300 research outputs found

    MAC-Oriented Programmable Terahertz PHY via Graphene-based Yagi-Uda Antennas

    Get PDF
    Graphene is enabling a plethora of applications in a wide range of fields due to its unique electrical, mechanical, and optical properties. In the realm of wireless communications, graphene shows great promise for the implementation of miniaturized and tunable antennas in the terahertz band. These unique advantages open the door to new reconfigurable antenna structures which, in turn, enable novel communication protocols at different levels of the stack. This paper explores both aspects by, first, presenting a terahertz Yagi-Uda-like antenna concept that achieves reconfiguration both in frequency and beam direction simultaneously. Then, a programmable antenna controller design is proposed to expose the reconfigurability to the PHY and MAC layers, and several examples of its applicability are given. The performance and cost of the proposed scheme is evaluated through full-wave simulations and comparative analysis, demonstrating reconfigurability at nanosecond granularity with overheads below 0.02 mm2^{2} and 0.2 mW.Comment: Accepted for presentation in IEEE WCNC '1

    The Study of Reconfigurable Antennas and Associated Circuitry

    Get PDF
    This research focuses on the design of pattern reconfigurable antennas and the associated circuitry. The proposed pattern reconfigurable antenna designs benefit from advantages such as maximum pattern diversity and optimum switching circuits to realise 5G reconfigurable antennas. Whereas MIMO based solutions can provide increased channel capacity, they demand high computational capability and power consumption due to multiple channel processing. This prevents their use in many applications most notably in the Internet of Things where power consumption is of key importance. A switched-beam diversity allows an energy-efficient solution improving the link budget even for small low-cost battery operated IoT/sensor network applications. The main focus of the antenna reconfiguration in this work is for switched-beam diversity. The fundamental switching elements are discussed including basic PIN diode circuits. Techniques to switch the antenna element in the feed or shorting the antenna element to the ground plane are presented. A back-to-back microstrip patch antenna with two hemispherical switchable patterns is proposed. The patch elements on a common ground plane, are switched with a single-pole double-throw PIN diode circuit. Switching the feed selects either of two identical oppositely oriented radiation patterns for maximum diversity in one plane. The identical design of the antenna elements provides similar performance control of frequency and radiation pattern in different states. This antenna provides a simple solution to cross-layer PIN diode circuit designs. A mirrored structure study provides an understanding of performance control for different switching states. A printed inverted-F antenna is presented for monopole reconfigurable antenna design. The proposed low-profile antenna consists of one main radiator and one parasitic element. By shorting the parasitic element to the ground plane using only one PIN diode, the antenna is capable of switching both the pattern and polarisation across the full bandwidth. The switched orthogonal pattern provides the maximum spatial pattern diversity and is realised using a simple structure. Then, a dual-stub coplanar Vivaldi antenna with a parasitic element is presented for the 5G mm-Wave band. The use of a dual-stub coupled between the parasitic element and two tapered slots is researched. The parasitic element shape and size is optimised to increase the realised gain. A bandpass coupled line filter is used for frequency selective features. The use of slits on the outer edge of the ground plane provides a greater maximum gain. This integrated filtenna offers lower insertion loss than the commercial DC blocks. The UWB antenna with an integrated filter can be used for harmonic suppression. The influence of the integrated filter circuit close to the antenna geometry informs the design of PIN diode circuit switching and power supply in the 5G band. Based on the filter design in the mm-Wave band, a method of designing a feasible DC power supply for the PIN diode in the mm-Wave band is studied. A printed Yagi-Uda antenna array is integrated with switching circuitry to realise a switched 180° hemispheres radiation pattern. The antenna realises a maximum diversity in one plane. The study offers the possibility to use PIN diodes in the mm-Wave band for reconfigurable antenna designs. For the presented antennas, key geometric parameters are discussed for improved understanding of the trade-offs in radiation pattern/beamwidth and gain control for reconfigurable antenna applications

    DESIGN AND IMPLEMENTATION OF RECONFIGURABLE PATCH ANTENNAS FOR WIRELESS COMMUNICATIONS

    Get PDF
    Reconfigurable patch antennas have drawn a lot of research interest for future wireless communication systems due to their ability to adapt to changes of environmental conditions or system requirements. The features of reconfigurable patch antennas, such as enhanced bandwidths, operating frequencies, polarizations, radiation patterns, etc., enables accommodation of multiple wireless services. The major objective of this study was to design, fabricate and test two kinds of novel reconfigurable antennas: a dual-frequency antenna array with multiple pattern reconfigurabilities, and a pattern and frequency reconfigurable Yagi-Uda patch antenna. Comprehensive parametric studies were carried out to determine how to design these proposed patch antennas based on their materials dimensions and their geometry. Simulations have been conducted using Advanced Design Systems (ADS) software. As a result of this study, two kinds of novel reconfigurable patch antennas have been designed and validated at the expected frequency bands. For the new reconfigurable antenna array, the beam pattern selectivity can be obtained by utilizing a switchable feeding network and the structure of the truncated corners. Opposite corners have been slotted on each patch, and a diode on each slot is used for switchable patterns. By controlling the states of the four PIN diodes through the corresponding DC voltage source, the radiation pattern can be reconfigured. The simulation and measurement results agree well with each other. For the novel frequency and pattern reconfigurable Yagi-Uda patch antenna detailed in Chapter 4, two slots have been used on driven element to achieve frequency and pattern reconfigurability, and two open-end stubs have been used to adjust working frequency and increase bandwidth. In this design, an ideal model was used to imitate a PIN diode. The absence and presence of a small metal piece has been used to imitate the off-state and on-state of the PIN-diode. Pattern reconfigurability and directivities with an overall 8.1dBi has been achieved on both operating frequencies. The simulation and measurement results agree closely with each other. Advisor: Yaoqing Yan

    Gain-Reconfigurable Hybrid Metal-Graphene Printed Yagi Antenna for Energy Harvesting Applications

    Get PDF
    This paper presents a hybrid metal-graphene printed Yagi antenna with reconfigurable gain that operates in the 5.5-GHz band. The balun and the driven elements are made of copper, while the directors are made of graphene. The graphene acts as a tunable material in the design. By switching the conductivity of the graphene, it is achieved a similar effect to adding or subtracting directors in the antenna. Hence the gain of the printed Yagi can be easily controlled. This could be of special interest in RF energy harvesting in the design of reconfigurable harvesting elements.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Reconfigurable microstrip antennas with tunable radiation pattern characteristics

    Get PDF
    Reconfigurable beam antenna systems are capable of changing their radiation characteristics in real time, such as beam direction, beam shape, beamwidth, etc. Such antenna system is desired for various wireless applications because of many reasons among them; it helps to enhance signal strength received from an intended target, mitigates interference, and accommodates sudden changes in traffic demand of wireless networks. It might also help to reduce the deployment cost of wireless networks infrastructures. In this dissertation, designs for reconfigurable beam microstrip antennas with tunable radiation characteristics have been proposed. The method to achieve these designs is the reconfigurable parasitic element (s) of tunable electrical size, placed in close proximity to the driven patch. A tuning mechanism with the aid of Varactor diodes is introduced for the parasitic patch that effectively allows for controlling its electrical size. This (these) reconfigurable parasitic patch (es) is (are) then applied in different fashions to devise several antenna designs with dynamic electronic control over certain radiation specifications. The accomplished antenna designs in the dissertation are: * Circularly polarized (CP) beam scanning antenna, where two elements microstrip Yagi-Uda antenna is used. The first element is a square patch driven with two probe feeds of quadrature phase for CP excitation. The second element is a parasitic square patch with narrow square-shaped slot carved on its surface. The parasitic patch is adjacent to the driven patch with a small separation distance. Four varactor diodes are placed on the middle of each side of the square slot to facilitate tuning of its electrical size. The parasitic patch electrical size is alloto be effectively tuned by varying the applied reverse biasing DC voltage to the varactors (capacitance value). The CP beam direction is scanned from -36° to 32° with gain variation from 5.7 to 8.2 dBic, and efficiency from 54% to 75.58% along the scanning range. * Two-dimensional beam scanning antenna, where two orthogonal crossed Yagi-Uda antenna configuration is utilized. The driven element is a square patch excited with a probe coaxial feed. The other two parasitic patches are closely placed along the E & H planes of the driven patch. Each parasitic patch has a narrow rectangular slit at its center, where a varactor diode is placed to allow for tuning its electrical size. The beam direction is permitted to be scanned in both the elevation and azimuth planes. The achieved scan range in the elevation plane is from 0° to 32°, whereas in azimuth plan is from 0° to 90°. Along the scanning range, the attained gain changes from 8.1 to 8.9 dBi, and efficiency changes from 86% to 93%. * Tunable beamwidth antenna, with a dynamic control over the radiation beam focusing is proposed. The antenna consists of a square patch excited by a coaxial probe feed, and other two square parasitic patches placed on both sides of the driven along its H-plane. Each parasitic patch has a narrow slit at its center loaded with lumped varactor diode to tune its electrical size. Upon changing the parasitic patches size, the antenna effective aperture is altered, and hence the beamwidth in the H-plane is controlled. The achieved beamwidth tuning range is from 52° to 108°, whereas the gain changes from 6.5 to 8.1 dBi. Throughout the dissertation, 2.45 GHz is chosen, as an example, to be the target frequency. All the designs are validated through experimental measurements for fabricated prototypes, and good agreement is observed between the predicted and measured results

    A Software Controlled Polarization and Pattern Reconfigurable Microstrip Parasitic Array Antenna for a Market Mediated Software Defined Communications System

    Get PDF
    Software Defined Radio (SDR) provides a platform for a reconfigurable communication system that is solely controlled by a software program with access to certain hardware modules. SDRs are typically connected to very minimalistic, and often, manually controlled reconfigurable antenna(s) with no software control over radiation parameters. Hence, on a wave propagation front, the radiator does not capitalize on the software infrastructure it is connected to. This thesis presents a software controlled pattern and polarization reconfigurable microstrip patch antenna, with reconfigurable parasitic elements, for reconfigurable wireless networks and applications. The antenna is designed to operate from 2.4 GHz to 2.5 GHz, covering all channels (channels 1 through 14) of the 2.4 GHz ISM band. This broadband behavior is achieved with a two-layer stacked annular ring patch antenna, separated by a layer of foam. This antenna is dual probe-fed to achieve vertical and horizontal linear polarizations as well as right-hand and left-hand circular polarizations. Pattern reconfiguration is achieved with a third layer composed of microstrip patch elements acting as parasitic radiators, either reflecting or directing a beam in a direction, which are controlled by RF PIN diodes. Elements are placed such that pattern reconfiguration is possible across all polarization modes. Various iterations of the design process are discussed along with their issues and solutions. Other reconfiguration techniques are also suggested as part of future work

    A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure

    Get PDF
    A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results

    Self-steering Yagi-Uda antenna positioning system for television

    Get PDF
    The aim of this study is to develop a prototype that automatically improves the position of a Yagi-Uda antenna using a microcontroller and to illustrate its radiation pattern through the use of MATLAB®. This study is intended for students and professors in the electronics engineering field. This served as their educational materials for teaching antenna system principles and theories. Developmental and experimental methods were used to achieve the objectives. The materials and components generally used in this study are a Yagi-Uda antenna, stepper motor, Arduino Uno, L293D motor shield, USB TV stick tuner, slotted optocoupler, ADS1115, coax cable splitter, speaker stand, and timing belt. The statistical tool used in this study was a Z-test to find out if the experiment results were significant. In testing the effectiveness of the automatic antenna system, the TV display in every increment of 1.8° was taken. It was the basis for the effectiveness of the study. At 5% α/2 level (1.96), the computed z value is 1.76, which is less than 1.96. Therefore, there is no significant difference between the picture quality of the TV display at every angle and the desired angle with maximum reception of the signal with the integration of MATLAB®
    corecore