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Abstract
An Eilenberg–like theorem is shown for algebras on a given monad. The main idea is to explore the
approach given by Bojańczyk that defines, for a given monad T on a category D, pseudovarieties
of T–algebras as classes of finite T–algebras closed under homomorphic images, subalgebras, and
finite products. To define pseudovarieties of recognizable languages, which is the other main
concept for an Eilenberg–like theorem, we use a category C that is dual to D and a recent duality
result between Eilenberg–Moore categories of algebras and coalgebras by Salamanca, Bonsangue,
and Rot. Using this duality, we define the concept of a pseudovariety of recognizable languages
based on the category C. With this new approach, we can study different kinds of pseudovarieties
of algebras as well as different kinds of pseudovarieties of recognizable languages to (re)discover
some existing and new Eilenberg–like theorems. By dropping finiteness conditions we also derive
an Eilenberg–like theorem for varieties of T–algebras, that is, classes of T–algebras closed under
homomorphic images, subalgebras, and (not necessarily finite) products.

Keywords and phrases Eilenberg’s variety theorem, language, duality, monad, syntactic algebra,
(pseudo)variety of algebras/languages.
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1 Introduction

Eilenberg’s variety theorem is an important result in algebraic language theory, stating that
there is a one–to–one correspondence between pseudovarieties of regular languages on finite
alphabets and pseudovarieties of monoids [8, Theorem 3.4]. The concept of regular language,
which is defined in terms of deterministic automata, has an equivalent machine–independent
algebraic definition, namely, a finitely recognizable language. Finitely recognizable languages
on an alphabet Σ are inverse images of monoid homomorphisms with domain Σ∗ and codomain
any finite monoid. This algebraic approach allows us to study different kinds of recognizable
languages where the notion of homomorphism between algebras is a key ingredient.

The notion of pseudovariety of algebras (also known as variety of finite algebras) has
already been studied in universal algebra to get a Birkhoff–like variety theorem for finite
algebras [15], Reiterman’s theorem. A pseudovariety of algebras is a class of finite algebras
of the same type that is closed under homomorphic images, subalgebras, and finite products.
At the same time, to prove an Eilenberg-like theorem, one has to define and find the proper
notion of pseudovariety of finitely recognizable languages which is, in general, a non–trivial
problem.

There are some Eilenberg–like theorems in the literature such as [13] where the algebras
considered are ordered monoids/semigroups, the one in [16] for finite dimensional k–algebras,
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and [14] for idempotent semirings. Recently, generalizations for Eilenberg–like theorems have
been proved by using category theory, such as [1, 4, 19], from which one can derive Eilenberg’s
variety theorem and other Eilenberg–like theorems by using the categorical framework.

The work in the present paper has its basis in [4] and [18]. We take the main idea given
in [4], where all the algebras considered are algebras for a monad T on D, to define the
natural notion of (pseudo)variety of T–algebras. On the other hand, to define the notion
of (pseudo)variety of (finitely) recognizabe T–languages, we use a category C that is dual
to D and a result given in [18] that allows us to define a canonical comonad on C and lift
the duality between C and D to their corresponding Eilenberg–More categories. With these
two ingredients, under mild assumptions, we prove an Eilenberg–like theorem to establish
a one–to–one correspondence between pseudovarieties of T–algebras and pseudovarieties of
finitely recognizable T–languages. Additionally, all the facts to prove the main theorem are
adapted to prove an Eilenberg–like theorem where finiteness conditions are dropped, i.e.,
a one–to–one correspondence between varieties of T–algebras and varieties of recognizable
T–languages. With this we derive Eilenberg–like theorems for varieties of algebras such as [3,
Theorem 39].

Related work. We briefly summarize here some works in which categorical approaches
to derive Eilenberg–like theorems are used such as [1, 4, 19] (see the Conclusions for a more
detailed discussion.) In [1] and [19] predual categories are considered, i.e., categories that
are dual on finite objects, whereas in the present paper, we only consider dual categories. In
[4] the kind of algebras considered are algebras for a monad T on Set or SetS , for a fixed set
S, but there is no (pre)duality involved, the latter restricts the kind of pseudovarieties of
languages that can be studied. The approach in [4] of considering algebras for a monad T
is also considered in [19] as well as in the present paper. In the present paper the notion
of pseudovariety of languages is defined coalgebraically, by using duality, whose definition
avoids the explicit definition of derivatives, in contrast to [1, 4, 19]. In the present paper, we
drop finiteness conditions to prove in a similar way an Eilenberg–like theorem for varieties of
T–algebras. Categorical approaches such as [1, 4, 19] only consider the finite case.

2 Preliminaries

In this section, we introduce the notation for categories of algebras and coalgebras that
we will use in the paper. We assume that the reader is familiar with basic concepts from
category theory and (co)algebra, see, e.g., [2, 17].

Given a category D and a monad T = (T, η, µ) on D, we denote by Alg(T) the category of
(Eilenberg–Moore) T-algebras and their homomorphisms. Objects in Alg(T ) are pairs (X,α)
where X is an object in D and α ∈ D(TX,X) is a morphism α : TX → X in D that satisfies
the identities α ◦ ηX = idX and α ◦ Tα = α ◦ µX . A homomorphism from a T-algebra
(X1, α1) to a T-algebra (X2, α2) is a morphism h ∈ D(X1, X2) such that h ◦ α1 = α2 ◦ Th.

Dually, given a category C and a comonad B = (B, ε, δ) on C, Coalg(B) denotes the
category of (Eilenberg–Moore) B-coalgebras. Objects in Coalg(B) are pairs (Y, β) where Y
is an object in C and β ∈ C(Y,BY ) satisfies the identities εY ◦ β = idY and Bβ ◦ β = δY ◦ β.
A homomorphism from a B-coalgebra (Y1, β1) to a B-coalgebra (Y2, β2) is a morphism
h ∈ C(Y1, Y2) such that β2 ◦ h = Bh ◦ β1.

Each of the categories Alg(T) and Coalg(B) has a canonical forgetful functor into the
underlying category. For instance, the forgetful functor for Alg(T) is the functor U : Alg(T)→
D defined as U(X,α) = X and Uf = f for any T -algebra morphism f . We will refer to
those forgetful functors without giving them a specific name.
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We assume that the categories D and C in this paper are concrete categories, i.e., they
come with a faithful functor into the category Set of sets and functions. With this assumption
we can use set theoretical concepts such as being finite, surjective, and work with elements,
which are key properties in this work.

3 Setting the scene

In this section, we set the scene in which we are going to work, state some assumptions we
need, and some results we are going to use.

Our main purpose is to abstract the general notions involved in Eilenberg’s variety
theorem [8, Theorem 3.4], and generalize it to a categorical setting. In order to do this, we
summarize Eilenberg’s variety theorem and see how we can generalize those concepts to a
categorical point of view.

Eilenberg’s variety theorem says that there is a one–to–one correspondence between
pseudovarieties of finitely recognizable languages and pseudovarieties of monoids. To state
this correspondence, we need to define what a language is and what we mean by being finitely
recognizable.

I Definition 1. Let Σ be a set (alphabet) and denote by Σ∗ the free monoid with Σ generators,
that is, elements in Σ∗ are finite words with symbols in Σ, the empty word is denoted as
ε. A language over Σ is a subset L of Σ∗ or, equivalently, a function L : Σ∗ → 2 from Σ∗
into the two element set 2 = {0, 1}. Given a monoid M and a homomorphism of monoids
h : Σ∗ → M , we say that the language L : Σ∗ → 2 is recognized by M through h if there
exists a function L′ : M → 2 such that L′ ◦ h = L. We say that L is recognizable if it is
recognized by a monoid and finitely recognizable if it is recognized by a finite monoid.

The languages considered in Eilenberg’s variety theorem are languages over finite sets
Σ, we will make this explicit in the definition of pseudovarieties of languages. Now we can
define the concepts of pseudovariety of monoids and pseudovariety of finitely recognizable
languages as follows:

- A pseudovariety of monoids is a class A of finite monoids that is closed under homomorphic
images, submonoids, and finite products.

- A pseudovariety of finitely recognizable languages is an operator L such that for every finite
alphabet Σ we have that LΣ is a set of finitely recognizable languages over Σ satisfying
the following properties:
a) LΣ is a Boolean algebra and it is closed under left and right derivatives. The latter means

that for every L ∈ LΣ and a ∈ Σ we have that aL,La ∈ LΣ, where La(w) = L(aw) and
aL(w) = L(wa), w ∈ Σ∗.

b) L is closed under morphic preimages: For every finite alphabet Γ, monoid homomorphism
h : Γ∗ → Σ∗, and L ∈ LΣ, we have that L ◦ h ∈ LΓ.

With these definitions, Eilenberg’s variety theorem [8, Theorem 3.4] establishes a one–to–
one correspondence between pseudovarieties of finitely recognizable languages and pseudo-
varieties of monoids. Eilenberg also proved a similar theorem for semigroups and languages
not containing the empty word [8, Theorem 3.4s]. To abstract the notion of pseudovariety of
algebras we use a similar approach to the one in [4] in which the concept of pseudovariety of
monoids is replaced by the concept of pseudovariety of T–algebras for a monad T = (T, η, µ)
on a category D. The approach in the present paper is more general in the sense that the
concept of pseudovariety of languages considered will depend on a category C, which is dual
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to D, thus avoiding the limitation in [4] for which the Boolean algebra requirement in a)
above is always present.

We start with a category D and a monad T = (T, η, µ) on D. A pseudovariety of T–algebras
is a class A of finite T–algebras that is closed under homomorphic images, subalgebras, and
finite products. Now to define the concept of a language we use the monad T and a fixed
finite object in D that we denote by R. Formally, a T–language over an object Σ in D is an
element in D(TΣ, R) (for classical languages take D = Set, TΣ = Σ∗, and R the two–element
set 2 = {0, 1}). Now, as we mentioned, we would like to study T–languages and define the
notion of pseudovariety of finitely recognizable T–languages on a different category C. In
order to do this a natural assumption is that for every object X in D we have that D(X, R) is
the underlying set of an object in C. In fact, we assume that we have a contravariant functor
G : D → C such that the underlying set of GY is D(Y, R) and its definition on morphisms is
as in the Hom–set functor D( , R). Sometimes we use the notation D( , R) for the functor G.
Finally as we would like to exploit the interaction between D and C we assume that there
is a duality between D and C given by the contravariant functor G = D( , R) : D → C and
a contravariant functor F : C → D which leads us to the situation below. Throughout this
paper we depict contravariant functors in diagrams with an ‘×’ at the beginning of the arrow.

C D∼=
F

G = D( , R)

T = (T, η, µ)

Notice that most common dualities have this form, e.g. the duality between Set and the
category CABA of complete atomic Boolean algebras, the duality between the category
Poset of partially ordered sets and the category AlgCDL of algebraic complete distributive
lattices, Stone duality, and Priestley duality. In all those cases the underlying set of R is a
two–element ‘schizophrenic’ object which belongs to the different corresponding categories.
Furthermore, since R is a finite object in D we can also construct, under certain conditions,
dualities for which the contravariant functor D( , R) is part of the duality [6].

To complete our setting we will extend the duality between the categories C and D to a
duality between Eilenberg–Moore categories, using the following result from [18].

I Proposition 2. [18, Proposition 14] Let F : C → D and G : D → C be contravariant functors
that form a duality with natural isomorphisms ηGF : IdC ⇒ GF and ηFG : IdD ⇒ FG. Let
T = (T, η, µ) be a monad on D. Then B = (B, ε, δ), where B = GTF and ε, δ are defined as:

ε = (GLF GηF==⇒ GF
(ηGF )−1

=====⇒ IdC)

δ = (GLF GµF===⇒ GLLF
GL(ηF G)−1

LF=======⇒ GLFGLF ),

is a comonad on C. Further, the duality between F and G lifts to a duality between F̂ :
Coalg(B)→ Alg(T) and Ĝ : Alg(T)→ Coalg(B).

We can summarize our setting in the picture below, where the comonad B and the upper
part are obtained from the previous proposition.
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C D

Coalg(B) Alg(T)

∼=

∼=

F

B = (B, ε, δ)

G := D( , R)

T = (T, η, µ)

F̂

Ĝ
(1)

4 The main theorem

In this section, we formalize the necessary concepts and formulate the assumptions needed to
state the main theorem. As a running example we will consider Eilenberg’s classical variety
theorem for which D = Set, C = CABA (the category of complete atomic Boolean algebras),
R = 2 = {0, 1}, and TΣ = Σ∗.

I Definition 3. Let T = (T, η, µ) be a monad on D and let R be a fixed finite object in D.
A T–language over an object Σ in D is an element L ∈ D(TΣ, R). Let TΣ be the algebra
TΣ = (TΣ, µΣ) in Alg(T), a T–language L over Σ is recognized by A = (A,α) ∈ Alg(T)
through a morphism h ∈ Alg(T)(TΣ, A) if there exists L′ ∈ D(A, R) such that L′ ◦ h = L.
We say that L is recognizable if it is recognized by a T–algebra and finitely recognizable if it
is recognized by a finite T–algebra.

I Example 4. Let D = Set be the category of sets and functions and R be the two–element
set 2 = {0, 1}. Let T = (T, η, µ) be the monad on Set given by TΣ = Σ∗, where Σ∗ is the
free monoid on Σ generators with identity given by the empty word ε. Then a T–language
over a set (alphabet) Σ is a function L ∈ Set(Σ∗, 2), i.e., a subset of Σ∗. Algebras in Alg(T)
are monoids, and (finitely) recognizable T–languages are languages recognized by a (finite)
monoid in the classical sense, i.e., regular languages. J

Now we define the main concepts of pseudovariety of T–algebras and pseudovariety of
finitely recognizable T–languages as follows.

I Definition 5. Consider the situation given in (1). Then:

1) A pseudovariety of T–algebras is a class A of finite T–algebras closed under homomorphic
images, subalgebras, and finite products1.

2) A pseudovariety of finitely recognizable T–languages is an operator L such that for every
finite object Σ in D, LΣ is a set of finitely recognizable T–languages over Σ satisfying the
following properties:

i) For every L1, L2 ∈ LΣ we have that 〈L1, L2〉 ⊆ LΣ, where 〈L1, L2〉 is the least
subcoalgebra in Coalg(B) of Ĝ(TΣ) containing {L1, L2}2.

1 Homomorphic images and subalgebras are defined with respect to the epimorphisms and monomorphisms
we are considering, respectively. Here only binary products are considered.

2 To guarantee the existence of 〈L1, L2〉 we will assume that C has generalized pullbacks and that the
functor B preserves weak generalized pullbacks, which, by duality, is equivalent to D having generalized
pushouts and T preserving weak generalized pushouts. This assumption will allow the construction of
syntactic T–algebras for every language.
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ii) Closure under morphic preimages: For every finite object Γ in D, homomorphism
h ∈ Alg(T)(TΓ, TΣ), and L ∈ LΣ, we have that L ◦ h ∈ LΓ.

I Example 6. (Example 4 continued) Let C = CABA be the category of complete atomic
Boolean algebras with complete Boolean homomorphisms. Then we have that Set is dual
to CABA if we consider the contravariant functors G : Set→ CABA and F : CABA→ Set
given by G = Set( , 2) and F = At( ), where At(B) is the set of atoms of a given object B
in CABA. In this setting, we have the following:

1) Pseudovarieties of T–algebras are classes of finite monoids that are closed under homo-
morphic images, submonoids, and finite products.

2) Pseudovarieties of finitely recognizable T–languages are operators L such that for every
finite set (alphabet) LΣ is a set of regular (finitely recognizable) languages over Σ such
that:

i) LΣ is a Boolean algebra and it is closed under left and right derivatives. This
property follows from i) in the definition above. Observe that we don’t require LΣ to
be an object in CABA since in property i) we only require 〈L1, L2〉 ⊆ LΣ for every
L1, L2 ∈ LΣ.

ii) L is closed under morphic preimages: For every finite set (alphabet) Γ and homo-
morphism of monoids h : Γ∗ → Σ∗, and L ∈ LΣ, we have that L ◦ h ∈ LΣ. J

To state the main theorem we summarize the list of assumptions needed and some
notation, so we can reference them through the paper, as follows:

(A1) (see picture (1)) Let D be a category with generalized pushouts, T = (T, η, µ) a monad
on D such that T preserves weak generalized pushouts for which all the arrows are epis.
Let R be a finite object in D and C a category that is dual to D by contravariant functors
F : C → D and G : D → C such that the underlying set of GY is D(Y, R) for any object
Y in D and its definition on morphisms is as in the Hom–set functor D( , R). By abuse
of notation, we put G = D( , R) to remind the reader about this fact. Notice that the
duality between D and C can be lifted to a duality between Eilenberg–Moore categories
without any extra assumptions by using Proposition 2.

(A2) For every morphism f ∈ D(Σ, B) and epimorphism e ∈ Alg(T)(A,B) there exists a
morphism g ∈ D(Σ, A) such that the following diagram in D commutes:

B A

Σ

e

f
g

(A3) The category D has epi–mono factorizations.
(A4) Epis in D are surjective.
(A5) The object R in (A1) is such that for any finite object X in D and elements x1, x2 in

the underlying set of X with x1 6= x2, there exists f ∈ D(X, R) such that f(x1) 6= f(x2).
That is, points in X can be separated by a morphism in D(X, R).

I Example 7. Some examples for categories D and C, a monad T on D, and a finite object
R for which the previous assumptions are satisfied include the following:

i) The duality between the category D = Set of sets and functions and the category
D = CABA of complete atomic Boolean algebras with complete Boolean algebra
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homomorphisms. In this case, R is the two–element set R = 2 = {0, 2} and the
underlying set GX for any set X is Set(X, 2). Some monads on Set we can consider in
this setting include:
- The monad TΣ = Σ+ of finite nonempty words for which T–algebras are semigroups.
- The monad TΣ = Σ∗ of finite words for which T–algebras are monoids.
- The monad TΣ = F(Σ), where F(Σ) is the free group on Σ generators, for which

T–algebras are groups.
- The monad TΣ = M×Σ, whereM is a fixed monoid, for which T–algebras are monoid
actions.

ii) For a fixed finite field K the duality between D = VecK, the category of K–vector spaces
with linear maps, and the category C = TBVecK of topological K–vector spaces whose
topology is Boolean (i.e. compact Hausdorff spaces with a basis of clopen sets) and
continuous linear maps as morphisms. In this case R is the finite field R = K, considered
as a K–vector space, and the underlying set of GX is VecK(X,K). For any set S denote
by V(S) the K–vector space with basis S. In this case, we can consider the monad
T (V(Σ)) = V(Σ∗).

I Example 8. 3 Consider the duality between the category D = Poset of partially ordered
sets with monotone maps and the category C = AlgCDL of algebraic complete distributive
lattices with complete lattice homomorphisms. In this case, R is the two–element chain. If
we consider the identity monad on Poset then (A1) to (A5) are satisfied except property
(A2). In fact, by considering the following posets

Σ

a

b

c

d
A

0 1

B

0

1

the map f : Σ→ B such that f(x) = 1 iff x = b, and the map e : A→ B such that e(0) = 0
and e(1) = 1, we have that property (A2) is not satisfied.

I Theorem 9. Under the assumptions (A1) to (A5), there is a one–to–one correspondence
between pseudovarieties of T–algebras and pseudovarieties of finitely recognizable T–languages.

I Remark. Notice that most of the assumptions can be easily verified except the one that the
underlying functor T of the monad T has to preserve weak generalized pushouts for which
all the arrows are epis. To verify this property one can use the dual of [11, Theorem 4.5].
The property of T preserving weak generalized pushouts for which all the arrows are epis is
needed to guarantee the existence of a syntactic T–algebra for every T–language, Propisition
10. In cases, such as the ones in [8, 13], in which the existence of a syntactic T–algebra
has been already established, we can omit the condition of T preserving weak generalized
pushouts for which all the arrows are epis and only assume that T preserves epis4.

5 Proof of the main theorem

In this section, we provide a proof of Theorem 9. A key notion for this proof, as in Eilenberg’s
variety theorem, is the existence of syntactic T–algebras for every T–language. In order to

3 Thanks to Henning Urbat who made me aware that property (A2) is not satisfied in this example.
4 The condition of T preserving epis is used to lift the epi–mono factorization in D to Alg(T).
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guarantee the existence of a syntactic algebra for every T–language we need to assume that
the category D has generalized pushouts and that the functor T preserves weak generalized
pushouts.

I Proposition 10. Assume (A1). Then, for every T–language L over Σ ∈ D there exists a
syntactic algebra SL ∈ Alg(T) and a canonical epimorphism eL ∈ Alg(T)(TΣ, SL) such that
SL recognizes L through eL and they satisfy the following property:

- For any A ∈ Alg(T) recognizing L through an epimorphism e ∈ Alg(T)(TΣ, A), there exists
g ∈ Alg(T)(A,SL) such that eL = g ◦ e. (observe that g is necessarily an epimorphism).

The T–algebra SL in the previous proposition associated with a T–language is called the
syntactic T–algebra of L and the epimorphism eL it is the canonical epimorphism associated
to L.

Proof. (sketch) Given a T–language L over an object Σ in D, consider the collection
{TΣ ei−→ Ai}i∈I of epimorphisms ei ∈ Alg(T)(TΣ, Ai) recognizing L. Notice that I is
not empty since the identity epimorphism idTΣ ∈ Alg(T)(TΣ, TΣ) is one of them. Let
{Ai

qi−→ Q}i∈I be the generalized pushout of {TΣ ei−→ Ai}i∈I in D. Every qi is epi since
every ei is also epi. As T preserves weak generalized pushouts for which all the arrows are
epis then {TAi

Tqi−→ TQ}i∈I is a weak generalized pushout of the family {TTΣ Tei−→ TAi}i∈I
and from this we can define a map α : TQ → Q such that Q = (Q,α) ∈ Alg(T). Take
SL = (Q,α) and eL = qi ◦ ei, for some i ∈ I. J

As shown in [4, Example 2], there are T–languages for the monad T = (T, η, µ) on Set
given by TA = A∞ = A+ ∪Aω that have no syntactic T–algebra. From that fact we get the
following.

I Corollary 11. Let T be the Set endofunctor such that for any set A, TA = A+ ∪Aω and
for any function f : A → B, (Tf)(g) = f ◦ g. Then T does not preserve weak generalized
pushouts.

I Remark. We can equivalently construct the syntactic T–algebra by using duality. In
this case, as L ∈ D(TΣ, R) we construct the least subcoalgebra 〈L〉 in Coalg(B) of Ĝ(TΣ)
containing L by using generalized pullbacks in C and the fact that B preserves weak generalized
pullbacks. Then we get a canonical monomorphism m ∈ Coalg(B)(〈L〉, Ĝ(TΣ)) and take
SL = F̂ 〈L〉 and eL = Fm.

Given a pseudovariety of T–algebras A and a pseudovariety of finitely recognizable
T–languages L we define the operator L(A) and the class of T–algebras A(L) as:

- For every finite object Σ in D define (L(A))(Σ) as the set of T–languages over Σ that are
recognized by an algebra in A.

- A(L): finite T–algebras that recognize only languages in L.
Notice that every T–language in (L(A))(Σ) is finitely recognizable since all the algebras in
A are finite.

We will prove that if L is a pseudovariety of finitely recognizable T–languages, then A(L)
is a pseudovariety of finite T–algebras. A key observation is that for every finite Σ in D the
set LΣ is a set of coequations in the following sense (cf. [18, Section 3]).

We have that the T–algebra TΣ = (TΣ, µΣ) is the free T–algebra on Σ generators. Then,
by duality, Ĝ(TΣ) is the cofree B–coalgebra on GΣ colours. A set of coequations on GΣ
colours is a subset S of GTΣ. Given Y = (Y, β) ∈ Coalg(B), we say that Y satisfies the set of
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coequations S, denoted as Y ||=S if for every colouring f ∈ C(Y,GΣ), the unique morphism
f [ ∈ Coalg(Y, Ĝ(TΣ)) such that f = GηΣ ◦ f [, which is given by the cofreeness of Ĝ(TΣ), is
such that Im(f [) ⊆ S.

I Proposition 12. Assume (A1). Let L be a pseudovariety of finitely recognizable T–languages
and A a finite T–algebra. Then A ∈ A(L) if and only if for every finite object Σ in D we
have that ĜA ||=LΣ.

The previous proposition says that the class of finite algebras A(L), where L is a
pseudovariety of finitely recognizable T–languages, is the class of finite algebras A such that
its corresponding coalgebra ĜA ∈ Coalg(B) satisfies the coequations LΣ for every finite Σ.
Now, by assuming (A2) and using duality, we get the following.

I Corollary 13. Assume (A1) and (A2). Let L be a pseudovariety of finitely recognizable
T–languages. Then A(L) is a pseudovariety of T–algebras.

Now, we have that if A is a pseudovariety of T–algebras then L(A) is a pseudovariety of
finitely recognizable T–languages.

I Proposition 14. Assume (A1) and (A3). Let A be a pseudovariety of T–algebras, then
L(A) is a pseudovariety of finitely recognizable T–languages.

Finally, to finish the proof of the main theorem we have to prove that the operator
A, which takes pseudovarieties of finitely recognizable T–languages to pseudovarieties of
T–algebras, and the operator L, which takes pseudovarieties of T–algebras to pseudovarieties
of finitely recognizable T–languages, are inverses of each other.

I Proposition 15. Let L be a pseudovariety of finitely recognizable T–languages and let A
be a pseudovariety of T–algebras. Then:

i) Assume (A1), (A2), and (A4), then L(A(L)) = L.
ii) Assume (A1) to (A5), then A(L(A)) = A.

6 Examples

In this section, we apply our main theorem to obtain specific examples of Eilenberg–like
theorems.

I Example 16. (Example 6 Continued) Consider the setting

CABA Set∼=

At( )

Set( , 2)

T = (T, η, µ)

Then we can get the following results according to the monad T we consider:

i) Consider the monad TΣ = Σ∗, where Σ∗ is the free monoid with Σ generators, then we
get Eilenberg’s variety theorem for monoids [8, Theorem 3.4].

ii) Consider the monad TΣ = Σ+, where Σ+ is the free semigroup with Σ generators, then
we get Eilenberg’s variety theorem for semigroups [8, Theorem 3.4s].

iii) Consider the monad TΣ = F(Σ), where F(Σ) is the free group on Σ generators, then we
get an Eilenberg–like theorem for pseudovarieties of groups.
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iv) Consider the monad TΣ = M ×Σ, where M is a fixed monoid, then we get an Eilenberg–
like theorem for pseudovarieties of monoid actions.

Notice that we can also get commutative versions of i), ii), and iii). J

I Example 17. For a fixed finite field K consider the setting

TBVecK VecK∼=

TBVecK( ,K)

VecK( ,K)

T = (T, η, µ)

where for every object V(Σ) ∈ VecK we define T (V(Σ)) = V(Σ∗). Then the category Alg(T)
is the category of K–algebras with K–algebra morphisms. With this setting we get [16,
Théorème III1.1.] for the case of finite fields.

7 Eilenberg-like theorem for varieties of T–algebras and varieties of
recognizable T–languages

In this section we show that we can also get an Eilenberg–like theorem if we drop the
finiteness assumption in the definition of pseudovarieties of T–algebras and pseudovarieties
of finitely recognizable T–languages to get the following definitions:

I Definition 18. Consider the situation given in (1). Then:

1) A variety of T–algebras is a class A of T–algebras closed under homomorphic images,
subalgebras, and products.

2) A variety of recognizable T–languages is an operator L such that for every object Σ in D:
i) LΣ is a subcoalgebra of Ĝ(TΣ).
ii) Closure under morphic preimages: For every object Γ in D, homomorphism h ∈

Alg(T)(TΓ, TΣ), and L ∈ LΣ, we have that L ◦ h ∈ LΓ.

With this definition of varieties of T–algebras and varieties of recognizable T–languages
we get the following Eilenberg–like theorem whose proof is made in a similar way as in the
proof of Theorem 9.

I Theorem 19. Under the assumptions (A1) to (A5), there is a one–to–one correspondence
between varieties of T–algebras and varieties of recognizable T–languages.

I Example 20. We can apply Theorem 19 to the settings in the previous section. Notice
that in the case of Example 16 i) we get the Eilenberg–like theorem [3, Theorem 39].

8 Conclusions

An Eilenberg–like theorem was proved using a categorical approach in which the kind of
algebras considered are algebras on a monad T on a category D. In this setting, we defined
the natural notion of pseudovariety of T–algebras. To define the notion of pseudovariety of
finitely recognizable T–languages we used a category C that is dual to D, which under certain
conditions allow us to define this concept coalgebraically, i.e., using duality. By dropping
finiteness conditions we also derive an Eilenberg–like theorem for varieties of T–algebras, i.e.,
classes of T–algebras closed under homomorphic images, subalgebras and (not necessarily
finite) products.
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Some other Eilenberg–like theorems that use a categorical setting exist in the literature,
such as [1], [4], and recently [19], in those works only the finite case is considered. In [1] and
[19], whose work was inspired by [10], one considers predual categories C and D, i.e., C and
D are dual on finite objects. In the present paper C and D are dual, which is a stronger
condition. This (pre)duality allows one to define pseudovarieties of algebras on one category,
say D, and pseudovarieties of recognizable languages on the other category, say C. In [1] the
kind of algebras considered are D–monoids which can be seen as a limitation on the kind
of algebras considered (e.g. it is not possible to derive the semigroup version [8, Theorem
3.4s] or versions for other algebraic structures that don’t have a monoid structure). Later, in
[4], this kind of limitation was avoided by considering algebras on a monad T on Set or on
SetS , where S is a fixed set, but then there was a limitation on the kind of pseudovarieties
of languages considered since every LΣ is a Boolean algebra (Eilenberg–like theorems such
as the ones in [13, 14, 16] could not be derived with in this case). The approach given in [1]
is generalized in [19] now considering algebras for a monad, as in [4].

The work of the present paper is more general than [4]. In [4] there are two kinds of
derivatives: syntactic derivatives and polynomial derivatives. Polynomial derivatives are
special cases of syntactic derivatives but not vice versa, in some cases those two notions
coincide. In the present paper, the treatment of derivatives is avoided and it is implicitely
included in property i) of Definition 5. Those derivatives are syntactic derivatives (Lemma
24 in the Appendix). To obtain the setting given in [4] it is enough to consider the duality
between C = CABA and D = Set. Some of the facts here are similar to the ones in [4] in
which similar proofs were adapted according to the definition of pseudovariety of finitely
recognizable T–languages. It is worth mentioning that our present construction of the
syntactic algebra for a given T–language is simpler than the construction given in [4] and in
[19] (in [1] syntactic algebras are not considered). Here, syntactic algebras are constructed
abstractly by using (weak) generalized pushouts thereby avoiding the notion of congruences
and polynomials given in [4]. In [19] the construction of syntactic algebras depends on finding
a set of polynomials (unary operations) that satisfy certain properties (i.e., to find a unary
representation, [19, Definition 3.7]), which is a parameter in the theorem.

The notion of (pseudo)varieties of (finitely) recognizable languages given in [1] is closely
related to the classical Eilenberg theorem, and in [19] it is a parameter in the theorem (one
has to find the correct notion of derivatives in order to get the theorem, i.e., to find a unary
representation). Here the notion of derivatives is automatic and it is obtained via duality by
using coalgebras. In contrast, in [1, 19] one can derive Eilenberg-like theorems for ordered
algebras which cannot be derived in the present paper (see Example 8), this limitation could
be possibly avoided if we restrict the class of alphabets considered, i.e., to consider finite
discrete posets as the only alphabets.

The present paper presents an abstract approach in the sense that proofs, constructions,
and definitions are mainly categorical (e.g. construction of syntactic T–algebras by using
weak generalized pushouts and the definition of pseudovarieties of finitely recognizable T–
languages in coalgebraic terms). The previous fact has the advantage that it allows us to
derive an Eilenberg–like theorem by omitting finiteness conditions, Theorem 19. From this,
we derived new Eilenberg–like theorems and less known Eilenberg–like theorems like the ones
in Example 20 which includes [3, Theorem 39] as a particular case. Categorical approaches
such as [1, 4, 19] only consider the finite case.

As future work it is worth to explore the following:

- The setting in which we consider predual categories and a monad on one of the categories.
This can possibly be general enough to include the work presented here as well as [1, 4, 19].
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- To derive Eilenberg–like theorems for ordered algebras such as [13]. This could possibly be
done if we consider the duality between Poset and AlgCDL by restricting the alphabets to
finite discrete posets or, equivalently, by considering finite objects given by the left adjoint
F a U where U : Poset→ Set is the forgetful functor, which is the technique used in [19].

- Find more examples and applications of the main theorem by considering dualities such as
Stone duality, nominal Stone duality [9], or general dualities such as the ones in [6].

- Study the relation of this work with profinite equations [10], profinite monads [5] and Reit-
erman’s theorem [15]. In this case we conjecture, see Proposition 12, that (pseudo)varieties
of T–languages are the same as coequational (pseudo)theories which, by duality, give us
equational (pseudo)theories that axiomatize (pseudo)varieties of T–algebras and they are
all in one–to–one correspondence.

Acknowledgements: I would like to thank to Marcello Bonsangue and Jan Rutten for
their support, comments, and suggestions during the writing of this paper. I also thank
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9 Appendix

9.1 Proof of Proposition 10
First we prove the following.

I Lemma 21. Let T be an endofunctor on a category D such that T preserves weak pushouts.
Then T preserves epis.

Proof. Let e ∈ D(A,B) be an epimorphism and f, g ∈ D(TB,C) be morphisms such that
f ◦ Te = g ◦ Te. We have to prove that f = g. In fact, as e is epi then we have the following
pushout:

A

B

B

B

e

e

idB

idB

Since T preserves weak pushouts, then we have the following commutative diagram:

CTA

TB

TB

TB

Te

Te

idTB

idTB

h

f

g

Where the arrow h was obtained from the property that the square is a weak pushout. But
then f = h ◦ idTB = g. Therefore, Te is epi. J

Proposition 10. Assume (A1). Then, for every T–language L over Σ ∈ D there exists
a syntactic algebra SL ∈ Alg(T) and an epimorphism eL ∈ Alg(T)(TΣ, SL) such that SL
recognizes L through eL and they satisfy the following property:

· For any (A,α) ∈ Alg(T) recognizing L through an epimorphism e ∈ Alg(T)(TΣ, A), there
exists g ∈ Alg(T)(A,SL) such that eL = g◦e. (observe that g is necessarily an epimorphism).

Proof. Given a T–language L over an object Σ in D, consider the collection {TΣ ei−→ Ai}i∈I
of epimorphisms ei ∈ Alg(T)(TΣ, Ai) recognizing L, Ai = (Ai, αi) ∈ Alg(T). Notice that I
is not empty since the identity epimorphism idTΣ ∈ Alg(T)(TΣ, TΣ) is one of them. Let
{Ai

qi−→ Q}i∈I be the generalized pushout of {TΣ ei−→ Ai}i∈I in D. Every qi is epi since every
ei is also epi. As T preserves weak generalized pushouts then {TAi

Tqi−→ TQ}i∈I is a weak
generalized pushout of the family {TTΣ Tei−→ TAi}i∈I . Since the family {TAi

qi◦αi−→ Q}i∈I
is such that qi ◦ αi ◦ Tei = qj ◦ αj ◦ Tej , i, j ∈ I, there exists α ∈ D(TQ,Q) such that
α ◦ Tqi = qi ◦ αi. That is we have the following situation:

TΣ

Ai

Aj

Q
...

ei

ej

qi

qj
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QTTΣ

TAi

TAj

TQ
...

Tei

Tej

Tqi

Tqj

α

qi ◦ αi

qj ◦ αj

†

We prove that Q = (Q,α) ∈ Alg(T). In fact, from the commutative diagram:

Q Ai

TAi

TQ Q Ai

qi

α

αi

ηAi

ηP

Tqi

qi

idAi

†

nat. η

We conclude that α ◦ ηP = idQ since qi is epi. Now, from the commutative diagram:

T 2Q TQ Q

T 2Ai TAi Ai

TAi

TQ

T 2qi

µQ

Tqi

α

qi

µAi
αi

αi
Tαi

Tqi

αTα

nat. µ †

†T †

We conclude that α◦µQ = α◦Tα (start at Q following the external arrows and then compose
with T 2qi. Then use the fact that T 2qi is epi by the previous lemma since pi is epi). This
concludes the proof that Q = (Q,α) ∈ Alg(T).

To finish the proof, take SL = (Q,α) and eL = qi ◦ ei, for some i ∈ I (remember that
qi ◦ ei = qj ◦ ej since {Ai

qi−→ Q}i∈I be the generalized pushout of {TΣ ei−→ Ai}i∈I). The
fact that SL recognizes L follows from the fact that every Ai recognizes L and the property
of {Ai

qi−→ Q}i∈I being the generalized pushout of {TΣ ei−→ Ai}i∈I . Also, we have that
eL = qi ◦ ei ∈ Alg(T)(TΣ, Q) since we have the following commutative diagram:

TΣ Ai Q

T 2Σ TAi TQ

ei qi

µΣ

Tei

αi

Tqi

α†
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J

9.2 Proof of Proposition 12

Proposition 12. Assume (A1). Let L be a pseudovariety of T–languages and A = (A,α) a
finite T–algebra. Then A ∈ A(L) if and only if for every finite object Σ in D we have that
ĜA ||=LΣ.

Proof. (⇒): Let A be a finite T–algebra such that A ∈ A(L). Let Σ be a finite object in D
and c ∈ C(GA,GΣ) be any colouring. By cofreeness of Ĝ(TΣ) there is a unique morphism
c[ ∈ Coalg(B)(ĜA, Ĝ(TΣ)) such that GηΣ ◦ c[ = c. Because of the duality we have that
c[ = G(h) = D(h, R) for some h ∈ Alg(T)(TΣ, A). To show that ĜA ||=LΣ we have to show
that Im(c[) ⊆ LΣ. In fact, let f ∈ GA = D(A, R) then we have the following commutative
diagram in C:

GA GTΣ

G R

c[ = G(h)

G(f) G(c[(f))

This follows because for every k ∈ G R we have that

(G(h) ◦G(f))(k) = k ◦ f ◦ h = k ◦ (G(h)(f)) = k ◦ c[(f) = G(c[(f))(k).

Hence by applying F to the previous diagram we get the diagram:

TΣ A

R

h

c[(f) f

Which means that c[(f) is recognized by A and as A ∈ A(L) it follows that c[(f) ∈ LΣ.
Therefore, Im(c[) ⊆ LΣ.

(⇐): Assume that ĜA ||=LΣ for every finite object Σ in D. Let Σ be a finite object in
D, a morphism h ∈ Alg(TΣ, A) and morphisms L ∈ D(TΣ, R) and L′ ∈ D(A, R) such that
the following diagram in D commutes:

TΣ A

R

h

L L′

To prove that A ∈ A(L) we have to prove that L ∈ LΣ. By applying G to the previous
diagram we get the following commutative diagram:
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GA GTΣ

G R = D(R, R)

Gh

GL′ GL

As ĜA ||=LΣ then we have that Im(Gh) ⊆ LΣ, which implies that (Gh ◦GL′)(idR) ∈ LΣ,
but

(Gh ◦GL′)(idR) = (GL)(idR) = D(L, R)(idR) = idR ◦ L = L

i.e., L ∈ LΣ. J

9.3 Proof of Corollary 13

Corollary 13. Assume (A1) and (A2). Let L be a pseudovariety of finitely recognizable
T–languages. Then A(L) is a pseudovariety of T–algebras.

Proof. By Proposition 12 we have that

A(L) = {A ∈ Alg(T) | A is finite and ∀ Σ ∈ D finite ĜA ||=LΣ}

We need to prove that A(L) is closed under homomorphic images, subalgebras, and finite
products. In fact,

i) Assume that A ∈ A(L) and let e ∈ Alg(T)(A,B) be an epimorphism. Clearly B is finite.
Now let Σ be a finite object in D and c ∈ C(GB,GΣ) be any colouring. Then the unique
morphism c[ ∈ Coalg(B)(ĜB, Ĝ(TΣ)) such that GηΣ ◦ c[ = c is given by c[ = g[ ◦Ge,
where g ∈ C(GA,GΣ) is a morphism such that g ◦ Ge = c given by the dual of (A2).
That is, we have the following commutative diagram in C where the three lower arrows
are morphisms in Coalg(B):

GB GA GTΣ

GΣ

Ge

c

g[

g
GηΣ

c[

Hence we have that Im(c[) ⊆ Im(g[) ⊆ LΣ, where the last inclusion follows from the
fact that A ∈ A(L). Therefore, Im(c[) ⊆ LΣ, i.e., ĜB ||=LΣ.

ii) Assume that A ∈ A(L) and let m ∈ Alg(T)(B,A) be a monomorphism. Clearly B is
finite. Now let Σ be a finite object in D and c ∈ C(GB,GΣ) be any colouring. Let
c[ ∈ Coalg(B)(ĜB, Ĝ(TΣ)) be the unique morphism such that GηΣ ◦ c[ = c. Then we
have that (c ◦Gm)[ = c[ ◦Gm. That is, we have the following commutative diagram in
C where the three lower arrows are morphisms in Coalg(B):
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GA GB GTΣ

GΣ

Gm c[

c
GηΣ

(c ◦Gm)[

Hence we have that Im(c[) = Im((c ◦Gm)[) ⊆ LΣ, where the equality follows from the
fact that Gm is epi and the inclusion follows from the fact that A ∈ A(L). Therefore,
Im(c[) ⊆ LΣ, i.e., ĜB ||=LΣ.

iii) Assume that Ai ∈ A(L), i = 0, 1, and let A = A0 × A1 ∈ Alg(T) be the product of
A0 and A1 with projections πi : A → Ai. Clearly A is finite. Now let Σ be a finite
object in D and c ∈ C(GA,GΣ) be any colouring. Let c[ ∈ Coalg(B)(ĜA, Ĝ(TΣ)) be
the unique morphism such that GηΣ ◦ c[ = c. Then we have that (c ◦Gπi)[ = c[ ◦Gπi.
That is, we have the following commutative diagram in C where the three lower arrows
are morphisms in Coalg(B):

GAi GA GTΣ

GΣ

Gπi c[

c
GηΣ

(c ◦Gπi)[

Hence we have that Im(c[) = Im((c ◦Gπ0)[) ∪ Im((c ◦Gπ1)[) ⊆ LΣ, where the equality
follows from the fact that GA = GA0 +GA1 and the inclusion follows from the fact that
Ai ∈ A(L). Therefore, Im(c[) ⊆ LΣ, i.e., ĜA ||=LΣ.

J

9.4 Proof of Proposition 14
To prove this proposition we use the following lemma.

I Lemma 22. Assume (A1) and (A3). Let A be a pseudovariety of T–algebras and Σ a
finite object in D. Then SL ∈ A for any L ∈ (L(A))(Σ).

Proof. Let L ∈ (L(A))(Σ), i.e., there exists an algebra A = (A,α) ∈ A, a morphism
h ∈ Alg(T)(TΣ, A) and L′ ∈ D(A, R) such that L′ ◦ h = L. Let h = m ◦ e be the epi–mono
factorization for h, i.e., e ∈ Alg(T)(TΣ, Im(h)) is an epimorphism and m ∈ Alg(T)(Im(h), A)
is a monomorphism. Then we have that Im(h) is a subalgebra of A which is in A, since
A is a pseudovariety of T–algebras, and it recognizes L since L = L′ ◦ h = (L′ ◦ m) ◦ e.
Now as Im(h) is a T–algebra recognizing L through the epimorphism e, by Proposition 10,
there exists an epimorphism g ∈ Alg(T)(Im(h), SL) such that eL = g ◦ e. As g is epi and
Im(h) ∈ A then SL ∈ A. J

Proposition 14. Assume (A1) and (A3). Let A be a pseudovariety of T–algebras, then
L(A) is a pseudovariety of finitely recognizable T–languages.
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Proof. We have to prove properties i) and ii) of Definition 5. In fact, let Σ be a finite object
in D, then:

i) Assume that L1, L2 ∈ (L(A))(Σ), we are going to prove that 〈L1, L2〉 ⊆ (L(A))(Σ).
From the previous lemma we have that SLi ∈ A, i = 1, 2. As SLi recognizes Li through
eLi

there exists L′i ∈ D(SLi
, R) such that L′i ◦ eLi

= Li. Let πi ∈ Alg(T)(S1 × S2, Si)
be the i-th projection. Then by the universal property of the product there is a
morphism f ∈ Alg(T)(TΣ, S1×S2) such that πi ◦f = eLi

. That is we have the following
commutative diagram in D:

TΣ SLi

R

S1 × S2Im(f)

eLi

Li

f
ef

L′i

πi

mf

where f = mf ◦ ef is the epi–mono factorization for f . If we apply Ĝ to the previous
diagram we get the following commutative diagram:

〈Li〉 GTΣ

G R

G(Im(f))G(S1 × S2)

GeLi

Gπi

GL′i GLi

Gef

Gmf

Gf

From this diagram, by taking the identity map idR ∈ G R = D(R, R) and using the
fact that Gef is mono, we have that L1, L2 ∈ G(Im(f)) and hence G(Im(f)) contains
〈L1, L2〉, so there exists a monomorphism m12 ∈ Coalg(B)(〈L1, L2〉, G(Im(f))). Now,
for any L ∈ 〈L1, L2〉 we have that 〈L〉 ⊆ 〈L1, L2〉. Let ι ∈ Coalg(B)(〈L〉, 〈L1, L2〉) be
the inclusion monomorphism. Then we have the following situation in Coalg(B):

GTΣG(Im(f))〈L1, L2〉〈L〉

G(S1 × S2)

Gefm12ι

Gmf

Where ι, m12, and Gef are monomorphisms and Gmf is an epimorphism. By applying
F̂ to the previous diagram we get:

TΣ Im(f) F̂ (〈L1, L2〉) SL

S1 × S2

ef Fm12 Fι

mf
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Where ef , Fm12 and Fι are epimorphisms and mf is a monomorphism. Hence, as
S1 × S2 ∈ A then SL ∈ A which implies that L ∈ (L(A))(Σ) because L is recognized by
SL. Therefore 〈L1, L2〉 ⊆ (L(A))(Σ).

ii) To prove closure under morphic preimages, consider a finite object Γ in D and a
homomorphism h ∈ Alg(T)(TΓ, TΣ). Assume that L ∈ (L(A))(Σ), i.e. there exists an
algebra A in A, g ∈ Alg(T)(TΣ, A), and L′ ∈ D(A, R) such that L′ ◦ g = L. Hence by
composing h to the last equality on the right we get L′ ◦ g ◦ h = L ◦ h which means that
L ◦ h is in (L(A))(Γ).

J

9.5 Proof of Proposition 15
We will use the following lemmas.

I Lemma 23. ([4, Lemma 4.8.]) Assume (A2). Let Γ be an object in D, f ∈ Alg(T)(A,B),
and h ∈ Alg(T)(TΓ, B). If f is surjective, then there is g ∈ Alg(T)(TΓ, A) such that f ◦g = h.

The proof of this lemma is the same as in [4, Lemma 4.8.] if we assume (A2). We
reproduce its proof here.

Proof. Consider the following situation for which the morphism g′ is obtained using (A2):

B A

TΓ

Γ

f

h

ηΓ

g′

Put A = (A,α) and take g = α ◦ Tg′. Then, the property g ∈ Alg(T)(TΓ, A) follows from
the following commutative diagram:

TΓ TA A

TTΓ TTA TA

Tg′ α

TTg′

µΓ

Tα

µA α

J

I Lemma 24. Assume (A1), (A2), and (A4). Let L be a pseudovariety of finitely recognizable
T–languages. Then SL ∈ A(L) for every finite Σ ∈ D and L ∈ LΣ.

Proof. We have to show that for every finite Γ in D, the set LΓ contains all the languages
over Γ that are recognized by SL, the syntactic algebra of L. In fact, let L̃ be a T–language
over Γ that is recognized by SL, i.e., there exists h ∈ Alg(T)(TΓ, SL) and L̃′ ∈ D(SL, R)
such that L̃′ ◦ h = L̃. Now as eL ∈ Alg(T)(TΣ, SL) is an epimorphism then, by the previous
lemma, there exists g ∈ Alg(T)(TΓ, TΣ) such that eL ◦ g = h. So we have the following
commutative diagram in D:
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TΓ SL

R

TΣ

h

L̃

g

L̃′

eL

L̃′ ◦ eL

If we apply G = D( , R) to the lower right triangle we get:

〈L〉 GTΣ

D(R, R)

G(eL)

D(L̃′ ◦ eL, R)D(L̃′, R)

So by considering the identity map idR ∈ D(R, R) we get that L̃′ ◦ eL ∈ 〈L〉. Therefore
L̃′ ◦ eL ∈ LΣ, which from the first diagram implies that L̃ ∈ LΓ since L is closed under
morphic preimages. Observe that SL is finite since L is a finitely recognizable T–language. J

Proposition 15. Let L be a pseudovariety of finitely recognizable T–languages and let A
be a pseudovariety of T–algebras. Then:

i) Assume (A1), (A2), and (A4), then L(A(L)) = L.
ii) Assume (A1) to (A5), then A(L(A)) = A.

Proof. i) Fix a finite object Σ in D, we have to prove that (L(A(L)))(Σ) = LΣ.
(⊆): Assume that L ∈ (L(A(L)))(Σ). Then there exists a T–algebra A in A(L) that
recognizes L. Then as A ∈ A(L) and it recognizes L, we have that L ∈ LΣ.
(⊇): Assume that L ∈ LΣ. Then by the previous lemma SL ∈ A(L) which means that
L ∈ (L(A(L)))(Σ) since SL recognizes L.

ii) Let A = (A,α) be a finite T–algebra.
(⊇): Assume that A ∈ A, then all the T–languages over a finite object Σ in D that are
recognized by A are in (L(A))(Σ), but this means that A ∈ A(L(A)).
(⊆): We have to prove that if for every finite object Σ in D and every T–language L over
Σ recognized by A we have that L is recognized by some algebra BL in A, then A ∈ A.
For every r ∈ D(A, R) let Sr be the syntactic algebra for the T–language Lr := r ◦ α
over A and er ∈ Alg(T)(TA, Sr) its corresponding canonical epimorphism. As Lr is
recognized by A through α then there exists an algebra Br in A recognizing Lr, i.e.,
there exists hr ∈ Alg(T)(TA,Br) and L′r ∈ D(Br, R) such that L′r ◦ hr = Lr. Now let
hr = mhr ◦ ehr be the epi–mono factorization of hr, where ehr ∈ Alg(T)(TA, Im(hr))
is an epimorphism and mhr

∈ Alg(T)(Im(hr), Br) is a monomorphism. As ehr
is an

epimorphism recognizing Lr, there exists gr ∈ Alg(T)(Im(hr), Sr) such that gr ◦ehr = er.
In summary, we have the following commutative diagram:
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R

TA

Br

Im(hr)

Sr

ehr

hr
Lr

er

L′r

mhr

gr

As Br ∈ A, mhr
is mono, and gr is epi, then Sr ∈ A since A is a pseudovariety of

T–algebras.
Now as A ∈ Alg(T), we have that α ∈ Alg(T)(TA,A) is an epimorphism, since α ◦ ηA =
idA. By Proposition 10 there exists kr ∈ Alg(T)(A,Sr) such that kr ◦ α = er. Let
P =

∏
r∈D(A,R) Sr then, as D(A, R) is finite since A is also finite, we have that P ∈ A.

Let f ∈ Alg(T)(TA,P ) be the morphism given by the universal property of the product
P such that πr ◦ f = er for every r ∈ D(A, R), where πr ∈ Alg(T)(P, Sr) is the r–th
projection. Similarly, let k ∈ Alg(T)(A,P ) such that πr ◦ k = kr for every r ∈ D(A, R).
That is, we have the following commutative diagram in Alg(T):

TA

P

Sr

A

f

er

α

πr

kr

k

As α is epi and k ◦α = f we have that Im(f) = Im(k) and as P ∈ A then Q := Im(f) =
Im(k) is also in A. Hence we have the following commutative diagram in Alg(T):

TA

Q

A

f

α

k

We have that k in the last diagram is epi by definition. To finish the proof we are going
to prove that k is mono 5, which means that A ∼= Q and hence A ∈ A. In fact, let
a1, a2 ∈ A such that a1 6= a2. As α is epi there exist wi ∈ TA such that α(wi) = ai,
i = 1, 2. Clearly w1 6= w2.
We have that f(w1) 6= f(w2). In fact, as a1 6= a2 there exists r′ ∈ D(A, R) such that
r′(a1) 6= r′(a2). Then we have that (πr′ ◦ f)(w1) 6= (πr′ ◦ f)(w2), since otherwise we
have that er′(w1) = er′(w2) because πr′ ◦ f = er′ , and as Sr′ recognizes Lr′ := r′ ◦ α

5 We’ll prove this by considering elements.
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through er′ then we have that Lr′(w1) = Lr′(w2) from which we get:

r′(a1) = (r′ ◦ α)(w1) = Lr′(w1) = Lr′(w2) = (r′ ◦ α)(w2) = r′(a2)

which is a contradiction. Therefore, f(w1) 6= f(w2).
Finally, k(a1) = (k ◦ α)(w1) = f(w1) 6= f(w2) = (k ◦ α)(w2) = k(a2), i.e., k is mono.

J

9.6 Details for Section 6
We need to prove that the endofunctors T in Example 16 preserve weak generalized pullbacks
where all the arrows are epis (surjective). We will do this for the endofunctor TΣ = Σ∗
considered in i). The endofunctors considered in ii) and iii) have a similar proof. The
endofunctor considered in iv) automatically preserves weak generalized pullbacks since it is a
left adjoint and hence it preserves colimits.

Let {A ei−→ Ai}i∈I be a collection of epimorphisms with common domain and let {Ai
qi−→

Q}i∈I be its pushout. Let {A∗i
pi−→ P}i∈I be the pushout of {A∗ e∗i−→ A∗i }i∈I . We have to

show that {A∗i
q∗i−→ Q∗}i∈I is a weak generalized pushout of {A∗ e∗i−→ A∗i }i∈I . Using the dual

of [11, Theorem 4.5], it is enough to find a function δ : Q∗ → P such that δ ◦ q∗i = pi, i ∈ I.
In order to prove this we are gonna fix some notation. We have that Q =

∐
i∈I Ai/ ∼

where ∼ is the least equivalence relation such that {ιj ◦ ej(a) | j ∈ I} is contained in an
equivalence class, a ∈ A, where ιl : Al →

∐
i∈I Ai is the inclusion function, l ∈ I. Similarly,

P =
∐
i∈I A

∗
i / ≈ where ≈ is the least equivalence relation such that {ıj ◦ e∗j (w) | j ∈ I} is

contained in an equivalence class, w ∈ A∗, where ıl : A∗l →
∐
i∈I A

∗
i is the inclusion function,

l ∈ I.
First we are going to define δ : Q∗ → P . In fact, let [ι`(c1)]∼[ι`(c2)]∼ · · · [ι`(cn)]∼ ∈ Q∗,

where ck ∈ A`, for a fixed ` ∈ I. We can always find c1, c2, . . . , cn since all the ei’s are
surjective. Let

δ ([ι`(c1)]∼[ι`(c2)]∼ · · · [ι`(cn)]∼) = [ı`(c1)ı`(c2) · · · ı`(cn)]≈

We will show that δ is well–defined, i.e., does not depend on the choice of the ck’s and ` ∈ I.
In fact, assume that ι`(c1) ∼ ι`(c′1), i.e., there exist d0, d1, . . . , dm, with dl ∈ Ail , d0 = c1,
dm = c′1, i0 = im = `, and there exist a1, . . . , am ∈ A such that:

eil(al+1) = dl, eil+1(al+1) = dl+1 (0 ≤ l < m)

Let b1, . . . , bm ∈ A such that e`(bl) = cl. Then

ı`(c1)ı`(c2) · · · ı`(cn) = ı`(e`(b1))ı`(e`(b2)) · · · ı`(e`(bn))
= (ı∗` ◦ e∗` )(b1b2, · · · bn)
= (ı∗i0 ◦ e

∗
i0)(a1b2, · · · bn)

≈ (ı∗i1 ◦ e
∗
i1)(a1b2, · · · bn)

= (ı∗i1 ◦ e
∗
i1)(a2b2, · · · bn)

≈ (ı∗i2 ◦ e
∗
i2)(a2b2, · · · bn)

...
≈ (ı∗im ◦ e

∗
im)(amb2, · · · bn)

= ı`(c′1)ı`(c2) · · · ı`(cn)
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Which proves that δ is independent of the choice of the ck’s. A similar argument shows
that δ is independent of the index ` ∈ I. Now to prove that δ ◦ q∗i = pi, assume that
a1, a2, . . . , an ∈ Ai, n ∈ N, then

(δ ◦ q∗i )(a1a2 · · · an) = δ(qi(a1)qi(a2) · · · qi(an))
= δ([ιi(a1)]∼[ιi(a2)]∼ · · · [ιi(an)]∼)
= [ıi(a1)ıi(a2) · · · ıi(an)]≈
= [ıi(a1a2 · · · an)]≈
= pi(a1a2 · · · an).

J

I Remark. Notice that the preservation of weak generalized pushouts of epis is only needed
to show the existence of a syntactic T–algebra SL for every language L. In some cases
it is easier to show directly the existence of SL instead of showing that T preserves weak
generalized pullbacks of epis. In the examples we show, this can be done by finding the
largest congruence that saturates L (if any), i.e., the largest congruence such that L is the
union of equivalence classes. Some of the constructions for syntactic algebras are already
known in the literature [8, 13].

For Example 17 the existence of the syntactic T–algebra is shown in [16].

10 Proof of Theorem 19.

Theorem 19. Under the assumptions (A1) to (A5), there is a one–to–one correspondence
between varieties of T–algebras and varieties of recognizable T–languages.

The proof of this theorem is similar to the one of Theorem 9 and all the facts hold by
replacing ‘pseudovarieties of T–algebras’ by ‘varieties of T–algebras’ and ‘pseudovarieties of
finitely recognizable T–languages’ by ‘varieties of T–languages’. We will only provide part of
the proofs of some of the facts we proved in Section 5. Proposition 10 was proved for any
T–language over Σ ∈ D so we can use it as it is.

As in Section 5, given a variety of T–algebras A and a variety of recognizable T–languages
L we define the operator L(A) and the class of T–algebras A(L) as:

- For every object Σ in D define (L(A))(Σ) as the set of T–languages over Σ that are
recognized by an algebra in A.

- A(L): T–algebras that recognize only languages in L.

The proof of Proposition 12 is easily adapted to get its following corresponding version:

I Proposition 25 (cf. Proposition 12). Assume (A1). Let L be a variety of T–languages and
A = (A,α) a T–algebra. Then A ∈ A(L) if and only if for every object Σ in D we have that
ĜA ||=LΣ.

Proof. Similar to the proof of Proposition 12 by omiting finiteness conditions. J

I Corollary 26 (cf. Corollary 13). Assume (A1) and (A2). Let L be a variety of recognizable
T–languages. Then A(L) is a variety of T–algebras.
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Proof. By Proposition 25 we have that

A(L) = {A ∈ Alg(T) | ∀ Σ ∈ D ĜA ||=LΣ}

We need to prove that A(L) is closed under homomorphic images, subalgebras, and products.
Closure under homomorphic images and subalgebras is proved as in Proposition 13. Let’s
prove closure under products.

Assume that Ai ∈ A(L), i ∈ I, and let A =
∏
i∈I Ai ∈ Alg(T) be the product of the

Ai’s with projections πi : A→ Ai. Now let Σ be an object in D and c ∈ C(GA,GΣ) be any
colouring. Let c[ ∈ Coalg(B)(ĜA, Ĝ(TΣ)) be the unique morphism such that GηΣ ◦ c[ = c.
Then we have that (c◦Gπi)[ = c[ ◦Gπi. That is, we have the following commutative diagram
in C where the three lower arrows are morphisms in Coalg(B):

GAi GA GTΣ

GΣ

Gπi c[

c
GηΣ

(c ◦Gπi)[

Hence we have that Im(c[) =
⋃
i∈I Im((c ◦Gπi)[) ⊆ LΣ, where the equality follows from the

fact that GA =
∐
i∈I GAi and the inclusion follows from the fact that Ai ∈ A(L). Therefore,

Im(c[) ⊆ LΣ, i.e., ĜA ||=LΣ. J

To prove the following version of Proposition 14 we use Lemma 22 for the case that A is
a variety of T–algebras whose proof is made in a similar way.

I Proposition 27 (cf. Proposition 14). Assume (A1) and (A3). Let A be a variety of
T–algebras, then L(A) is a variety of recognizable T–languages.

Proof. We have to prove properties i) and ii) of Definition 18. In fact, let Σ be an object in
D, then:

i) We will prove that (L(A))(Σ) = 〈(L(A))(Σ)〉. The inclusion ⊆ is obvious. To prove the
other inclusion put P =

∏
L∈(L(A))(Σ) SL ∈ Alg(T). We have that P ∈ A since every

SL ∈ A by Lemma 22 for the case of varieties of T–algebras.
Let L ∈ (L(A))(Σ). As SL recognizes L through eL, there exists L′ ∈ D(SL, R) such
that L′ ◦ eL = L. Let πL ∈ Alg(T)(P, SL) be the L–th projection then, by the universal
property of P , there exists f ∈ Alg(T)(TΣ, P ) such that πL ◦f = eL. Let mf ◦ef = f be
the epi–mono factorization of f . That is, we have the following commutative diagram:

TΣ SL

R

PIm(f)

eL

L

f
ef

L′

πL

mf

If we apply Ĝ to the previous diagram we get the following commutative diagram:
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〈L〉 GTΣ

G R

G(Im(f))GP

GeL

GπL

GL′ GL

Gef

Gmf

Gf

From this diagram, by taking the identity map idR ∈ G R = D(R, R) and using the fact that
Gef is mono, we have that L ∈ G(Im(f)), L ∈ (L(A))(Σ), and hence G(Im(f)) contains
〈(L(A))(Σ)〉, so there exists a monomorphism m ∈ Coalg(B)(〈(L(A))(Σ)〉, G(Im(f))).
Now, for any L̃ ∈ 〈(L(A))(Σ)〉 we have that 〈L̃〉 ⊆ 〈(L(A))(Σ)〉, hence there exists a
monomorphism ι ∈ Coalg(B)(〈L̃〉, 〈(L(A))(Σ)〉). Then we have the following situation
in Coalg(B):

GTΣG(Im(f))〈(L(A))(Σ)〉〈L̃〉

GP

Gefmι

Gmf

Where ι, m, and Gef are monomorphisms and Gmf is an epimorphism. By applying F̂
to the previous diagram we get:

TΣ Im(f) F̂ (〈(L(A))(Σ)〉) SL̃

P

ef Fm Fι

mf

Where ef , Fm and Fι are epimorphisms and mf is a monomorphism. Hence, as P ∈ A
then SL̃ ∈ A which implies that L̃ ∈ (L(A))(Σ) because L̃ is recognized by SL̃. Therefore
〈(L(A))(Σ)〉 ⊆ (L(A))(Σ).

ii) Closure under morphic preimages is proved as in Proposition 14.
J

To prove the corresponding version of Proposition 15 we will make use of Lemma 24 for
the case of varieties of recognizable T–languages whose proof is similar and therefore it is
omited.

I Proposition 28 (cf. Proposition 15). Let L be a variety of recognizable T–languages and
let A be a variety of T–algebras. Then:

i) Assume (A1), (A2), and (A4), then L(A(L)) = L.
ii) Assume (A1) to (A5), then A(L(A)) = A.

Proof. Similar to proof of Proposition 15. J
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