12 research outputs found

    Potential of nonlocally filtered pursuit monostatic TanDEM-X data for coastline detection

    Full text link
    This article investigates the potential of nonlocally filtered pursuit monostatic TanDEM-X data for coastline detection in comparison to conventional TanDEM-X data, i.e. image pairs acquired in repeat-pass or bistatic mode. For this task, an unsupervised coastline detection procedure based on scale-space representations and K-medians clustering as well as morphological image post-processing is proposed. Since this procedure exploits a clear discriminability of "dark" and "bright" appearances of water and land surfaces, respectively, in both SAR amplitude and coherence imagery, TanDEM-X InSAR data acquired in pursuit monostatic mode is expected to provide a promising benefit. In addition, we investigate the benefit introduced by a utilization of a non-local InSAR filter for amplitude denoising and coherence estimation instead of a conventional box-car filter. Experiments carried out on real TanDEM-X pursuit monostatic data confirm our expectations and illustrate the advantage of the employed data configuration over conventional TanDEM-X products for automatic coastline detection

    Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation

    Get PDF
    Abstract. The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (remotely piloted aircraft systems) observations, allowed us to detect the presence of rip currents and rip channels at the mouth of Sele River, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed us to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations

    On the use of multipolarization satellite SAR data for coastline extraction in harsh coastal environments: the case of Solway Firth

    Get PDF
    This study deals with coastline extraction using multipolarization spaceborne synthetic aperture radar (SAR) imagery acquired over coastal intertidal areas. The latter are very challenging environments where mud flats lead to a large variability of normalized radar cross section, which may trigger a significant number of false edges during the extraction process. The performance of SAR-based coastline extraction methods that rely on a joint combination of multipolarization information (either single- or dual-polarization metrics) and speckle filtering (either local and nonlocal approaches) are analyzed using global positioning system (GPS) samples and colocated SAR imagery collected under different incidence angles. Our test site is an intertidal zone with a wetland (i.e., salt marsh) in the Solway Firth, south-west along the Scottish-English border. Experimental results, obtained processing a pair of RadarSAT-2 full-polarimetric and a pair of Sentinel-1 dual-polarimetric SAR imagery augmented by colocated GPS samples, show that: first, the multipolarization information outperforms the single-polarization counterpart in terms of extraction accuracy; second, among the single-polarization channels, the cross-polarized one performs best; third, both single- and dual-polarization methods perform better when nonlocal speckle filtering is applied; fourth, the joint combination of nonlocal speckle filter and dual-polarization information provides the best accuracy; and finally, the incidence angle plays a role in the extraction accuracy with larger incidence angles resulting in the best performance when dual-polarization metric is used

    Methods to Remove the Border Noise From Sentinel-1 Synthetic Aperture Radar Data: Implications and Importance For Time-Series Analysis

    Full text link

    Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation

    Get PDF

    Automatically extracted Antarctic coastline using remotely-sensed data: an update

    Get PDF
    The temporal and spatial variability of the Antarctic coastline is a clear indicator of change in extent and mass balance of ice sheets and shelves. In this study, the Canny edge detector was utilized to automatically extract high-resolution information of the Antarctic coastline for 2005, 2010, and 2017, based on optical and microwave satellite data. In order to improve the accuracy of the extracted coastlines, we developed the Canny algorithm by automatically calculating the local low and high thresholds via the intensity histogram of each image to derive thresholds to distinguish ice sheet from water. A visual comparison between extracted coastlines and mosaics from remote sensing images shows good agreement. In addition, comparing manually extracted coastline, based on prior knowledge, the accuracy of planimetric position of automated extraction is better than two pixels of Landsat images (30 m resolution). Our study shows that the percentage of deviation (7 km2 (2005) to 1.3537 × 107 km2 (2010) and 1.3657 × 107 km2 (2017). We have found that the decline of the Antarctic area between 2005 and 2010 is related to the breakup of some individual ice shelves, mainly in the Antarctic Peninsula and off East Antarctica. We present a detailed analysis of the temporal and spatial change of coastline and area change for the six ice shelves that exhibited the largest change in the last decade. The largest area change (a loss of 4836 km2) occurred at the Wilkins Ice Shelf between 2005 and 2010

    Microwave Satellite Measurements for Coastal Area and Extreme Weather Monitoring

    Get PDF
    In this project report, the main outcomes relevant to the Sino-European Dragon-4 cooperation project ID 32235 “Microwave satellite measurements for coastal area and extreme weather monitoring” are reported. The project aimed at strengthening the Sino-European research cooperation in the exploitation of European Space Agency, Chinese and third-party mission Earth Observation (EO) microwave satellite data. The latter were exploited to perform an effective monitoring of coastal areas, even under extreme weather conditions. An integrated multifrequency/polarization approach based on complementary microwave sensors (e.g., Synthetic Aperture Radar, scatterometer, radiometer), together with ancillary information coming from independent sources, i.e., optical imagery, numerical simulations and ground measurements, was designed. In this framework, several tasks were addressed including marine target detection, sea pollution, sea surface wind estimation and coastline extraction/classification. The main outcomes are both theoretical (i.e., new models and algorithms were developed) and applicative (i.e., user-friendly maps were provided to the end-user community of coastal area management according to smart processing of remotely sensed data). The scientific relevance consists in the development of new algorithms, the effectiveness and robustness of which were verified on actual microwave measurements, and the improvement of existing methodologies to deal with challenging test cases

    Coastal sensitivity/vulnerability characterization and adaptation strategies: A review

    Get PDF
    Coastal area constitutes a vulnerable environment and requires special attention to preserve ecosystems and human activities therein. To this aim, many studies have been devoted both in past and recent years to analyzing the main factors affecting coastal vulnerability and susceptibility. Among the most used approaches, the Coastal Vulnerability Index (CVI) accounts for all relevant variables that characterize the coastal environment dealing with: (i) forcing actions (waves, tidal range, sea-level rise, etc.), (ii) morphological characteristics (geomorphology, foreshore slope, dune features, etc.), (iii) socio-economic, ecological and cultural aspects (tourism activities, natural habitats, etc.). Each variable is evaluated at each portion of the investigated coast, and associated with a vulnerability level which usually ranges from 1 (very low vulnerability), to 5 (very high vulnerability). Following a susceptibility/vulnerability analysis of a coastal stretch, specific strategies must be chosen and implemented to favor coastal resilience and adaptation, spanning from hard solutions (e.g., groins, breakwaters, etc.) to soft solutions (e.g., beach and dune nourishment projects), to the relocation option and the establishment of accommodation strategies (e.g., emergency preparedness)

    Coastal Sensitivity/Vulnerability Characterization and Adaptation Strategies: A Review

    Get PDF
    Coastal area constitutes a vulnerable environment and requires special attention to preserve ecosystems and human activities therein. To this aim, many studies have been devoted both in past and recent years to analyzing the main factors affecting coastal vulnerability and susceptibility. Among the most used approaches, the Coastal Vulnerability Index (CVI) accounts for all relevant variables that characterize the coastal environment dealing with: (i) forcing actions (waves, tidal range, sea-level rise, etc.), (ii) morphological characteristics (geomorphology, foreshore slope, dune features, etc.), (iii) socio-economic, ecological and cultural aspects (tourism activities, natural habitats, etc.). Each variable is evaluated at each portion of the investigated coast, and associated with a vulnerability level which usually ranges from 1 (very low vulnerability), to 5 (very high vulnerability). Following a susceptibility/vulnerability analysis of a coastal stretch, specific strategies must be chosen and implemented to favor coastal resilience and adaptation, spanning from hard solutions (e.g., groins, breakwaters, etc.) to soft solutions (e.g., beach and dune nourishment projects), to the relocation option and the establishment of accommodation strategies (e.g., emergency preparedness)

    Dual-Polarimetric C- and X-Band SAR Data for Coastline Extraction

    No full text
    This study proposes a new metric to process dual-polarimetric coherent and incoherent synthetic aperture radar (SAR) data for coastline extraction purposes. The metric, based on the correlation between co- and cross-polarized channels, allows discriminating land from sea in an unsupervised way. Then, simple image processing is adopted to extract continuous coastline from the binary image. Experiments, undertaken on multipolarization C- (RadarSAT-2 and Sentinel-1) and X-band (Cosmo-SkyMed) SAR data collected in South of Italy together with Global Positioning System ground truth, confirm the soundness of the method which is shown to be both effective (a whole SAR scene is processed in seconds) and accurate (the mean error is less than 5 and 7 pixels for RadarSAT-2 and CosmoSkyMed, respectively)
    corecore