52 research outputs found

    Unsupervised host behavior classification from connection patterns

    Get PDF
    International audienceA novel host behavior classification approach is proposed as a preliminary step toward traffic classification and anomaly detection in network communication. Though many attempts described in the literature were devoted to flow or application classifications, these approaches are not always adaptable to operational constraints of traffic monitoring (expected to work even without packet payload, without bidirectionality, on highspeed networks or from flow reports only...). Instead, the classification proposed here relies on the leading idea that traffic is relevantly analyzed in terms of host typical behaviors: typical connection patterns of both legitimate applications (data sharing, downloading,...) and anomalous (eventually aggressive) behaviors are obtained by profiling traffic at the host level using unsupervised statistical classification. Classification at the host level is not reducible to flow or application classification, and neither is the contrary: they are different operations which might have complementary roles in network management. The proposed host classification is based on a nine-dimensional feature space evaluating host Internet connectivity, dispersion and exchanged traffic content. A Minimum Spanning Tree (MST) clustering technique is developed that does not require any supervised learning step to produce a set of statistically established typical host behaviors. Not relying on a priori defined classes of known behaviors enables the procedure to discover new host behaviors, that potentially were never observed before. This procedure is applied to traffic collected over the entire year 2008 on a transpacific (Japan/USA) link. A cross-validation of this unsupervised classification against a classical port-based inspection and a state-of-the-art method provides assessment of the meaningfulness and the relevance of the obtained classes for host behaviors

    Diffusion is All You Need for Learning on Surfaces

    Full text link
    We introduce a new approach to deep learning on 3D surfaces such as meshes or point clouds. Our key insight is that a simple learned diffusion layer can spatially share data in a principled manner, replacing operations like convolution and pooling which are complicated and expensive on surfaces. The only other ingredients in our network are a spatial gradient operation, which uses dot-products of derivatives to encode tangent-invariant filters, and a multi-layer perceptron applied independently at each point. The resulting architecture, which we call DiffusionNet, is remarkably simple, efficient, and scalable. Continuously optimizing for spatial support avoids the need to pick neighborhood sizes or filter widths a priori, or worry about their impact on network size/training time. Furthermore, the principled, geometric nature of these networks makes them agnostic to the underlying representation and insensitive to discretization. In practice, this means significant robustness to mesh sampling, and even the ability to train on a mesh and evaluate on a point cloud. Our experiments demonstrate that these networks achieve state-of-the-art results for a variety of tasks on both meshes and point clouds, including surface classification, segmentation, and non-rigid correspondence

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    End-to-end Learning for Mining Text and Network Data

    Full text link
    A wealth of literature studies user behaviors in online communities, e.g., how users respond to information that are spreading over social networks. One way to study user responses is to analyze user-generated text, by identifying attitude towards target topics. Another way is to analyze the information diffusion networks over involved users. Conventional methods require manual encoding of world knowledge, which is ineffective in many cases. Therefore, to push research forward, we design end-to-end deep learning algorithms that learn high-level representations directly from data and optimize for particular tasks, relieving humans from hard coding features or rules, while achieving better performance. Specifically, I study attitude identification in the text mining domain, and important prediction tasks in the network domain. The key roles of text and networks in understanding user behaviors in online communities are not the only reason that we study them together. Compared with other types of data (e.g., image and speech), text and networks are both discrete and thus may share similar challenges and solutions. Attitude identification is conventionally decomposed into two separate subtasks: target detection that identifies whether a given target is mentioned in the text, and polarity classification that classifies the exact sentiment polarity. However, this decomposition fails to capture interactions between subtasks. To remedy the issue, we developed an end-to-end deep learning architecture, with the two subtasks interleaved by a memory network. Moreover, as the learned representations may share the same semantics for some targets, but vary for others, our model also incorporates the interactions among entities. For information networks, we aim to learn the representation of network structures in order to solve many valuable prediction tasks in the network community. An example of prediction tasks is network growth prediction, which assists decision makers in optimizing strategies. Instead of handcrafting features that could lead to severe loss of structural information, we propose to learn graph representations through a deep end-to-end prediction model. By finding "signatures" for graphs, we convert graphs into matrices, where convolutional neural networks could be applied. In additional to topology, information networks are often associated with different sources of information. We specifically consider the task of cascade prediction, where global context, text content on both nodes, and diffusion graphs play important roles for prediction. Conventional methods require manual specification of the interactions among different information sources, which is easy to miss key information. We present a novel, end-to-end deep learning architecture named DeepCas, which first represents a cascade graph as a set of cascade paths that are sampled through random walks. Such a representation not only allows incorporation of the global context, but also bounds the loss of structural information. After modeling the information of global context, we equip DeepCas with the ability to jointly model text and network in a unified framework. We present a gating mechanism to dynamically fuse the structural and textual representations of nodes based on their respective properties. To incorporate the text information associated with both diffusion items and nodes, attention mechanisms are employed over node text based on their interactions with item text.PHDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140791/1/lichengz_1.pd

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Homogeneity based segmentation and enhancement of Diffusion Tensor Images : a white matter processing framework

    Get PDF
    In diffusion magnetic resonance imaging (DMRI) the Brownian motion of the water molecules, within biological tissue, is measured through a series of images. In diffusion tensor imaging (DTI) this diffusion is represented using tensors. DTI describes, in a non-invasive way, the local anisotropy pattern enabling the reconstruction of the nervous fibers - dubbed tractography. DMRI constitutes a powerful tool to analyse the structure of the white matter within a voxel, but also to investigate the anatomy of the brain and its connectivity. DMRI has been proved useful to characterize brain disorders, to analyse the differences on white matter and consequences in brain function. These procedures usually involve the virtual dissection of white matters tracts of interest. The manual isolation of these bundles requires a great deal of neuroanatomical knowledge and can take up to several hours of work. This thesis focuses on the development of techniques able to automatically perform the identification of white matter structures. To segment such structures in a tensor field, the similarity of diffusion tensors must be assessed for partitioning data into regions, which are homogeneous in terms of tensor characteristics. This concept of tensor homogeneity is explored in order to achieve new methods for segmenting, filtering and enhancing diffusion images. First, this thesis presents a novel approach to semi-automatically define the similarity measures that better suit the data. Following, a multi-resolution watershed framework is presented, where the tensor field’s homogeneity is used to automatically achieve a hierarchical representation of white matter structures in the brain, allowing the simultaneous segmentation of different structures with different sizes. The stochastic process of water diffusion within tissues can be modeled, inferring the homogeneity characteristics of the diffusion field. This thesis presents an accelerated convolution method of diffusion images, where these models enable the contextual processing of diffusion images for noise reduction, regularization and enhancement of structures. These new methods are analysed and compared on the basis of their accuracy, robustness, speed and usability - key points for their application in a clinical setting. The described methods enrich the visualization and exploration of white matter structures, fostering the understanding of the human brain

    2D growth processes: SLE and Loewner chains

    Full text link
    This review provides an introduction to two dimensional growth processes. Although it covers a variety processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the SLE remarkable properties are explained, as well as the tools for computing with SLE. This review has been written with the aim of filling the gap between the mathematical and the physical literatures on the subject.Comment: A review on Stochastic Loewner evolutions for Physics Reports, 172 pages, low quality figures, better quality figures upon request to the authors, comments welcom

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation
    • 

    corecore