
missing from [16].

Our starting points are Brzozowski’s algorithm [26] for the minimisation of determin-
istic automata and the use of Stone-type duality between computational processes and
their logical characterisation [1]. The connection between these two seemingly unrelated
points is given by the duality principle between reachability and observability originally
introduced in systems theory [45] and then extended to automata theory in [9–11].

The duality between reachability and observability has been studied, e.g. in [17] to
relate coalgebraic and algebraic specifications in terms of observations and constructors.
In this context most notable is the use of Stone-type dualities between automata and
varieties of formal languages [33,34,59] which recently culminated into a general algebraic

31



and coalgebraic understanding of equations, coequations, Birkhoff’s and Eilenbergtype
correspondences [4, 5, 14,62–64].

Our unifying categorical perspective is based on a dual adjunction between base
categories lifted to a dual adjunction between coalgebras and algebras, as introduced in
[23,46,47] in the context of coalgebraic modal logic, and in [16,48] to capture the observ-
able behaviour of a coalgebra. Our novelty is to lift the coalgebra-algebra adjunction to
a dual adjunction between automata which generalises the formalisation of Brzozowski’s
algorithm from [20], and formalising the relationship of trace logic to the full modal logic
and language semantics.

Our paper focuses on comparing and unifying our earlier approaches from [16] and
[20] under a common umbrella, but we hasten to remark that the concept of minimisation
via logic presented in section 3.3 is already in [58]. At its core, [58] uses a dual adjunction
that is lifted to a dual adjunction between coalgebras and algebras. A logic is then used to
provide a construction for obtaining observable coalgebras. This is esssentially what we
call Algo1. The setting of [58] is more general as no assumptions are made on the specific
shape of the algebra and coalgebra functors involved. Instead the necessary functor
requirements are axiomatised. One achievement of [58] is to generalise the setup in [16]
from dual equivalences to dual adjunctions. The central contribution in [58] is to combine
the duality-based framework with coalgebraic partition-refinement [2] such that a logic-
based treatment of Brzozowski and partition refinement is obtained. Compared to [58],
our framework is more restricted, as we confine ourselves to functors of certain shapes,
but we believe this strikes a good balance between generality and a categorical setting
for studying many different types of automata. Furthermore, our categorical framework
incorporates a formalisation of the full Brzozowski algorithm via the small extension
of the coalgebra-algebra adjunction to the adjunction of automata, i.e., structures that
have both initial and final states.

Other categorical approaches to automata minimisation have been proposed in the
literature; we mention here just a few. In [30] languages and their acceptors are regarded
as functors which provides a different perspective on minimisation in which Brzozowski
can also be formulated. In [2] the authors study coalgebras in categories equipped with
factorisation structures in order to devise a generic partition refinement algorithm. From
the language-theoretic point of view, the relation between the automata constructions
resulting from the automata-based congruences, together with the duality between right
and left congruences, allows to relate determinisation and minimisation operations [32].

References

[1] Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51(1):1 – 77, 1991.

[2] Jiŕı Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius,
and Alexandra Silva. A coalgebraic perspective on minimization and determiniza-
tion. In Lars Birkedal, editor, Foundations of Software Science and Computational

32



Structures - 15th International Conference, (FOSSACS 2012), volume 7213 of Lec-
ture Notes in Computer Science, pages 58–73. Springer, 2012.

[3] Jiŕı Adámek, Horst Herrlich, and George E. Strecker. Abstract and Concrete Cate-
gories - The Joy of Cats. Dover Publications, 2009.

[4] Jiri Adamek, Robert S. R. Myers, Henning Urbat, and Stefan Milius. Varieties
of languages in a category. In Proceedings of the 2015 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), LICS 15, page 414425. IEEE
Computer Society, 2015.

[5] Jǐŕı Adámek, Stefan Milius, Robert S.R. Myers, and Henning Urbat. Generalized
eilenberg theorem: Varieties of languages in a category. ACM Transaction of Com-
putational Logic, 20(1), 2018.

[6] M. A. Arbib and E. G. Manes. Machines in a category: An expository introduction.
SIAM Review, 16:163–192, 1974.

[7] M. A. Arbib and E. G. Manes. Extensions of semilattices. The American Mathe-
matical Monthly, 82(7):744–746, 1975.

[8] M. A. Arbib and E. G. Manes. Fuzzy machines in a category. Bulletin of the
Australian Mathematical Society, 13(2):169–210, 1975.

[9] M.A. Arbib and H.P. Zeiger. On the relevance of abstract algebra to control theory.
Automatica, 5:589–606, 1969.

[10] Michael A. Arbib and Ernest G. Manes. Adjoint machines, state-behavior machines,
and duality. J. of Pure and Applied Algebra, 6(3):313 – 344, 1975.

[11] Michael A. Arbib and Ernest G. Manes. Foundations of system theory: The Hankel
matrix. Journal of Computer and System Sciences, 20:330–378, 1980.

[12] Michael A. Arbib and Ernest G. Manes. Machines in a category. J. of Pure and
Applied Algebra, 19:9–20, 1980.

[13] William Arveson. An Invitation to C∗-Algebras, volume 39 of Graduate Texts in
Mathematics. Springer-Verlag, 1976.

[14] A. Ballester-Bolinches, E. Cosme-Llópez, and J. Rutten. The dual equiva-
lence of equations and coequations for automata. Information and Computation,
244(C):4975, 2015.

[15] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats.
PhD thesis, Vrije Universiteit Amsterdam, 2004.

[16] Nick Bezhanishvili, Clemens Kupke, and Prakash Panangaden. Minimization via
duality. In L. Ong and R. de Queiroz, editors, Proceedings of WoLLIC 12, volume
7456 of LNCS, pages 191–205. Springer, 2012.

33



[17] Michel Bidoit, Rolf Hennicker, and Alexander Kurz. On the duality between observ-
ability and reachability. In Furio Honsell and Marino Miculan, editors, FoSSaCS,
volume 2030 of Lect. Notes in Comp. Sci., pages 72–87. Springer, 2001.

[18] Bruce Blackadar. Operator algebras: theory of C*-algebras and von Neumann alge-
bras, volume 122 of encyclopedia of Mathematical Sciences. Springer-Verlag, 2006.

[19] P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Cambridge University
Press, Cambridge, 2001.

[20] Filippo Bonchi, Marcello Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan
Rutten, and Alexandra Silva. Algebra-coalgebra duality in brzozowski’s minimiza-
tion algorithm. ACM Transactions on Computational Logic,, 15(1), 2014.

[21] Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J. M. M. Rutten,
and Alexandra Silva. A coalgebraic perspective on linear weighted automata. In-
formation and Computation, 211:77–105, 2012.

[22] M. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In FoS-
SaCS05, 2005.

[23] Marcello M. Bonsangue and Alexander Kurz. Presenting functors by operations
and equations. In Luca Aceto and Anna Ingólfsdóttir, editors, Foundations of Soft-
ware Science and Computation Structures, 9th International Conference, FOSSACS
2006, Held as Part of the Joint European Conferences on Theory and Practice of
Software, (ETAPS 2006), volume 3921 of Lecture Notes in Computer Science, pages
172–186. Springer, 2006.

[24] Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structure.
Cambridge University Press, 1994.

[25] J. A. Brzozowski and E. Leiss. On equations for regular languages, finite automata,
and sequential networks. Theoretical Computer Science, 10:19–35, 1980.

[26] Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs for
definite events. In Mathematical Theory of Automata, volume 12 of MRI Symposia
Series, pages 529–561, Polytechnic Institute of Brooklyn, 1962. Polytechnic Press.

[27] A. Chagrov and M. Zakharyaschev. Modal logic, volume 35 of Oxford Logic Guides.
The Clarendon Press, New York, 1997.

[28] Ashok Chandra, Dexter Kozen, and Larry Stockmeyer. Alternation. J. Assoc.
Comput. Mach., 28(1):114–133, 1981.

[29] Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In Proc. 17th Symp.
Found. Comput. Sci., pages 98–108. IEEE, October 1976.

34



[30] Thomas Colcombet and Daniela Petrisan. Automata minimization: a functorial
approach. In Filippo Bonchi and Barbara König, editors, 7th Conference on Algebra
and Coalgebra in Computer Science, (CALCO 2017), volume 72 of LIPIcs, pages
8:1–8:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[31] Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A congruence-based perspec-
tive on automata minimization algorithms. In Peter Rossmanith, Pinar Heggernes,
and Joost-Pieter Katoen, editors, 44th International Symposium on Mathemati-
cal Foundations of Computer Science, (MFCS 2019), volume 138 of LIPIcs, pages
77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[32] Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A congruence-based perspec-
tive on automata minimization algorithms. In Peter Rossmanith, Pinar Heggernes,
and Joost-Pieter Katoen, editors, 44th International Symposium on Mathemati-
cal Foundations of Computer Science, (MFCS 2019), volume 138 of LIPIcs, pages
77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[33] Mai Gehrke. Stone duality and the recognisable languages over an algebra. In
Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors, CALCO, volume
5728 of Lect. Notes in Comp. Sci., pages 236–250. Springer, 2009.

[34] Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. Duality and equational theory of
regular languages. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume
5126 of Lect. Notes in Comp. Sci., pages 246–257. Springer, 2008.

[35] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott.
Continuous lattices and domains, volume 93 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, 2003.

[36] Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Undergraduate
Texts in Mathematics. Springer-Verlag, 2009.

[37] Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Springer, 2009.

[38] Paul R. Halmos. Lectures on Boolean Algebras. Springer, 1974.

[39] Claudio Hermida and Bart Jacobs. Structural induction and coinduction in a fibra-
tional setting. Information and Computation, 145:107–152, 1998.

[40] Edward V. Huntington. Sets of independent postulates for the algebra of logic.
Trans. Amer. Math. Soc., 5(3):288–309, July 1904.

[41] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and
languages. In K. Futatsugi, J.-P. Jouannaud, and J. Meseguer, editors, Algebra,
Meaning and Computation: Essays dedicated to Joseph A. Goguen on the Occasion
of his 65th Birthday, volume 4060 of LNCS, pages 375–404. Springer, 2006.

35



[42] Bart Jacobs and Ana Sokolova. Exemplaric expressivity of modal logics. J. Log.
Comput., 20(5):1041–1068, 2010.

[43] P. T. Johnstone. Stone spaces. Cambridge University Press, Cambridge, 1982.

[44] P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bulletin London
Mathematical Society, 7:294–297, 1975.

[45] R. Kalman. On the general theory of control systems. IRE Transactions on Auto-
matic Control, 4(3):110–110, 1959.

[46] Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting adjunctions to
coalgebras to (re)discover automata constructions. In Marcello M. Bonsangue, edi-
tor, Coalgebraic Methods in Computer Science, pages 168–188, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[47] Bartek Klin. Coalgebraic modal logic beyond sets. In Marcelo Fiore, editor, Pro-
ceedings of the 23rd Conference on the Mathematical Foundations of Programming
Semantics, (MFPS 2007), volume 173 of Electronic Notes in Theoretical Computer
Science, pages 177–201. Elsevier, 2007.

[48] Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics.
Logical Methods in Computer Science, 12(4), 2016.

[49] Dexter Kozen. On parallelism in Turing machines. In Proc. 17th Symp. Found.
Comput. Sci., pages 89–97. IEEE, October 1976.

[50] Dexter Kozen. Theory of Computation. Springer, New York, 2006.

[51] Alexander Kurz. Logics for Coalgebras and Applications to Computer Science. PhD
thesis, Ludwigs-Maximilians-Universität Mn̈chen, 2000.

[52] Saunders Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
New York, 1971.

[53] Ernst Leiss. Succinct representation of regular languages by Boolean automata.
Theoretical Computer Science, 13:323–330, 1981.

[54] E. Manes. A triple-theoretic construction of compact algebras. In B. Eckman,
editor, Seminar on Triples and Categorical Homology Theory, number 80 in Lect.
Notes Math., pages 91–118. Springer, 1969.

[55] J. Donald Monk and eds. R. Bonnet. Handbook of Boolean Algebras. North-Holland,
1989.

[56] Joan W. Negrepontis. Duality in analysis from the point of view of triples. Journal
of Algebra, 19:228–253, 1971.

36



[57] Hans-E. Porst and Walter Tholen. Concrete dualities. In H. Herrlich and Hans-E.
Porst, editors, Category Theory at Work. Heldermann Verlag, 1991.

[58] Jurriaan Rot. Coalgebraic minimization of automata by initiality and finality. In
Lars Birkedal, editor, The Thirty-second Conference on the Mathematical Founda-
tions of Programming Semantics, (MFPS 2016), volume 325 of Electronic Notes in
Theoretical Computer Science, pages 253–276. Elsevier, 2016.

[59] F. Roumen. Canonical automata via duality. Unpublished note., 2011.

[60] J. J. M. M. Rutten. Universal coalgebra: A theory of systems. Theoretical Computer
Science, 249(1):3–80, 2000.

[61] Shoichiro Sakai. C∗-Algebras and W ∗-algebras. Springer-Verlag, 1971.

[62] Julian Salamanca. Unveiling eilenberg-type correspondences: Birkhoff’s theorem
for (finite) algebras + duality. CoRR, abs/1702.02822, 2017.

[63] Julian Salamanca, Adolfo Ballester-Bolinches, Marcello M. Bonsangue, Enric
Cosme-Llópez, and Jan J. M. M. Rutten. Regular varieties of automata and co-
equations. In Ralf Hinze and Janis Voigtländer, editors, Mathematics of Program
Construction - 12th International Conference, (MPC 2015), Proceedings, volume
9129 of Lecture Notes in Computer Science, pages 224–237. Springer, 2015.

[64] Julian Salamanca, Marcello M. Bonsangue, and Jurriaan Rot. Duality of equations
and coequations via contravariant adjunctions. In Ichiro Hasuo, editor, Coalgebraic
Methods in Computer Science - 13th IFIP WG 1.3 International Workshop, (CMCS
2016), volume 9608 of Lecture Notes in Computer Science, pages 73–93. Springer,
2016.

[65] Marcel Paul Schützenberger. On the definition of a family of automata. Information
and Control, 4(2-3):245–270, 1961.

[66] Roman Sikorski. Boolean Algebras. Springer, 1966.

[67] A. Silva, F. Bonchi, M.M. Bonsangue, and J.J.M.M. Rutten. Generalizing the
powerset construction, coalgebraically. In Kamal Lodaya and Meena Mahajan,
editors, IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 272–283. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2010.

[68] M. H. Stone. The theory of representations for Boolean algebras. Trans. Amer.
Math. Soc., 40(1):37–111, 1936.

[69] M. H. Stone. Topological representation of distributive lattices and Brouwerian
logics. Časopis Pešt. Mat. Fys., 67:1–25, 1937.

37



[70] Ross Street. The formal theory of monads. J. Pure and Applied Algebra, 2:149–168,
1972.

[71] Yi-Jia Tan. Free sets and free subsemimodules in a semimodule. Linear Algebra
and its Applications, 496:527–548, 2016.

[72] Paul Taylor. Subspaces in abstract Stone duality. Theory and Applications of
Categories, 10(13):300–366, 2002.

Appendix

A.1 Example: PODFA-style minimisation vs Brzozowski

Classic DFAs are PODFAs with a single observation, hence they can be minimised using
the duality approach in [16] using the duality between finite sets and finite Boolean
algebras. P : FinSetop FinBA : Uf or using Brozowski’s algorithm via the self-dual
adjunction, cf. [20]. Q : Setop Set : Q Consider the DFA X below left from (11) in
[20]. The DFA X accepts the language (a + b)∗a. The result X′ after the first reverse-
determinise step in Brozowski’s algorithm is shown on the right. Disregarding initial
and final states, X′ is also the modal algebra obtained from X We then take reachable
parts to get the automaton Y and the subalgebra A of definable subsets of the modal
language with a single proposition letter p which is true precisely at accepting states y, z
of γ: JpK = {yz}.

Start: X X′ = det(rev(X)) reach(X′) A

// ?>=<89:;x
b

��

a
// ?>=<89:;z //

b
zz

a

}}④④
④④
④④
④④
④④
④

?>=<89:;y //

b

OO

a

II

GFED@ABCxy

==④④④

a
��

b // ONMLHIJKxyz

a,b

		
;;①①① GFED@ABCxzboo

a
��

==④④④

// GFED@ABCyz

b

""❉
❉❉

❉❉
❉❉

❉

a

<<②②②②②②② ?>=<89:;xb

bb❊❊❊❊❊❊❊❊

a

}}③③
③③
③③
③③

==④④④

?>=<89:;y
b

//

a

OO

?>=<89:;∅
a,b

KK

?>=<89:;z
b

oo

a

OO

ONMLHIJKxyz

a,b

		

//

// GFED@ABCyz

b %%❏
❏❏

❏❏
❏❏

a
99ssssss

?>=<89:;∅
a,b

KK

ONMLHIJKxyz

a,b

		

GFED@ABCyz

b %%❏
❏❏

❏❏
❏❏

a
99ssssss ?>=<89:;x

b
dd❏❏❏❏❏❏

azz✉✉
✉✉
✉✉
✉

?>=<89:;∅
a,b

KK

After doing again reverse-determinise-reachability on to complete the Brzozowski al-
gorithm, we get the automaton below on the left. Taking the dual automaton (of
atoms/ultrafilters) of A we get the coalgebra below on the right.

Result of Brzozowski: Result of minimisation-via-duality

// ONMLHIJKxyz

b

��
a // _^]\XYZ[yz, xyz

b
vv

a

		

��

?>=<89:;x
b

��
a // GFED@ABCyz

b
zz

a

		

��

Accepts rev(rev (L)) = (a+ b)∗a State x accepts L = (a+ b)∗a

The two automata (modulo initial state) are clearly isomorphic, but not identical.

38



A.2 Details of ̺

For our specific choice of functors FC and GD, we compute the concrete definition of ̺
from (3.4) when the adjunction arises from a dualising object.

̺X :

O +Σ · PX
ηGPX−→ PS(O +Σ · PX)

∼
−→ P (SO × (SPX)Σ)

PFCεX−→ P (SO ×XΣ)

O +Σ ·∆X
η
G(∆X )
−→ ∆∆(O+Σ·∆X) ∼

−→ ∆(∆O×(∆∆X
)Σ) ∆FCεX

−→ ∆∆O×XΣ

q 7→ η(q) 7→ η(q) 7→ λ(j, d).j(q)
(a, p) 7→ η(a, p) 7→ η(a, p) 7→ λ(j, d).p(d(a))

Here we used that the units evaluate, and that

∆FCεX : ∆(∆O×(∆∆X
)Σ) −→ ∆∆O×XΣ

h 7→ λ(j, d).h(j, λa.λg.g(d(a)))

In short,

̺X : : O +Σ ·∆X −→ ∆∆O×XΣ

̺(q)(j, d) = j(q)
̺(a, p)(j, d) = p(d(a))

(A.1)

A.3 Theory maps of (G, ̺trc) and (GD, ̺) coincide

Proof of Lemma 3.6

Due to the natural isomorphisms of Hom-sets given by the adjunctions in (3.6), we have
the following correspondence for all FC-coalgebras γ and all G-algebras α:

γ → S ΦD(α) CoalgD(FC)

ΦD(α)→ P (γ) AlgD(GD)

α→ UD P (γ) AlgSet(G)

(A.2)

In particular, since (Σ∗Ω, α) is an initial G-algebra, it follows that ΦD(Σ
∗Ω, α) is an

initial GD-algebra, since left adjoints preserve initial objects.
Furthermore, since contravariant adjoint functors turn colimit into limits, S ΦD(Σ

∗Ω, α)
is a final FC-coalgebra.

The semantic maps of the two logics are the unique morphisms from the initial
algebras, and we denote them sG : Σ∗Ω → UDP (C) and sGD : ΦD(Σ

∗Ω) → P (C). The
correspondence in (A.2) says that sGD is fully determined by sG. When ΦD ⊣ UD is a
free-forgetful adjunction (as in most of our examples), this tells us that formulas that
are contained in both logics have the same semantics.

By definition, thG is the (SΦD ⊣ UDP )-adjoint of s
G and thGD is the (S ⊣ P )-adjoint

of sGD . From (A.2) we see that thG = thGD , and both are the unique map into the final
FC-coalgebra.

An alternative argument using the mates ξ and ξtrc is as follows.

39



Consider the following diagram:

SGDΦDΣ
∗Ω

FCC
FCth

G
//❴❴❴ FCSΦDΣ

∗Ω
ξtrc
Σ∗Ω //

ξΦDΣ∗Ω
44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

SΦDGΣ
∗Ω

Sκ−1

OO

C

γ

OO

∃!thG
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ SΦDΣ

∗Ω

SΦDα

OO

where α denotes the initial G-algebra. By the universal property of the theory map
(cf. e.g. (2.5) in [48]) we have that thG is the unique map that makes the above square
commute. The upper triangle commutes by definition of ξtrc. As ΦD maps initial G-
algebra to initial GD-algebra we also have that (ΦD(Σ

∗Ω),ΦDα ◦ κ
−1) is the initial

GD-algebra. Therefore the diagram shows that thG also satisfies the universal property
of thGD and thus thG = thGD as claimed.

A.4 Coincidence of reachability notons

Lemma A.1 Let A be a wellpowered category with initial object 0A and factorisation
system (E,M) such that M ⊆ Mono(A). For all objects A ∈ A, the least subobject A0 of
A is obtained by (E,M)-factorisation of the unique morphism from 0A to A.

Proof. Let 0A
e //A0

m //A be the (E,M)-factorisation of the initial map from 0A to

A. We show that A0 is the least subobject of A. To this end, let A′ i
 A be a subobject

and let 0
e′ //A′

0
m′

//A′ be the (E,M)-factorisation of the initial morphism for A′. By
the diagonal fill-in property of (E,M) we get a unique morphism d : A0 → A′

0 such that
e′ = d ◦ e and m = i ◦m′ ◦ d as shown here:

0

e′

��

e // C0��

m
��

d

xxr
r
r
r
r
r

C ′
0
//
m′

// C ′ //
i
// C

Take h = m′ ◦ d : A0 → A′. To see that h is unique, suppose h′ : A0 → A′ is such that
m = i ◦ h′, then i ◦ h′ = i ◦ h and hence h = h′ since i is a mono. qed

A.5 Factorisation systems for coalgebras and algebras

Lemma A.2 Assume that C ∼= EM(T ) for a Set-monad T , and D ∼= EM(T ) for a
Set-monad T . We have:

1. (E,M) with E = surjective FC-coalgebra morphisms andM = injective FC-coalgebra
morphisms is a factorisation system for CoalgC(FC).

40



2. (E,M) with E = surjective GD-algebra morphisms and M = injective GD-algebra
morphisms is a factorisation system for AlgC(GD).

3. (E,M) with E = surjective G-algebra morphisms and M = injective G-algebra
morphisms is a factorisation system for AlgSet(G).

Proof. Item 1 follows from [51, Thm. 3.1.7]. We show that the conditions for [51,
Thm. 3.1.7] hold. For all Set-monads T , EM(T ) is a regular category (because it is exact)
[24, Thm 4.3.5], and hence (RegEpi,Mono) is a factorisation system. Furthermore, in
EM(T ), regular epis are the surjective homomorphisms (but epis need not be surjective)
[3, 7.2] and RegMono = Mono = injective homomorphisms [3, 6.9,6.12]. It is easy to show
that FC defined as above preserves monos. Letting V : CoalgC(FC) → C be the forgetful
functor that maps an FC-coalgebra (C, γ) to C, it then follows from [51, Thm. 3.1.7], that
(V −1RegEpi, V −1Mono) is a factorisation system for CoalgC(FC). Note that V

−1RegEpi
and V −1Mono are the surjective and injective FC-coalgebra morphisms, respectively. It
is straightforward to prove that the functors GD and G preserve regular epis.

Items 2 and 3 can be proved similarly to [51, Thm. 3.1.7] using some dual arguments.
Sketch: Using that GD preserves regular epis, one can show that V : AlgD(GD) → D

creates (RegEpi,Mono)-factorisations in D using the diagonal fill-in property (similar
to [51, Prop. 1.3.3]). Using that regular epis in D are surjective, one can show that the
diagonal fill-in obtained from (RegEpi,Mono) in D is an GD-algebra morphism (similar
to [51, Thm. 3.1.7] and [60, Lem. 2.4]). It follows that (V −1RegEpi, V −1Mono) is a
factorisation system for AlgD(GD). qed

A.6 Isomorphism lemma for topological automata

Proof of Lemma 4.13 Let α : D≤1(Y ) → Spec(M(Y )/J) be defined by α(ϕ)(m) =
m(ϕ) where ϕ ∈ D≤1(Y ) and m ∈ M(Y ). Note that this is well defined. If m ≡J m

′

then their difference lies in J which means thatm(ϕ)−m′(ϕ) = k(ϕ)(|π−|−π−)(ϕ). This
condition is equivalent to 1 − π is positive and hence |π−| and π− are equal and hence
the second term is 0, whence m(ϕ) = m′(ϕ). Note that the topology of Spec(M(Y )/J)
is generated by the taking as the closed sets, sets of maximal ideals that contain a fixed
element ϕ of M(Y ). Any maximal ideal consists of the functions that vanish at a point
y, call this my. So if we fix such an ϕ for it to be in a maximal ideal my, we have
ϕ(y) = 0. This means that α−1 of a closed set is the set of subdistributions that assign
0 to a particular element y; this is a closed set so α is continuous.

Let β : Spec(M(Y )/J) → D≤1(Y ) be defined by β(Φ)(y) = Φ(πy) where πy ∈
M(Y )/J projects onto y. We check that β(Φ) is a subdistribution:

∑

y∈Y

β(Φ)(y) =
∑

y∈Y

Φ(πy) = Φ





∑

y∈Y

πy



 � Φ(1) = 1

The second and last identity hold because Φ is a CUC∗Alg-homomorphism (hence linear
and unital); the inequality holds since we are in M(Y )/J (which says that π � 1) and
Φ is monotone.

41



We now show that for ϕ ∈ D≤1(Y ), β(α(ϕ)) = ϕ. Let y ∈ Y , we then have:
β(α(ϕ))(y) = α(ϕ)(πy) = πy(ϕ) = ϕ(y) We show that for Φ ∈ Spec(M(Y )/J), α(β(Φ)) =
Φ. Let m ∈M(Y ), we then have α(β(Φ))(m) = m(β(Φ)). By the Stone-Weierstrass the-
orem, the polynomials on the compact Hausdorff space [0, 1]Y are dense in C ([0, 1]Y ).
Since m : [0, 1]Y → R is continuous, it therefore suffices to show that for all polynomials
p on [0, 1]Y we have that p(β(Φ)) = Φ(p).

Case p = 1: p(β(Φ)) = 1 = Φ(1) = Φ(p). Case p = r ∈ R: p(β(Φ)) = r =
Φ(r) = Φ(p). Case p =

∑

y∈Y ryπy: Φ(p) = Φ(
∑

y∈Y ryπy) =
∑

y∈Y ryΦ(πy) =
∑

y∈Y ryβ(Φ)(y) = p(β(Φ)). Finally, let p =
∑

y∈Y ryπy and q =
∑

y∈Y syπy. Then
Φ(pq) = Φ(p)Φ(q) = p(β(Φ))q(β(Φ)) = (pq)(Φ). It follows that p(β(Φ)) = Φ(p) holds
for all polynomials p3 and we have now shown that α : D≤1(Y ) → Spec(M(Y )/J) is a
bijection with inverse β.

A.7 Alternating automata

These lemmas are needed for Theorem 5.1.

Lemma A.3 Let d : Y → 22
X
. Then d♯ = d♭

−1
.

Proof. For all a ⊆ X and all A ∈ 22
Y
,

a ∈ d♯(A)⇔ a ∈ µX(Nd(A))⇔ ηQX(a) ∈ Nd(A)⇔ ηQX(a) ∈ (d−1)−1(A)

⇔ d−1(ηQX(a)) ∈ A⇔ {x | d(x) ∈ ηQX(a)} ∈ A⇔ {x | a ∈ d(x)} ∈ A

⇔ d♭(a) ∈ A.

qed

The following lemmas show that the transition structure of A′ coincides with the
transition structure of R̄(detA).

Lemma A.4 For all functions f : X → 2, θ(f ♯) = f ♭.

Proof. This is immediate from the fact that θ−1(f ♭) = f ♭
−1

and Lemma A.3. qed

Lemma A.5 For all d : Y → 22
X

and all a ⊆ X, R(d♯)({a}) = {d♭(a)}. Thus R(d♯) =
d♭ up to bijections relating atoms {a} and their singleton elements a. In particular, for

all functions i : 1→ 22
X
, R(i♯) = i♭ up to these bijections.

Proof. The atoms of (22
X
, µX) are of the form {a} for a ⊆ X, hence for A ∈ 22

Y
,

R(d♯)({a}) =
∧

{A ∈ 22
Y

| {a} ≤ d♯(A)}

=
⋂

{A ∈ 22
Y

| a ∈ d♯(A)} since
∧

is
⋂

in (22
X

, µX)

=
⋂

{A ∈ 22
Y

| d♭(a) ∈ A} Lemma A.3

= {d♭(a)} since d♭(a) ∈ 2Y .

qed

3Clearly all polynomials can be expressed as sums of products of lower degree polynomials.

42


	1 Introduction
	2 Preliminaries
	2.1 Coalgebras, Algebras and Monads
	2.2 Determinisation

	3 Minimisation via Dual Adjunctions
	3.1 Unifying Previous Approaches
	3.2 Automata, Algebras and Coalgebras
	3.3 Dual Adjunctions of Coalgebras, Algebras and Automata
	3.3.1 Base dual adjunction
	3.3.2 Dual adjunction between coalgebras and algebras
	3.3.3 Dual adjunction between automata

	3.4 Language Semantics and Trace Logic
	3.5 Reachability and Observability 
	3.6 Abstract minimisation algorithms

	4 Revisiting Examples
	4.1 Deterministic Kripke Models
	4.2 Weighted Automata
	4.2.1 Semirings and semimodules
	4.2.2 Weighted automata and weighted languages
	4.2.3 Brozowski for Weighted Automata

	4.3 Topological Automata via Gelfand Duality

	5 Alternating Automata
	5.1 CABA, EM (N), and Setop
	5.1.1 CABA
	5.1.2 EM (N)
	5.1.3 Equivalence of CABA, Setop, and EM (N)

	5.2 Language acceptance of alternating automata
	5.3 Alternating automata as EM (N)-automata

	6 Conclusion and Related Work
	A.1 Example: PODFA-style minimisation vs Brzozowski
	A.2 Details of 
	A.3 Theory maps of (G,trc) and (GD,) coincide
	A.4 Coincidence of reachability notons
	A.5 Factorisation systems for coalgebras and algebras
	A.6 Isomorphism lemma for topological automata
	A.7 Alternating automata


