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1Introduction

In expanding the field of knowledge we but increase the horizon of ig-
norance.
Henry Miller



2 CHAPTER 1. INTRODUCTION

The human brain is one of the most intriguing organs in the human body. This
complex collection of neurons defines the intelligent creatures that we are, who
we are, how we are, our feelings, our dreams, our thoughts. Even more intriguing,
its self awareness, its self introspection, its sentiency. This fascinating capability
has been driving thinkers, philosophers, scientists, for millennia.

Fortunately, we live in exciting times when new imaging techniques provide
an unprecedented look inside the structure and function of the brain [32]. Besides
collecting data about the brain’s many subsystems, these techniques have large
societal benefits, as to aid in the diagnosis of many brain related diseases.

Magnetic resonance imaging (MRI) is a medical imaging technique (see figure
1.1(a)) which, through the use of strong magnetic fields and radio waves, is able to
produce three-dimensional images of brain structures with a high degree of detail
(see figure 1.1(b)). Its popularity is due to not only the greater tissue contrast
of the produced images than computed tomography (CT) does, but also to the
fact that it does so in a safe way, i.e. without the use of radiation (X-rays) or
radioactive tracers (PET, SPECT).

(a) (b)

Figure 1.1: (a) A modern high field (3T) clinical MRI scanner, and (b) an MRI T2 brain
axial image from an anonymized patient provided by Aaron G. Filler, MD, PhD for
educational, research, and teaching purposes.

Diffusion weighted MRI (DW-MRI) is a recent imaging technique where the
acquisition is made sensitive to the microscopic Brownian movement of water
molecules, so called diffusion. In fibrous tissues this movement is hindered by
the local structure enforcing the water molecules to diffuse mainly along these
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fibers. By probing this diffusion at different directions, DW-MRI allows a non-
invasive evaluation of the structural integrity of fibrous tissues, such as brain’s
white matter. Therefore, DW-MRI constitutes a valuable tool for understanding
the brain, its mechanisms, functions and pathologies.

In the development of diffusion tensor imaging (DTI), first introduced by Basser
[10], the movement of water molecules is measured in different directions and the
average diffusion is then described by a 3×3 positive definite matrix, the so called
diffusion tensor (DT). Here, different measures can be extracted to characterize
tissue at microscopic detail. Fractional anisotropy, for instance, describes how
directionally dependent (i.e. how anisotropic) the diffusion ensemble is, enabling
researchers to evaluate changes in areas of neural degeneration and demyelination
in diseases like Multiple Sclerosis [89].

From such a DT image, tractography methods reconstruct the tissue’s fiber
bundles, enabling the evaluation of the complex anatomical connectivity patterns
within the brain (Conturo et al. [27], Basser et al. [11], Mori et al. [95]), but also
the fibrous structure of muscle tissue, e.g., of the heart (Zhukov and Barr [150])
or the skeletal muscle (Heemskerk et al. [58]). These tractography algorithms
can be used to estimate several white matter tracts - for instance, the fibers of the
corticospinal tract, along which motor information travels between the cortex
and the spinal cord. Figure 1.2(a) shows one of Gray’s [54] remarkable illustra-
tions of the anatomy of the human brain, depicting a major fiber tract, the corpus
callosum in the center, connecting both hemispheres of the brain. In comparison,
figure 1.2(b) shows the white matter of a brain, and its structure, as reconstructed
through diffusion tractography.

In the past few years, there has been a worldwide strongly increasing interest
in brain connectivity. The Human Connectome Project (HCP) 1 is the first large
scale attempt at collecting and sharing data, aiming at constructing a map of the
complete structural and functional connections of the brain, in vivo. The Blue
Brain Project (BBP) 2 approaches the challenge of understanding the brain, its
function and dysfunction, in a reverse-engineering way, by collecting data and
detailed simulations such as the first model of a neocortical column with 10000
digitizations of real neurons. The Visualization of Brain Connectivity Data 3

addresses the visualisation of brain connectivity information, with interest in the
joint visualisation of DTI and fMRI/EEG data.

DTI has also been used in many studies to explore the anatomical basis of hu-
man cognition and its disorders. Most studies are at an exploratory stage, aiming
at providing an understanding of the underlying diseases mechanisms and eval-

1http://www.humanconnectomeproject.org
2http://bluebrain.epfl.ch/
3http://www.narcis.info/research/RecordID/OND1316395/Language/en
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(a) (b)

Figure 1.2: Human brain’s white matter, depicting the corpus callosum in the center,
from above: a) as illustrated by Gray [54]; b) estimated through DTI based tractography
[117], where color encodes orientation of the local diffusion pattern (see section 2.5),
superimposed over illustration of a brain axial slice.

uating differences across various subjects. Concha et al. [26] conducted a study
demonstrating that DTI is capable of detecting, stating and following the micro-
structural degradation of white matter following corpus callosotomy in epilepsy
patients. Brunenberg et al. [17] studied the potential of different DW-MRI mod-
elling techniques to analyse the connectivity of subthalamic nucleus (STN) sub-
territories in order to avoid negative cognitive and emotional side-effects after
deep brain stimulation (DBS) for Parkinson’s disease. Several studies have also
been conducted to investigate disorders such as: infarct (Moseley et al. [97]),
schizophrenia ( Kanaan et al. [71]), Alzheimer (Chua et al. [23]), multiple scler-
osis (Melhem et al. [89]), language disorders (Klingberg et al. [77]), ageing (Salat
et al. [119]), among others (Catani [19]).

DTI is also a valuable tool in tissue characterization, surgical planning, and
treatment follow-up in patients with cerebral neoplasms (Field et al. [44]). Ques-
tions such as ”How to access the lesion, most safely?” or ”How close is the tu-
mour to the pathways interconnecting vital functional areas like vision, language
or motor system?” can be appraised thanks to DTI.

These multitude of applications and procedures usually involve the virtual dis-
section of white matter tracts of interest. The isolation of these bundles is usually
manually defined and therefore require a great deal of neuroanatomical know-
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ledge. This also makes DW-MRI based tractography heavily operator dependent
and can take up to several hours of work per patient. The connectivity of the full
brain can be extracted, however the amount of data to analyse and visualize is so
vast that cluttering problems must be dealt with (see figure 2.13). Furthermore, as
MRI technology progresses, higher resolution data will be available, hence this
problem will become more urgent.

Several techniques have been proposed with the intent to automatically group
individual fibers in coherent structures (Moberts et al. [94]). However, these
methods operate over derived structures, thus not using the full tensor informa-
tion, becoming sensitive to the choice of tractography method.

An alternative is the direct segmentation of the tensor image in volumetric
regions containing fiber bundles that correspond to larger anatomical structures
[7,118,138,151]. Segmentation is needed to determine regions of interest where
subsequent quantitative analysis and visualisation can be applied. These tech-
niques provide tools to extract shape, size and other structural characteristics po-
tentially useful for the analysis of pathologies, or the study of cognitive develop-
ment in different populations such as premature neonates [133, 146], without the
additional tractography step.

Several algorithms have been proposed for scalar image segmentation, how-
ever, how to extend these into tensor images still holds challenging questions.
Frequently, new metrics in the space of tensors are introduced, and typically these
algorithms are not automatic, i.e. they require the tuning of several parameters in
order to achieve the desired results. Additionally, the limited interaction possib-
ilities with the user prevents the added value of specialists’ knowledge.

Although its great potential, a major limitation of DTI based tractography is
that the calculated trajectory of the fiber may not follow the true tract, mainly
due to partial volumes effects. The spatial resolution of a DW-MRI image,
with typical voxel resolutions on the order of 1− 2 mm3, is much lower than
individual fiber bundles 10−6 m, leading to multiple fiber orientations within a
voxel. A diffusion tensor fails to capture this complex structure leading to am-
biguous fiber trajectories. Therefore, high angular resolution diffusion imaging
(HARDI) techniques, pioneered by Tuch [130], were introduced. These are able
to better capture the intra-voxel diffusion pattern compared to DTI. However,
HARDI acquisitions in general produces very noisy diffusion patterns due to the
low signal-to-noise ratio (SNR) from the scanners at high sensitivity to diffusion.
Furthermore, it still exhibits limitations in areas where the diffusion pattern is
asymmetrical (bifurcations, splaying fibers, etc.). To overcome these limitations
the post-processing of the data is a crucial step.



6 CHAPTER 1. INTRODUCTION

1.1 Organization and Contributions of this Manuscript

This thesis focuses on the development of techniques able to automatically per-
form the virtual dissection of white matter structures. To segment such structures
in a tensor field, the similarity of diffusion tensors must be assessed for partition-
ing data into regions, which are homogeneous in terms of tensor characteristics.
In this thesis, the concept of tensor homogeneity is explored in order to achieve
new methods for segmenting, filtering and enhancing diffusion images.

We start by first describing the brain, its main building elements, from the
axons to the major fiber tracts connecting the different parts of the grey mat-
ter. When imaging the brain it is important to understand what we are imaging,
the underlying anatomy and connectivity. In chapter 2 we address the brain, its
structure, how it can be probed through imaging techniques, in particular through
DW-MRI. Finally how can we exploit this information, i.e. process it, in order to
identify white matter structures.

Since we do not know the “ground truth” of the human brain anatomical con-
nectivity, one of the most challenging, yet extremely important aspects of DW-
MRI is validation. In order to validate the accuracy of novel techniques in the
modelling and processing of DTI/HARDI, software and hardware phantoms are
often created. However, these models are an over-simplified version of the real
underlying fiber configurations in the brain white matter. Different models are
used in literature without justification which one is more appropriate than other,
nor how the properties of the derived models/features change using one model or
another. In chapter 3 we analyse the most common synthetic data models, the
multi-tensor model [2] and Söderman and Jöhnson’s model [123], and hardware
phantom and in-vivo data as well. This study is aimed to help scientists choos-
ing the most appropriate synthetic data model when conducting DTI and HARDI
experiments.

We start by studying the space of diffusion tensors, with special focus on the
different measures that can be used to define (dis)similarities between tensors,
i.e. to define homogeneity in a tensor field. Many different measures have been
proposed to compute similarities and distances between tensors. Essential for
algorithms such as segmentation, registration and quantitative analysis of DTI
datasets, these measures are classified and summarized in chapter 4. This eval-
uation led to the development of a novel approach to semi-automatically define
the similarity measures that better suit the segmentation task at hand, in chapter
5.



1.1. ORGANIZATION AND CONTRIBUTIONS OF THIS MANUSCRIPT 7

Chapter 6 explores the intrinsic hierarchical nature of the brain tissue: ax-
ons, fiber bundles, fiber tracts. Here, a multi-resolution watershed framework is
presented, where the tensor field’s homogeneity is used to automatically achieve
a hierarchical representation of white matter structures in the brain, allowing the
simultaneous segmentation of different structures, with different sizes.

HARDI, the successor of DTI, is able to more accurately model the diffusion
pattern in areas of complex fiber heterogeneity, however, at the cost of poor image
quality (low SNR). Moreover, HARDI based methods can not reconstruct asym-
metric diffusion patterns such as bifurcations and splaying fibers. The processing
of HARDI data is paramount, and the contextual (neighbourhood) information
plays an important role. The processing of HARDI data is based on modelling
the stochastic process of water diffusion within tissues, inferring the homogen-
eity characteristics of the diffusion field. Convolutions with these kernels are
then performed in the coupled spatial and angular domain. However, these ap-
proaches have high computational complexity of an already complex HARDI
data processing. In chapter 7, an accelerated framework for HARDI data de-
noising, regularization and enhancement is presented.

Although HARDI has proven to better characterize complex intra-voxel struc-
tures than its predecessor DTI, its higher acquisition times and significantly lower
signal-to-noise ratios established DTI as more attractive for use in clinical re-
search. In chapter 8 we use contextual information derived from DTI data, to
obtain similar crossing information as from HARDI data. We show that with ex-
trapolation of the contextual information the obtained crossings are the same as
the ones from the HARDI data, and the robustness to noise is considerably better.

Software contribution

All the methods presented in this thesis were developed in a framework common
to our research group - named DTItool [117]. Lead by Dr. A. Vilanova, several
researchers contributed to this framework unifying a collection of state-of-the-art
algorithms dedicated to medical image processing and visualization. This tool
has been developed in collaboration with Vesna Prckovska4, Tim Peeters5 and
other members of the BMIA6 group, in particular the collaborations with Markus
van Almsick and Remco Duits. The tool and the implemented algorithms are
available on request.

4http://www.vesnaprckovska.net
5http://www.timpeeters.com
6http://www.bmia.bmt.tue.nl
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2Imaging brain connectivity

”Brain: an apparatus with which we think we think.”
Ambrose Bierce
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2.1 A brief history of Neuroimaging

In a process called pneumoencephalography, the cerebrospinal fluid involving
the brain is drained and replaced with air. This changes the relative density of the
brain and its surroundings, causing it to show better on an x-ray. This incredibly
unsafe and very painful procedure can be considered the beginning of neuroima-
ging, in the start of the 20th century. This method is now fully abandoned, and
right so.

In 1927 Egas Moniz pioneered cerebral angiography with a suitable contrast
medium as to provide images of blood vessels within the brain, allowing the
detection of abnormal blood vessels with great precision.

In the early 1970s, computerized axial tomography (CAT or CT scanning),
was introduced by Cormack and Hounsfield, providing more detailed anatomical
images of the brain, for both diagnostic and research purposes, granting them the
1979 Nobel Prize for Physiology or Medicine. Soon after, in the early 1980s,
single photon emission computed tomography (SPECT) and positron emission
tomography (PET) of the brain was developed thanks to the use of radionuclides.
These techniques can show the amount of brain activity in the various regions,
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thanks to the measurements of blood flow, oxygen and glucose metabolism of the
working brain, although with a low spatial resolution.

Magnetic resonance imaging (MRI) was developed, roughly at the same time,
by Mansfield and Lauterbur, awarded the Nobel Prize for Physiology or Medicine
in 2003. Using strong magnetic fields and radio frequency fields, this technique
provides detailed images, with much greater contrast between the different soft
tissues of the body than CT, with low invasiveness, lack of radiation exposure,
thus of special interest for neurological imaging. During the 1980s many im-
provements and applications of MR appeared. Exploiting the magnetic proper-
ties of haemoglobin and capillary responses to increased metabolic need of active
areas, changes in blood flow associated with neural activity can be measured with
functional magnetic resonance imaging (fMRI). Images can now be created re-
flecting which brain structures are activated while performing different tasks.

Diffusion weighted MRI (DW-MRI) is a recent imaging technique, where the
acquisition is made sensitive to the microscopic movement of water molecules
(diffusion) restricted by the local structure. Its basic principles were introduced in
the mid-1980s [80,90,127]. These measurements thus allow the evaluation of the
structural integrity of fibrous tissues, such as the white matter, in the brain. In the
1990s, Peter Basser and his co-workers [10], established diffusion tensor imaging
(DTI) as a viable imaging method, granting Basser the 2008 International Society
for Magnetic Resonance in Medicine Gold Medal.

2.2 Human Brain: from nervous tissue to architecture

The human cerebrum is an electrochemical machine that is continuously pro-
cessing information about its surroundings, gathered through the senses. This
information is processed according to brain’s previous experience (memory) and
results in an appropriate response or action. How the brain works is very much
related to the collective behaviour of the billions of cells in it.

2.2.1 Nervous tissue

The neuron is a fundamental component in comprehending the brain. The human
brain is composed by billions of neurons and supporting cells. They are respons-
ible for cognitive and memory functions - they define what we are. The cortex
of the human brain is extremely complex, containing in the order of one hundred
billion (1011) neurons [41], processing and producing electrical and chemical
currents. As clearly illustrated by Santiago Ramón y Cajal (1852-1934) [145],
in figure 2.1, the neurons are connected to each other in an extremely intricate
network.
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Figure 2.1: This drawing first appeared in volume two, part two of Cajal’s Textura del
Sistema Nervioso del Hombre y de los Vertebrados, published in Madrid in 1904. Using
a method called Golgi staying [52], Cajal produced images such as this, where we can
see the six layers of the mouse neocortex. Cajal’s drawings remain fundamental for
neuroscience by showing that the nervous system is a complex network composed of
individual neurons. Cajal received the Nobel Prize in Physiology or Medicine in 1906.

Each neuron (see figure 2.2) consists of a body (called the soma) and tentacles
(the dendrites) which connect to thousands of other neurons, seeking and receiv-
ing information. The surface of the cell body integrates the information arriving
at its dendrites. If the excitation is sufficient, it triggers impulses that are con-
ducted away along an axon. Each neuron has a single axon leaving its cell body,
although an axon can branch to stimulate more cells.

Typically an axon radius varies from 0.2 µm to 20 µm, and can reach up to a
meter length, as from sensory neurons in the feet to neurons in the spinal cord.
There are three types of neurons:



2.2. HUMAN BRAIN: FROM NERVOUS TISSUE TO ARCHITECTURE 13

Figure 2.2: Structure of a typical neuron. The dendrites extending from the cell body
receive the information. A single axon transmits the impulse away. Many axons are
wrapped by a myelin sheath. Figure adapted from the originals generated and deposited
into the public domain by the US National Cancer Institute’s Surveillance, Epidemiology
and End Results (SEER) Program and by the Electron Microscopy Facility at Trinity
College.

• Sensory neurons, or afferent neurons, translate physical input from the
environment - such as light, sound, temperature, pressure, taste, smell -
into electrical signals. The impulses are carried into the central nervous
system (CNS), i.e. the brain and spinal cord.

• Motor neurons, or efferent neurons, carry impulses from the CNS to ef-
fectors, i.e. muscles or glands.

• Interneurons, or association neurons, are located in the brain and spinal
cord, and help provide complex reflexes and higher cognitive functions
such as learning and memory.

The cerebral tissue contains many other cells that serve a variety of functions
such as supplying the neurons with nutrients, removing waste from neurons, and
providing immune functions, which are called neuroglia. Two of the most im-
portant types of neuroglia are the Schwann cells and oligodendrocytes, which
produce myelin sheaths surrounding axons of many neurons (see figure 2.2).
Schwann cells produce myelin in the peripheral nervous system (composed by
sensory and motor neurons), while oligodendrocytes produce myelin in the CNS.
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During development, the myelin sheaths are formed by successive wrappings of
these cells around the axons. These multiple compact membrane layers facil-
itate far more rapid conduction of impulses. The myelin sheath is interrupted
at regular intervals of 1 to 2 millimiters by small gaps of 1 to 2 µm known as
nodes of Ranvier. In the CNS, myelinated axons form the white matter, and the
unmyelinated dendrites and cell bodies form the gray matter.

2.2.2 Neuroanatomy

The complex connectivity network of the neurons might seem largely random,
however, the brain is extremely well organized, at all levels, and every day we
learn more: from regular neuronal patterns in cortical columns, precise sensory
maps, energy minimizing distances in connectivity, etc.

The first basic structures are the two cerebral hemispheres. Each hemisphere
primarily receives sensory input from the opposite side of the body and conveys
motor control primarily over that side. There are two of every brain organ located
on each hemisphere (except the pineal gland).

Incidentally, René Descartes [33] thought the unique pineal gland, located
almost in the middle of the brain, might be involved with the mind or the soul; he
called it the ”seat of the soul”.

Much of the neural activity of the brain occurs within a layer of gray matter,
just a few millimetres thick on its outer surface. This layer, called the cerebral
cortex or neocortex, is densely packed with neuron bodies and dendrites. The
cortex is a highly convoluted structure whose ridges and valleys are dubbed, re-
spectively, gyri and sulci. The neocortex is the center of our most impressive
capabilities, such as learning, memory, language, and consciousness. The other
parts of our brains are similar to those in other mammals, however the neocortex
is comparatively much larger than in other mammals. The human cerebral cortex
is ”new” in an evolutionary sense, hence the name neocortex.

The exterior of the cerebral cortex is divided into four lobes: frontal, parietal,
temporal and occipital (see figure 2.3). The neocortex is organized into regions
that process specific types of input or are specialized in specific cognitive func-
tions. These functions fall into three general categories: motor, sensory and asso-
ciative. The primary motor cortex, illustrated in figure 2.3, is located along the
gyrus on the posterior border of the frontal lobe, just in front of the central sulcus.
Each point on its surface is associated with the movement of a different part of
the body, as illustrated by the cortical homunculus, discovered and described by
Wilder Penfield. Similarly, just behind the central sulcus, on the anterior edge
of the parietal lobe, lies the primary somatosensory cortex. Each point in this
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Figure 2.3: The cerebrum. This diagram shows the lobes of the cerebrum and indicates
some of the known specialized regions. Based on Figure 728 from Gray’s Anatomy [54].

area receives the input from sensory neurons. Large parts of the somatosensory
cortex is dedicated to fingers, lips and tongue given our need for manual dexter-
ity and speech. The area of the cortex that is not dedicated to motor or sensory
functions is referred to as association cortex. Higher mental activities take place
here, reaching its greatest extent in humans, where it takes 95% of the cortex’s
area.

Millions of axons interconnect the myriad of neurons in the neocortex form-
ing the white matter, depicted in figure 2.4. Following the ratios provided by
Miller et al. [93], assuming a brain volume of 1250 mL, white matter accounts
for about 44− 48% of the brain volume between age 20 and 50. The white mat-
ter is a hierarchically ordered tissue: from aligned microscopic axons to large
bundles running together between various gray matter regions. These coherent
groups are called white matter fiber tracts (fasciculi), and are broadly classified
as association, commissural or projection fibers:

Association fibers are confined to one hemisphere and interconnect cortical
areas within that hemisphere. They are further classified as either short or long as-
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Figure 2.4: Dissection of cortex and brain-stem showing association fibers. Figure 752
from Gray’s Anatomy [54].

sociation fibers. Short association fibers lie immediately beneath the gray matter,
connecting nearby specialized regions within a gyrus or between gyri by looping
around the sulci. Long association fibers interconnect functionally specialized
areas of the cortex. Some of the long association fibers are the cingulum, super-
ior longitudinal and arcuate fasciculi, and interior occipitofrontal and uncinate
fasciculi (see figure 2.5(a) and later on figure 5.6).

Commissural fibers interconnect across the midline, mostly corresponding
areas within the two hemispheres. The largest commissure is the corpus cal-
losum located in the center of the brain (see figure 2.5(b)(b) and later on figure
5.5 ), connecting both halves. It is composed of axons of variable diameter and
conduction velocities. There are several additional smaller commissures such as
the anterior commissure, the posterior commissure, and the hippocampal com-
missure.

Projection fibers unite the cortex with various lower parts of the brain and
the spinal cord. These fibers are classified into two groups on the basis of the
direction in which the fibers conduct. Afferent fibers are those on the way to
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the cortex, while efferent fibers are those originating in regions of the cortex
and which are proceeding to the basal ganglia, brain stem, and spinal cord. The
corticospinal tract, for instance, as illustrated in figure 2.5(b) mostly contains
motor axons travelling between the cortex and the spinal cord.

(a) (b)

Figure 2.5: Diagram showing principal systems of fiber tracts in the cerebrum. a) As-
sociation fibers, with the cingulum highlighted; b) Projection fibers, such as the cortico
spinal tract, combined with the corpus callosum, the largest commissure in the brain.
Based on Figures 751 and 764 from Gray’s Anatomy [54].

Additionally, there are two fluid systems in the brain: the cerebrospinal fluid
(CSF) in the ventricles and around the brain; and the vascular system providing
blood.

Let’s take a moment to summarize the scales of brain tissue in order to help
understand the discussion in the following sections:

• Most of axon fibers diameters, in human white matter, are less than 10−6 m;

• The packing density of axon fibers is of order 1011 m−2;

• Fiber tracts, i.e. coherent fiber bundles, vary in diameter from several cen-
timetres down to a few microns;

• The voxel dimensions in a typical biomedical 1.5-3T MRI is of order 10−3 m.
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2.3 Principles of diffusion

Diffusion is a process arising in nature, which results in particle or molecular
mixing, due to collisions between atoms or molecules in a fluid. The physical
law that explains this process is called Fick’s first law [43] relating particle con-
centration C to the diffusive flux J through the relationship

J = −D∇C
�� ��2.1

where the constant of proportionality D is the so called ”diffusion coefficient”.
Fick’s law embodies the idea that particles go from areas of higher to lower con-
centration resulting in an even concentration in the whole fluid. The diffusion
coefficient D depends on the temperature and the intrinsic properties of the me-
dium. Its sensitivity on the local microstructure enables its use as a probe of the
physical properties of the biological tissue.

Robert Brown (a Scottish botanist), while studying pollen particles floating
in water under the microscope, observed this seemingly random movement of
particles, the so called Brownian motion. In the beginning of the 20th century,
Einstein [42] established a relationship between the mean-squared displacement
of particles, characterizing the Brownian motion, and the classical diffusion coef-
ficient D in Fick’s Law, given by

< x2 >= 2Dt
�� ��2.2

where< x2 > is the mean-square displacement of the particles during a diffusion
time t, and D is the same diffusion coefficient appearing in Fick’s law 2.1. Thus,
the larger the diffusion coefficient D, the greater the distance of a particle is
expected to travel on average during the same diffusion time.

The Brownian motion can be described by the diffusion displacement prob-
ability density function (PDF), also called diffusion propagator, P (r, t), where
r = R−R0 is the net displacement of a particle, initially located at position R0,
with R being the displacement after time t. Using Fick’s law of diffusion, the
diffusion process can be approximated as:

∂

∂t
P (r, t) = D∇2P (r, t),

�� ��2.3

The solution to this equation is the propagator given by Basser et al [10], i.e. a
Gaussian PDF:

P (r, t) =
1√

(4πDt)3
exp

(−r2

4Dt

)
.

�� ��2.4
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In tissues with a fibrous structure - such as the axons in the white matter -
diffusion of water molecules occurs faster along fibers’ longer axis and slower in
the orthogonal direction. When the movement of molecules is not restricted, and
therefore equal in all directions, diffusion is described as being isotropic (figure
2.6(b)), whereas when there is a preferred direction of movement (as illustrated in
figure 2.6(a) diffusion is said to be anisotropic. Diffusion is an isotropic case can
be described by D in any direction r whereas in an anisotropic case D depends
on the direction r.

!" #" $"

b)

a)

a) b) c) d)

Figure 2.6: Within neural tissue, the movement of water molecules is hindered by the
local fibrous structure (a), whereas in the ventricles the molecules diffuse in all directions
equally (b).

2.4 Diffusion weighted imaging

Because diffusion is influenced by the geometrical structure of the environment,
diffusion weighted magnetic resonance imaging (DW-MRI) provides a unique
opportunity to non-invasively probe the structure of tissues. By capturing the
average diffusion of the water molecules within biological tissue, DW-MRI man-
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ages to describe the structure of tissues such as the white matter in the brain, or
muscle fibers.

MRI exploits the fact that the human body is mainly constituted by water mo-
lecules, and each molecule has two hydrogen protons. When the scanner ap-
plies a powerful magnetic field, the magnetic moments of some of these protons
change, aligning with the direction of the magnetic field. A radio frequency is
then briefly applied, producing an electromagnetic field, causing the flip of the
spin of the aligned protons in the body. After the field is turned off, the protons
decay to the original state and the difference in energy between the two states is
released as a radio frequency photon. These photons produce the electromagnetic
field detected by the scanner.

Additional magnetic fields are applied in order to make the field strength de-
pend on the position within the scanned subject, thus making the frequency of the
released photons dependent on the position. An image can be constructed since
the protons in different tissues return to their equilibrium state at different rates.

Stejskal and Tanner [125] in 1965, proposed an imaging sequence used to
measure the diffusion of water molecules in a given direction g. This sequence,
called pulse gradient spin echo (PGSE), illustrated in figure 2.7, applies two
gradient pulses in direction g.

RF

Signal

90 180°

δδ

∆

90°

Diffusion Gradient

RF pulse

Repetition Time (TR)

Signal Readout

Spin Echo

g

°

Figure 2.7: Scheme of the pulse gradient spin echo sequence, proposed by Stejskal and
Tanner [125], adapted from [82].

The first 90◦ pulse causes a phase shift of the spins, thus encoding their pos-
ition in function of the frequency. After time ∆ the 180◦ pulse combined with
the second gradient pulse cause the shift to be cancelled for static spins. In the
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meanwhile, some protons underwent Brownian motion, therefore the refocus will
not be perfect and the measured MRI signal will be attenuated resulting in signal
attenuation measured in T2-weighted images, i.e. diffusion weighted (DW) im-
ages. The faster the water molecules diffuse, the more dephased they will be and
the weaker the recorded signal. Assuming a Gaussian PDF, the relation between
this attenuation and the amount of diffusion can be expressed through [125]:

Sg

S0
= expγ

2G2δ2(∆−δ/3)D = exp−bD
�� ��2.5

where S0 is the signal intensity without the diffusion weighting b = 0, Sg is
the signal with the gradient g, γ is the gyromagnetic ratio, G is the strength of
the gradient pulse, δ is the duration of the pulse, ∆ is the time between the two
pulses, and D is the diffusion-coefficient. The so called b value, proposed by
Le Bihan et al. [81], which is proportional to the square of the gradient strength,
is used to characterize the level of sensitivity to diffusion. A typical value is
b = 1000 s/mm2.

2.4.1 Diffusion tensor imaging

Basser et al. [10] proposed the use of a second order symmetric positive-definite
tensor to model the diffusion properties of biological tissues. The diffusion
propagator in a homogeneous anisotropic environment can be well described by
a Gaussian PDF, establishing the DT model as follows:

P (r, t) =
1√

(4πt)3|D|
exp

(−1
4t

rTD−1r
)
,

�� ��2.6

where |D| is the determinant of tensor D.
The diffusion coefficient D is related to each direction r ∈ R3:

D = rTDr.
�� ��2.7

In this model, the scalar diffusion coefficient D is replaced by a positive semi-
definite matrix D representing diffusion, the diffusion tensor. This diffusion
tensor is a 3 × 3 symmetric positive definite matrix that characterizes diffusion
in 3D, and it is usually represented by an ellipsoid (see figure 2.8). The scalar
components of a tensor D are denoted by:

D =




Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


 .

�� ��2.8
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Since D is symmetric it only has six different values, and therefore, it has
only six unknown coefficients that we need to estimate. DTI needs at least six
DW images (Sg) and one unweighted diffusion image (S0, b = 0 s/mm2) [10],
typically called B0 image, to solve the system of equations to obtain the tensor.
The typical acquisition setting [69] consists of 20 to 60 DW images acquired with
non-collinear diffusion gradient directions and b = 1000 s/mm2 and a single B0

image.
Using a tensor representation of the diffusion and the Stejskal-Tanner equa-

tion 2.5 we obtain:
Si = S0 exp

(
−bgT

i Dgi
) �� ��2.9

where Di = gT
i Dgi is called apparent diffusion coefficient (ADC) in the direc-

tion of gi and D is a diffusion tensor.
The shape of diffusion can be easily visualized with ellipsoidal glyphs (squished

or stretched spheres). Figure 2.8 illustrates diffusion as anisotropic (cigar shaped),
as a planar shaped, but it may also be spherical, as in isotropic diffusion.

a) b) c)

3e3

1e1

1e2

Figure 2.8: The three stereotypes of Gaussian diffusion in 3D, visualized with ellipsoidal
isoprobability surface glyphs with a) isotropic, b) linear or c) planar shape. In DTI, all
diffusion shapes are spanned by an interpolation between these three types.

The DT can be decomposed, by eigenanalysis, into eigenvalues λ1 ≥ λ2 ≥
λ3 ≥ 0 and corresponding eigenvectors e1, e2, e3. The first vector gives the
principal direction of diffusion, the other two span an orthogonal plane to it and
the eigenvalues quantify the diffusivity in these directions. When λ1 � λ2, e1

is aligned with the preferred diffusion direction of the water molecules in that
voxel, and λ1 is its diffusivity (figure 2.9).

The analysis and processing of the diffusion tensor field is explained in more
detail in section 2.5.

2.4.2 Beyond DTI: high angular resolution diffusion imaging

The diffusion tensor model provides good results where, within a voxel, there is
only one fiber population, i.e. fibers are aligned along a single direction. How-
ever, when several fiber populations intersect, DT fails to identify the different
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a) b) c)
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Figure 2.9: Diffusion within a coherent arrangement of fiber bundles is represented by
a tensor whose main eigenvector e1 coincides with the orientation of the bundles. The
eigenvectors and eigenvalues define the tensor shape.

fiber directions simultaneously. This problem is due to limitations of the resol-
ution of current MRI machinery, and the protocol with limited number of direc-
tions. While the radius of an axon varies from 0.2 µm to 20 µm, the resolution of
DW images ranges from 1 mm3 to 8 mm3 in clinical settings. As a consequence,
one voxel may contain distinct fiber bundles with crossing, kissing and splaying
geometrical configurations, as illustrated in figure 2.10, which DTI inadequately
characterizes by averaging the several fiber orientations. Several studies have
been conducted aiming at quantifying the amount of multi-fiber voxels within a
brain. Alexander et al. [2] classified 5% of voxels within the brain as complex
structure (non-Gaussian). Tuch [130] showed that 2/3 of the white matter has
more complex intra-voxel structures. According to Behrens et al. [14], 1/3 of the
white matter voxels contains crossing fibers. In a more recent work, Jeurissen et
al. [63] reports 90% of the voxels, within the white matter, to have a multi-fiber
configuration - a much higher proportion than previously reported. It is clear
that in these areas we need modelling techniques able to provide higher angular
resolution.

Approaches based on high angular resolution diffusion imaging (HARDI) were
pioneered by Tuch [130]. In HARDI more sophisticated models are employed to
reconstruct more complex fiber structures and to better capture the intra-voxel
diffusion pattern. Figure 2.11 illustrates this relation between underlying fibrous
structure, and respective DTI and HARDI reconstructions. Some of the pro-
posed models include high-order tensors [102], mixture of Gaussians [64, 130],
spherical harmonic (SH) transformations [50], diffusion orientation transform
(DOT) [104], orientation distribution function (ODF) [35] using the Q-ball ima-
ging [131], and the spherical deconvolution approach [128] by estimating the
fiber orientation distribution (FOD).
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b)
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Figure 2.10: Examples of complex intra-voxel fiber configurations that cannot be re-
solved using the Gaussian diffusion model of DTI. From left to right: single fiber, cross-
ing, kissing, and splaying fibers.

It is important to note that all of the diffusion weighted MRI modelling tech-
niques model functions that reside on a sphere. For simplicity we will refer to
them as spherical distribution function (SDF). Whereas the physical meaning of
these SDFs can be different (a probability density function (PDF), iso-surface of
a PDF, ODF, FOD, etc.), in all cases they characterize the intra-voxel diffusion
process, i.e. the underlying fiber distribution within a voxel.

a) b) c)

Figure 2.11: A more complex intra-voxel structure, such as crossing fibers (a), is not
well captured by the DT model (b), whereas a HARDI model such as Qball (c) is able to
identify the two fiber populations.

The HARDI acquisition schemes typically use a higher number N of gradi-
ent directions gi (usually 60 ≤ N ≤ 200) than DTI and scans are made using
b-values of over 3000 s/mm2 [113]. These are needed to be able to capture the
more complex profiles, however as a consequence, HARDI produces, in general,
noisy diffusion patterns due to the low SNR. Another important limitation is that
HARDI acquisition schemes take too long time. In a clinical setting for instance,
imaging time is often critical, and HARDI is just not feasible. Due to the simpli-
city and post-processing speed, DTI is the most widespread DW-MRI technique.
Notwithstanding, profuse research is being done in new models that are capable
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of characterizing the diffusion propagator, but keeping DT’s simplicity.

2.5 Processing DTI

The processing and visualisation of diffusion tensor images present several chal-
lenges, given its multivalued nature and the complex interrelationships between
the different tensors. Several approaches have been proposed through the last dec-
ade, where most of them first reduce the dimensionality of the data by extracting
relevant information from the DT. The following sections present an overview of
the different processing methods, where we discuss two important characterist-
ics: the dimensionality to which the tensor is reduced; and the ability to show
local or global information, i.e. the complex inter-voxel relationships.

2.5.1 Anisotropy measures / Biomarkers

Medical researchers and practitioners are well trained in reading scalar images,
i.e. gray-level images, as an X-ray for example. The diffusion tensor is a rich
formalism able to provide a considerable amount of information. It is not sur-
prising that DTs are too complex structures to interpret and analyse. After form-
alizing DTI, Basser [9] defined a set of scalar, rotationally invariant measures to
quantify different characteristics of the DT, and therefore the underlying diffusion
characteristics. In the following, we briefly describe some of the most frequently
used scalar measures:

• Mean diffusivity (MD) is the average of the DT eigenvalues or trace. MD
is low within the white matter, whereas, for example in the ventricles, it is
high due to the unrestricted diffusion of the water molecules. This measure
of overall diffusion rate can be used to delineate the area affected by a
stroke, as demonstrated by Van Gelderen [132].

MD(D) =< D >=
λ1 + λ2 + λ3

3
=
Trace(D)

3

• Fractional anisotropy (FA) is one of the most used indices in clinical ap-
plications. This rotationally invariant, dimensionless measure, expresses
the anisotropy of the tensor ranging from 0, when the tensor is completely
isotropic, to 1, when the diffusion is bound to a single axis.

FA(D) =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

√
2(λ2

1 + λ2
2 + λ2

3)
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• Geometrical diffusion measures, linear Cl, planar Cp and spherical Cs an-
isotropy, proposed by Westin et al. [142], characterize the tensor as cigar-
shaped (Cl), disk-shaped (Cp) or spherical-shaped (Cs), as shown in figure
2.8.

Cl =
λ1 − λ2

λ1 + λ2 + λ3

Cp =
2(λ2 − λ3)
λ1 + λ2 + λ3

Cs =
3λ3

λ1 + λ2 + λ3

Chapter 4 presents an extensive analysis of the many measures defined in lit-
erature, as well as distances and similarity measures used to compare DTs.

This data can be visualised slice per slice (as in figure 2.12(b)), using volume
rendering techniques, or with common techniques used for 3D scalar fields.

Colour can be used to indicate the orientation of the underlying tensor. Apply-
ing the standard RGB colouring of the principal eigenvector e1, by mapping the
vector components to RGB, allows the delineation of basic neuroanatomic fea-
tures, as shows in figure 2.12(a). This orientational information can be combined
with other measures to better clarify differences in the tissue. The RGB map can
be weighted by anisotropy (FA) (figure 2.12(b)), to highlight white matter struc-
tures. This visualisation has nice results since main fiber tracts are aligned in the
X, Y or Z directions, thus clearly visible in red, green or blue.

2.5.2 Glyphs

As introduced in section 2.4.1, the diffusion tensor can be represented by a graph-
ical object, the tensor glyph. In the simplest form, a sphere can be deformed ac-
cording to DT’s eigenvalues and oriented along its eigenvectors. The first use of
these ellipsoids for DT glyphs, was done by Pierpaoli et al [109], where an array
of glyphs was put together, showing a 2D slice of DTI data (see figure 2.12(c)).

Many different glyph based techniques have been presented in literature. Laid-
law et al. [79], for instance, developed a method based on oil painting and brush
strokes to enhance the diffusion patterns, and used it to visualize sections of mice
spinal cords. Kindlmann [75] created a class of tensor glyphs, based on super-
quadrics, where a sphere indicates isotropic diffusion, cylinders are used for lin-
ear and planar anisotropy, and the intermediate forms of anisotropy are represen-
ted by shapes close to a box. With these glyphs, tensors’ orientations are better
depicted than with ellipsoids, specially for the more planar shapes.
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Figure 2.12: Several examples of common processing methods of a DTI dataset of a
healthy brain: (a) axial slice with RGB colouring of the principal eigenvector; (b) axial
slice with fractional anisotropy ranging from low (blue) anisotropy to high (red) aniso-
tropy; (c) DT ellipsoids; (d) DTI based tractography, with RGB colouring of the principal
eigenvector. Images realized with the developed framework DTItool.

It is important to note, that these glyph based methods, although fully repres-
enting the diffusion tensor, do not express the relationships between voxels, i.e.,
they do not expose the contextual features across the tensor field (figure 2.12(c)),
they just depict the local properties.

2.5.3 Tractography

Up to now we saw how with diffusion MRI techniques we can obtain a repres-
entation of water diffusivity per voxel of the human brain. However, as we have
seen in section 2.2, the neuron pathways that constitute the white matter are of
major interest in analysing brain’s connectivity.

Diffusion MRI constitutes a powerful non-invasive tool to analyse the structure
of the white matter within a voxel, but also to investigate the anatomy of the brain
and its connectivity. In DW-MRI based tractography, the axonal paths are estim-
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ated either by following the main direction of diffusion or by using a probabilistic
model of the diffusion. For reviews of tractography techniques refer to the works
of Mori et al. [96] and Lori et al. [84].

There are two main philosophies in tractography.
Simple deterministic, or streamline, tractography traces fiber bundles by fol-

lowing the principal direction of diffusion from point to point in the image volume
[11, 27, 68, 86, 95, 142, 144]. Figure 2.12(d) shows an example of deterministic
fiber tracking using the developed framework DTItool.

Probabilistic tractography algorithms use a probability density function to
model the uncertainty in the fiber orientation in each voxel. The algorithm runs
repeated streamline processes with orientations drawn from the model. The frac-
tion of fibers that pass through a voxel provides a connectivity index, between
two regions in the brain, reflecting fiber organization [15,56,60,83,99,105,147].
These methods are computationally expensive, and thus with less appeal for clin-
ical applications. Another drawback of this approach is the fact that any two
points in space are connected and therefore it is necessary to establish a criterion
for when points are considered not to be connected.

It often happens that in some parts of the trajectory the local diffusion profile
does not support the presence of a fiber. This can be due to noise, or the presence
of a high number of fiber populations with heterogenous orientations. A pos-
sible solution for this problem of local perturbations may be provided by global
tractography methods, optimising a global criterion for connectivity. Geodesic
fiber tracking (GT), first proposed by Parker et al. [106], interprets brain fibers as
minimal distance paths (geodesics) for a metric derived from the diffusion pro-
file. Succinctly, a distance field from a seed region is constructed. This is done
by solving a partial differential equation (PDE), the so called Eikonal equation.
Solving this equation in a heterogeneous and highly anisotropic medium, as is
the human brain, is a technically challenging problem. There have been a few
attempts at solving this problem [62,83]. A drawback of this approach is the fact
that any two points in space are connected, thus, it is necessary to define not only
start but also end points.

In these approaches, tracking is initiated from a region of interest (ROI) from
which a series of points are taken as starting point for tracing fibers. The defini-
tion of these regions, therefore, influences the obtained bundles. This is usually
done by the user, thus compromising reproducibility. The anatomical connectiv-
ity of the full brain can be extracted, however the amount of data to analyse and
visualise is such that cluttering problems must be dealt with (see figure 2.13).
Furthermore, as MRI technology progresses, higher resolution data will be avail-
able, hence this problem will get greater importance.

Many of these tractography methods are based on DT images (fields), thus
they reflect the same limitation in handling complex structures like crossing, kiss-
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Figure 2.13: Result of a full brain deterministic tractography. Using the developed frame-
work DTITool, the fiber bundles are reconstructed if FA > 0.2. Fibers are coloured with
the typical RGB mapping of the principal eigenvector. 128× 128× 60 dataset provided
by Poupon et al. [111].

ing or splaying fibers. Several authors provide tractography algorithms based on
multiple-fiber reconstruction using HARDI models [37, 105, 115, 130].

We would like to point out that the underlying physical basis of these functions
is a gross simplification of the actual complex distribution of different barriers to
diffusion, and therefore, the relationship between any estimation of fiber bundles
with the true distribution of fibers still requires a great deal of validation and
verification.

2.6 In vivo virtual dissection

Delineation and analysis of brain’s architecture has been an active area of re-
search for more than a century. As we referred to in the beginning of this chapter,
several techniques have been developed to aid in the extraction and visualisation
of this complex network of connections in the brain. These techniques were in-
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vasive and therefore inappropriate for the study of living human subjects in a clin-
ical environment. With the advent of MR imaging, specially diffusion weighted
imaging, in vivo dissection of the white matter became possible.

a) b)

c) d)

e) f)

Figure 2.14: In vivo dissection using diffusion tensor streamline tractography. Major
white matter tracts are shown dissected in accordance with anatomical knowledge: a)
corpus callosum, b) cingulum, c) corona radiata, d) fornix, e) arcuate fasciculus, f)
Inferior fronto-occipital fasciculus. Adapted from Catani et al. [21]

Catani et al. [20] conducted a remarkable study where they performed the vir-
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tual dissection of several white matter structures such as corpus callosum, super-
ior longitudinal fasciculus, cingulum, and the fornix, among others. Although no
quantitative validation was performed, they showed the reconstructions of several
known fiber bundles. The study was conducted over a DTI image acquired with a
1.5 T scanner, with typical settings: 64 gradient directions, b-value 1300 s/mm2

and with isotropic (2.5× 2.5× 2.5 mm3) resolution. The total acquisition time
was 14 min. In this DTI image, a deterministic fiber tracking algorithm was em-
ployed, in order to reconstruct the fiber bundles starting at defined regions - the
”seedpoints”. These regions were carefully set based on classical neuroanatom-
ical works. Afterwards, the obtained bundles were pruned in order to get rid of
unwanted fiber bundles.

Figure 2.14 shows some of these structures reconstructed using diffusion tensor
imaging tractography, as in Catani’s atlas [21].

Following this work, Wakana et al. [136] constructed an atlas of white matter
based on tractography, showing the reconstructions of several structures. Later
they performed a quantitative analysis showing a higher reproducibility [137].

This virtual in vivo dissection through tractography produces very interesting
results that can be used to understand brain’s function and to aid in the diagnosis
and treatment of several disorders of neurological nature. However, it obviously
requires considerable expertise knowledge in defining the proper seeding regions
to obtain the desired fiber bundles, and then pruning the results to discard un-
wanted bundles. This cumbersome, time consuming, and prone to errors process,
calls for an automatic in vivo virtual dissection methodology.

2.6.1 Clustering

Several authors proposed fiber clustering methods to automatically group indi-
vidual fiber bundles into coherent tracts. There are two main issues to deal with
when clustering fibers. First is which clustering method to use, and second how
to assess similarity between fibers.

Moberts et al. [94] presented a framework to evaluate the various clustering al-
gorithms and conducted an interesting comparative survey aiming at physician’s
quality criteria.

Several fiber clustering algorithms have been proposed. Corouge et al. [28] use
a method that propagates cluster labels from fiber to neighbour fiber, assigning
each unlabeled fiber to the cluster of its closest neighbour, if it is below a certain
threshold. Shimony et al. [122] use a fuzzy c-means algorithm where a fiber is
assigned to a cluster based on a confidence function. Zhang and Laidlaw [149]
use a hierarchical approach. It starts from initially individual clusters, and at each
stage the algorithm groups the two most similar clusters. From a hierarchical
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clustering algorithm a dendogram is constructed, and the number of resulting
clusters is defined by the parameter: at which level of the dendogram is cut.
Several authors use spectral manifold learning techniques in order to produce
a mapping from the fiber tracts to a high dimensional Euclidean space, where
regular clustering algorithms are applied [16, 100, 129]. Several approaches also
incorporate a priori knowledge of anatomical structures such as [85, 139].

A key factor in these algorithms is the choice of similarity measure between
clusters. Most fiber similarity measures are based on the Euclidean distance
between some parts of the fibers. Corouge et al. [28] defines distances based on
pairs of each point in a fiber to the closest point on the other fiber. According to
Brun et al. [16] two fibers are similar if their start and end points are near. Zhang
and Laidlaw [149] define a distance based on the average distance from any point
of the shorter fiber to the closest point on the longer fiber. More recently, Wasser-
man et al. [139] devised a framework using the inner product based on Gaussian
processes, between fibers. This metric facilitates the combination of fiber tracts,
and operations like tract membership to a bundle or bundle similarity.

Although these algorithms present interesting results in delineating white mat-
ter bundles, they involve some choices of measures and thresholds, that will affect
their outcome. Atlases can be used as priori knowledge, and thus avoiding user’s
bias, however this knowledge does not always apply. In an unhealthy brain we
do not know what to expect, and prior assumptions can lead to undesired results.
Furthermore, one key shortcoming of clustering algorithms is the fact that they
operate over derived structures - the reconstructed fiber bundles. Clustering res-
ults are thus intimately dependent on the choice of fiber tracking algorithm and
parameters.

2.6.2 Segmentation

An alternative to clustering fibers is the direct segmentation of the image into
volumetric regions. The assumption here is that tensors will belong to the same
bundle if they are similar to each other.

Several algorithms have been proposed over the past years for the segmentation
of tensor fields. Zhukov et al. [151] proposed a level-set method over a scalar
field derived from anisotropy measures. However this method fails to distinguish
between regions with same anisotropy but different direction.

Level-set methods using the full tensor information have been proposed by
Zhizhou and Vemuri [138] and Rousson et al. [118], however, these iterative
gradient descent based solutions seek a local solution and therefore are highly
sensitive to initialization and parameter settings.
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Watershed based methods, such as proposed by Rittner and Lotufo [91], are
well known by their over-segmentation results. More recent and more efficient
methods like the globally optimal graph-cuts have been applied to DTI by Welde-
selassie and Hanarneh [141], however they provide a binary partition of the data,
into one object and the background.

More recent work, such as Niethammer et al. [98], focusses on the specific
problem of segmenting a tubular structure such as the cingulum.

As previously stated, several segmentation techniques require the notion of ho-
mogeneity within a tensor field, i.e., a measure which indicates when a tensor is
considered to be similar enough to belong to the same group. Clearly, the seg-
mentation results are highly dependent on the choice of measure, independently
of the used segmentation method. So here again, the problem of how to define a
distance between DT imposes itself.

2.7 Summary

DW-MRI and tensor-based tractography have been proven capable to provide
valuable biomarkers for a wide range of applications from characterizing brain
disorders and contributing to their diagnosis, to analyse the differences on white
matter and consequences in brain function. These procedures usually involve the
virtual dissection of white matter tracts of interest. The manual isolation of these
bundles requires a great deal of neuroanatomical knowledge and can take up to
several hours of work.

The connectivity of the full brain can be extracted, however the amount of data
to visualise is such that cluttering problems must be dealt with. Furthermore, as
MRI technology progresses, higher resolution data will be available, hence this
problem will acquire greater importance.

Several clustering techniques and segmentation techniques have been intro-
duced with success in different application domains. However the automatic
identification of white matter structures remains a difficult problem. The main
problem lies in the fact that it is a task of the user to choose thresholds, similarity
measures, parameters, all depending on the particular task at hand - how is the
dataset acquired and in which bundles is he/she interested?

This thesis focuses on the development of techniques able to automatically per-
form the identification of white matter structures. To segment such structures in
a tensor field, the similarity of diffusion tensors must be assessed for partitioning
data into regions, which are homogeneous in terms of tensor characteristics. This
concept of tensor homogeneity is explored in order to achieve new methods for
segmenting, filtering and enhancing diffusion images.
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3Synthetic DW-MRI data generation for
validation purposes

”The logic of validation allows us to move between the two limits of
dogmatism and scepticism.’
Paul Ricoeur
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3.1 Overview

In this chapter, we cover some basic techniques for creating synthetic datasets
in order to validate modelling or processing techniques for DW-MRI data. Fur-
thermore, a comparison and evaluation of the similarities between the generated
synthetic, hardware phantom and real data is performed. The findings of this
work can be used as a guideline for researchers when selecting the most appro-
priate synthetic data model for evaluating their research.

3.2 Introduction

There is a wide range of utilizations of DTI and newly developed HARDI tech-
niques, from depicting the local structure of the probability density function of
the water diffusion, segmentation of white matter structures, to the regularization
schemes for the noisy local and global structures. Thorough validation of these
methods is needed to fully evaluate their value. There are two main validation
strategies: synthetic (either by software simulations or by hardware phantoms)
or independent anatomical data. In simulations and phantoms the “ground truth”
is known since it is defined upon creation of the artificial image. However, these
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datasets hold an over-simplified version of the true neuronal environment. In con-
trast, in a real image of brain’s white matter, we need to derive a “gold standard”,
which, given the nature of the data, is difficult to obtain.

In literature, two methods are most often used for generating artificial DW-
MRI data: the multi-tensor model and the Söderman and Jönsson’s model of a
restricted diffusion inside a cylinder. In this chapter we analyse these strategies
and compared them to acquired hardware phantom data and in-vivo data.

3.3 Data

3.3.1 Synthetic data generation

The purpose of the software simulations is to construct mathematical models of
the neuroanatomical environment and its DW-MRI acquisition, in order to gener-
ate a synthetic image where the underlying fiber configuration is known.

The multi-tensor model was used by, e.g., Pierpaoli et al. [110]; Alexander et
al. [2], Hess et al. [59], Tuch [130], Alexander and Barker [1] and Descoteaux
et al. [34]. Söderman and Jöhnson’s [123] model of restricted diffusion inside a
cylinder was used by, e.g., Özarslan et al. [104], Barmpoutis et al. [8], von dem
Hagen et al. [135] and others. Next, we describe both methods in detail.

3.3.1.1 Multi-tensor model

The multi-tensor model assumes that single fiber responses can be described by
a second order tensor, and that the tissue in a voxel with more than one fiber is
simply composed by a superposition of multiple second order tensors that de-
scribe the underlying probability density function under assumption of no ex-
change of molecules between the different fiber compartments.

For a given set of gradient directions gi, in our case generated by the static
repulsion algorithm [70], the corresponding signal value will be:

S(b,gi) =
n∑

k=1

pk expbg
T
i Dkgi

�� ��3.1

where b is the b-value and pk are the different weights for the diffusion tensors
Dk that compose the signal by the Stejskal-Tanner equation, introduced in chapter 2.

In this chapter, we investigate the properties of two fiber bundles crossing at
certain angle. Therefore, we set the parameters according to the different areas
of the domain we want to simulate:

• For the crossing voxels: we set the weights to be equal p1 = p2 = 0.5.
For the second order tensor Dk, we fix the eigenvalues to [λ1, λ2, λ3] =
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Figure 3.1: Illustration of two fibers crossing at angle α simulated by the multi-tensor
model.

[300, 300, 1700]× 10−6 mm2/s. We rotate the tensors such that they form
the required angle of crossing;

• For the single fiber voxels: We set n = 1, p1 = 1 and we use the same
eigenvalues for the tensor D1 as in the previous scenario;

• For the isotropic voxels: we simulate the signal by fixing the eigenvalues
to [λ1, λ2, λ3] = [700, 700, 700]× 10−6 mm2/s.

The specific choice of values for the eigenvalues is according to eigenvalues
of tensors found in anisotropic regions of human brain as reported in the work of
Descoteaux et al. [34].

3.3.1.2 Söderman and Jöhnson’s model

This model is based on the MRI signal attenuation from molecules diffusing re-
stricted inside a cylinder of radius ρ and length L, with the free diffusion coef-
ficient given by D0. For crossing fibers configurations, presence of more than
one cylinder is assumed and the resulting signal attenuation is averaged from the
independent signals within each cylinder. Multiple fiber orientations can be mod-
elled assuming that the diffusing molecules are constrained within these cylinders
with no possibility for exchange between the cylinders. The simulations from
this model employ the exact form of the MR signal attenuation from particles
diffusing inside cylindrical boundaries. Therefore it has the advantage over the
multi-tensor model that does not enforce mono-exponential decay.

The signal attenuation is given by:
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S(ρ, q, ϑ,∆) =
∞∑

n=0

∞∑

k=1

∞∑

m=0

2Knmρ
2(2πqρ)4 sin2(2ϑ)γ2

km

[(nπρ/L)2 − (2πqρ cosϑ)2]2

× [1− (−1)n cos(2πqL cosϑ)] [J ′m(2πqρ sinϑ)]2

L2
[
γ2
km − (2πqρ sinϑ)2

]2 (γ2
km −m2)

× exp

(
−
[(

γkm
ρ

)2

+
(nπ
L

)2
]
D0∆

) �� ��3.2

Where Jm is the m-th order Bessel function, γkm is the k-th solution to J ′m(γ) =
0 with the convention γ10 = 0, and Knm = δn0δm0 + 2 [(1− δn0) + (1− δm0)],
ϑ is dependent on the gradient vector gi, since it is the angle between the cylinder
and the applied diffusion gradient, and q = |q| is the magnitude of the q-space
vector q = γδgi/2π, where γ is the gyromagnetic ratio, and can be re-expressed
as: q =

√
b

4π2(∆−δ/3)
.

Söderman and Jöhnson’s model is significantly more complex and computa-
tionally expensive than the multi-tensor model. However, it models the MRI
signal decay more accurately, especially at high b-values. On the other hand, the
multi-tensor model is fast, but simply models the signal based on a second order
tensor and the assumption of mono-exponential decay.

We fix the parameters required for Söderman and Jöhnson’s’s equation, as in
the work of Özarslan et al. [104] to L = 5 mm, ρ = 5 µm, D0 = 2.02 ×
10−3 mm2/s, and truncate the series at n = 1000 and k,m = 10.

3.3.1.3 Noise simulation

For more realistic simulations, noise is added to the simulated DW-MRI signal
from equation 3.1 or equation 3.2.

This signal is considered to be the magnitude of a complex signal and the
noise is the result of Gaussian noise with standard deviation of σ = S0/ζ added
to the real and imaginary parts of the signal. That is, to each S(gi), we add a
random complex number with real and imaginary parts coming from a zero mean
Gaussian distribution G(σ) with σ = 1/ζ(S0 = 1) and take the modulus to
obtain the noisy synthetic data. A typical value is ζ = 20 so that the unweighed
signal S0 has a signal-to-noise ratio (SNR) of 20.

3.3.1.4 Synthetic data fields

For the validation of processing algorithms (i.e. filtering, enhancement of diffu-
sion profiles, noise removal and others), using both of the above described mod-
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els, we create two fiber bundles crossing under different angles. The different
fiber bundles in the volume are parametrically defined by specifying the center
line of the bundle, seen as a cylinder with a given radius r (see figure 3.2). In
each voxel of the volume, the respective fiber(s) orientation(s) is taken in order
to simulate the respective signal attenuation.

α r

Figure 3.2: Illustration of tubes crossing at angle α and radius r.

We create the crossing tubes under angles of 30◦, 50◦ and 65◦ with 72 and 120
number of gradients and b-values, SNRs and other parameters (mainly required
for Söderman and Jöhnson’s model) as in table 3.1. We used the same fiber
configurations and parameters as in the acquired hardware phantom described in
the following section.

parameters

b ( s/mm2) 1000 2000 4000
∆ ( ms) 32.44 39.18 47.18
δ ( ms) 25.34 32.08 40.08
t ( ms) 24.0 28.5 33.8

snr 15.3 13.3 11.9

Table 3.1: Parameters of our acquisition protocol.
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3.3.2 Hardware phantom

Hardware phantoms aim at constructing a physical model of the neuroanatomical
environment of different fiber populations, specially fiber crossings, in order to
generate a real DWI dataset where the underlying ground truth is known. The be-
nefits of employing hardware phantoms over the synthetic data are mainly due to
the real MRI acquisitions which include real noise without the need for additional
noise modelling.

The phantoms used in this work are constructed following a method described
by Pullens et al. [114]. A bundle of yarn strands, each consisting of 22, 10 µm
fibers, is wrapped into a shrink wrap tube. Crossing phantoms were constructed
by interdigitating 25 bundles of 400 yarns, such that they form an ’X’ shape, as in
figure 3.3. The phantom was transferred to a 0.03 g/l MnCl*4H2O solution and
shrunk by heating the solution to 95 ◦C. For resistive coil loading, 2.4g/l NaCl
was added. The setup is shown in figure 3.4, where fiber bundles of three sets of
crossings under angles of 30◦, 50◦, 65◦ are presented.

The hardware phantom data was acquired with exactly the same acquisition
parameters as the in-vivo data, and therefore presents similar noise levels. The
verisimilitude of this phantom is further increased by embedding it in a solution
that produces a T2 image similar to the real acquisition. However, due to the
high thickness of the fibers and their loose packing, the anisotropy is lower than
in biological tissue. Moreover, it is important to keep in mind that the phantoms
are still a highly over-simplified version of the brain white matter fibrous tissue.

Figure 3.3: Schematic overview of the phantom construction [114].

3.3.3 In-vivo human brain data

Several datasets were generously acquired by Alard Roebroeck, Maastricht Uni-
versity, for us to evaluate the different methods for data generation. This data has
also been used to validate the new processing algorithms addressed in this thesis.
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Figure 3.4: The setup: container with the phantoms [114].

DW-MRI acquisition was performed on a volunteer VP (25 years, female),
using a twice refocused spin-echo echo-planar imaging sequence on a Siemens
Allegra 3T scanner (Siemens, Erlangen, Germany), with FOV 208 × 208 mm
and voxel size [2.0×2.0×2.0] mm3. Informed consent was obtained prior to the
measurement. Ten horizontal slices were positioned through the body of the cor-
pus callosum and centrum semiovale. Datasets were acquired with the gradient
sampling schemes generated with static repulsion algorithm with the diffusion-
weighted volumes interleaved with zero weighted volumes every 12th scanned
diffusion gradient directions. Gradient schemes of 72 and 120 directions were
used in combination with b-values of 1000, 2000, 4000 s/mm2, and gradient
pulse duration δ, and gradient spacing ∆, given in table 3.1. In the same session,
an anatomical data set (192 slices, voxel size 1× 1× 1 mm3) was acquired using
the ADNI-MPRAGE protocol (i.e. a T1-weighted 3D anatomical scan).

3.3.4 Fiber Cup hardware phantom

The Fiber Cup diffusion phantom [112] was specially designed for the bench-
marking of tractography techniques. It was constructed as to resemble a coronal
slice of a human brain, and therefore holds different fiber tracts crossing at dif-
ferent angles. Figure 3.5 depicts this configuration.

In order to create large bundles, hydrophobic acrylic fibers with diameter of the
same order as myelinated axons were used. A polyurethane positive and negative
mould of the target bundles were manufactured in order to strongly tighten the
fibers together. Several layers of fibers were interleaved and stacked to build
the different fiber crossing configurations. The density of fibres was close to
1900 fibers/mm2.
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Since the standard DW-MRI acquisition scheme is extremely sensitive to phase
inhomogeneities, great care was taken to insure the absence of any air bubbles. A
special filling process under vacuum was devised and an ultrasound beam is used
to destroy any remaining air bubbles. The container was filled using pure water.

The DW-MRI images were acquired with a 3T Tim Trio MRI systems of
the NeuroSpin centre, equipped with a whole body gradient coil (40 mT/m,
200 T/m/s), and using a 12-channel receive only head coil, in combination with
the whole body transmit coil of the MRI system.

Two datasets were acquired at two different spatial resolutions: 3 mm isotropic
and 6 mm isotropic. The settings were as follows:

• for the 3 mm isotropic acquisition: field of view FOV = 19.2 cm, mat-
rix 64 × 64, slice thickness TH = 3 mm, repetition time TR = 5 s, 2 re-
petitions, read bandwidth RBW = 1775 Hz/pixel, partial Fourier factor
6/8, parallel reduction factor GRAPPA = 2. Three diffusion sensitizations
at b-values b = 650, 1500, 2000 s/mm2 corresponding to the echo times
TE = 77, 94, 102 ms respectively.

• for the 6 mm isotropic acquisition: field of view FOV = 38.4 cm, matrix
64 × 64, slice thickness TH = 6 mm, repetition time TR = 5 s, 1 repeti-
tion, read bandwidth RBW = 1775 Hz/pixel, partial Fourier factor 6/8,
parallel reduction factor GRAPPA = 2, . Three diffusion sensitizations
at b-values b = 650, 1500, 2650 s/mm2 corresponding to the echo times
TE = 77, 94, 102 ms respectively.

The diffusion sensitization was applied along a set of 64 orientations, uni-
formly distributed over the sphere.

This phantom provides a rich architecture of fiber tracts crossing, splaying and
also curve shaped fibers. However it presents some limitations, specially in its
artificiality. In order to increase the SNR level, the voxel size had to be too coarse
(3 and 6 mm isotropic). Furthermore, given the used fiber thickness (20pm), the
anisotropy is lower than in reality.

3.4 Analysis

3.4.1 Maxima detection

It is generally assumed that the maxima of the reconstructed profiles by the
HARDI techniques are a good estimate of the underlying fiber direction [88].
Therefore, calculating the maxima is an important step for evaluation. Since these
profiles are functions described by the SH, the maxima extraction is challenging
due to the difficulties in finding analytical solutions.
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Figure 3.5: The Fiber Cup [112] ground truth, with 16 fiber candidates highlighted with
different colours.

In our implementation, maxima detection is performed using a finite difference
algorithm on a discrete grid on the reconstruction profiles, which are basically
functions on a sphere. This grid is created by tessellating an icosahedron by a
certain order that dictates the total number of points on the spherical mesh. If
a mesh point is above the threshold and it is above all its neighbours, the mesh
point direction is kept as a maxima. This threshold avoids selecting small peaks
that may appear due to noise. In each of these regions, the local maximum is
determined, as illustrated in figure 3.6.

This method is straightforward and easy to implement, but can be inaccurate
if the tessellation order is chosen too low. A high tessellation order improves
the accuracy, but also increases the computational cost. Another drawback is the
ad-hoc selection of the threshold, that is, if the threshold is too high some of the
maxima will not be detected as illustrated in figure 3.6.

3.4.2 Data analysis

In this study we compare:

• The multi-tensor model (MT) section 3.3.1.1;

• The Söderman and Jöhnson’s model (S) section 3.3.1.2;
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t1

t2

Figure 3.6: The maxima algorithm uses a threshold to limit the region growing on the
spherical function. This leads to isolated regions from which the local maxima are ex-
tracted. With threshold t1 the 4 maxima are correctly extracted, whereas with threshold
t2 the spurious noisy peaks are incorrectly extracted.

• A hardware phantom (HW) 3.3.2;

• An in-vivo human brain dataset (H) 3.3.3.

Simulation Data: The synthetic tubes of three crossings under 30◦, 50◦, 65◦,
were analysed by defining two regions of interest (ROI) in the crossing and single
fiber areas.

Hardware phantom: The hardware phantom contains the 3 different crossing
configurations, 30◦, 50◦, 65◦ as illustrated in figure 3.4. Two ROIs were manually
defined (similar to the ROIs in the synthetic tubes), to capture the crossing voxels,
and the voxels in the bundle’s legs, i.e. in the single fiber regions.

In-vivo human brain dataset: ROIs were manually defined to capture cross-
ing voxels between the corpus callosum and the corona radiata, and also voxels
in the base of the corpus callosum as linear shaped diffusion voxels.

For the analysis we define ROIs of about 60 voxels each, in the crossing and
linear areas of the computer generated synthetic, hardware phantom and real data,
all simulated or scanned under identical conditions.
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3.4.3 Reconstruction techniques and measures

From the simulated and acquired signals, we estimate diffusion tensors (DT) and
Qballs with Laplace Beltrami smoothing with λ = 0.006 as presented in the work
of Descoteaux et al. [35]. From these reconstruction profiles, we calculate several
scalar measures on the four types of data. From the diffusion tensors we calculate
fractional anisotropy FA and mean diffusivity MD [134], Cl and Cp [143], as
well as K1, K2 and K3 [74]. From Qball we calculate generalized anisotropy
GA [103] and fractional multi-fiber index FMI [?]. We also quantify the angular
difference of the simulated linear direction and estimated main eigenvector in
the DTI analysis, as well as the angular error and the standard deviation of the
simulated and recovered crossing angles in Qball.

Additionally we give a qualitative analysis on the similarity of the profiles by
the four different types of data.

3.5 Results

3.5.1 Quantitative results

In figure 3.7 the average normalized signal values for the analysed voxels in the
different datasets in the linear and crossing part are summarized. The signal de-
cays with increasing b-value in most of the cases. Only in the hardware phantoms
the signal values start to increase at b = 4000 s/mm2, suggesting that scanning
under high b-values is not recommended for this type of data. To avoid clutter in
presenting the results, in figure 3.8 we only summarize the results of the average
values for DTI and HARDI scalar measures. For the DTI measures we use typ-
ical b-values of 1000 s/mm2 and for the HARDI measures significantly higher
b-values of 4000 s/mm2 as recent literature in HARDI suggests. Given that the
results for 72 and 120 gradient directions were essentially the same, we present
only the latter and only the datasets with 65◦ crossing fibers since qualitatively
they are the most similar to the selected region of the centrum semiovale from
the in-vivo brain data. For the HARDI measures we use 4th order of the SH
coefficients calculated from the Qball model.

The results in bold, in figure 3.8 are the ones most similar to the real data.
We observe good similarity between the real and the multi tensor (MT) model
in many of the results. The results from the Söderman and Jöhnson (S) model
become similar to the in-vivo ones at high b-values, which can be useful for the
analysis of HARDI data.
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Figure 3.7: Average signal values and standard deviation at different b-values and in
different synthetic, hardware phantom and real data configurations. We observe signal
decay with the increase of the b-values in all the datasets and in both linear and crossing
areas.

Figure 3.8: Results from DTI and HARDI measures at different b-values and in different
synthetic, hardware phantom and real data configurations.

3.5.2 Qualitative results

From the qualitative observation of the data (see figure 3.9), we conclude that
the noise in the hardware phantoms is more prominent compared to the real data.
The synthetic data however, has an underestimation of the noise.

3.6 Conclusion

In this chapter we presented an analysis of different artificial DWI phantom data-
sets compared to in-vivo brain data scanned under the same acquisition paramet-
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Figure 3.9: Qball glyphs with 4th order of SH representation for the different datasets
with acquisition parameters b = 1000 s/mm2, NG = 120.

ers. Two different gradient sampling schemes and three different b- values were
used. Furthermore, the additional errors imposed by the models for synthetic data
generation were examined. It appears that the Söderman and Jöhnson’s model im-
poses less errors compared to the multi-tensor model. However, in the analysis
of the measures derived from the DTI data, in most of the cases the multi-tensor
model exhibited similar behaviour to the in-vivo data at the same b-value. Ad-
ditionally, this model is simpler and has low computational costs. Together, it is
a good choice for software synthetic data generation for validation of DTI-based
algorithms. The qualitative results suggest that the noise level for the selected b-
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values is much lower in the Söderman and Jöhnson’s model and the multi-tensor
model than for the scanned data. In this analysis, only one specific region of
crossings in the in-vivo brain was examined and these results might vary in other
selections. Future work should address a different range of acquisition para-
meters and different selections of regions from in-vivo data. The Söderman and
Jöhnson’s model is frequently used for rat studies in high-field pre-clinical scan-
ners, which allows for a significantly shorter gradient pulse duration δ compared
to a clinical scanner. Future work should investigate this type of real data and
compare to the synthetic simulations generated by the Söderman and Jöhnson’s
model. Future work should evaluate recent methods for generating fiber crossing
phantoms out of real acquisition data, such as Caan et al. [18]. At the end of this
chapter, we would like to point out that as a common practice, throughout this
thesis, the validation procedure is as follows:

1. Initial evaluation against a dataset, synthetically generated using the MT or
the Söderman and Jöhnson’s model

2. Proof-of-concept evaluation against a hardware phantom dataset (optional)

3. Qualitative evaluation using in-vivo dataset.
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4Analysis of distance/similarity measures
for diffusion tensor imaging

”The ultimate authority must always rest with the individual’s own
reason and critical analysis.”
Dalai Lama
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4.1 Overview

Many different measures have been proposed to compute similarities and dis-
tances between diffusion tensors. These measures are commonly used for al-
gorithms such as segmentation, registration and quantitative analysis of DTI data-
sets. The results obtained from these algorithms are extremely dependent on the
chosen measure. The measures presented in literature can be of complete differ-
ent nature, and it is often difficult to predict the behaviour of a given measure for
a specific application. In this chapter, we classify and summarize the different
measures that have been presented in literature. We also present a framework to
analyse and compare the behaviour of the measures according to several selected
properties. We expect that this framework will help in the selection of a measure
for a given application and to identify when the generation of a new measure is
needed. This framework will also allow the comparison of new measures with
existing ones.

The work presented in this chapter was done in co-authorship with T.H.J.M.
Peeters [?].

4.2 Introduction

In chapter 2, we showed various ways of processing and visualizing diffusion
tensor imaging data. Several algorithms can be used to extract the white matter
fiber tracts or the fibrous structure of the heart tissue. Numerous studies try to
identify the subtleties of neurological disorders or to investigate the brain’s de-
velopment by evaluating differences across subjects. These multitude of applica-
tions and procedures usually involve the virtual dissection of white matter tracts
of interest [118,138,151] and also to register different DTI data sets [3,92,148].
It is often also necessary to derive statistical properties of diffusion tensors to
identify differences, e.g., between healthy and pathology areas [89]. In all these
methods, there is the common need to define the (dis)similarity between tensors,
i.e., to define homogeneity in a tensor field.

In segmentation and registration, similarity measures are applied to match DTs
in voxels in a certain region, and between regions of different data sets. In quant-
itative analysis or DT statistics, distance or similarity measures of DTs in neigh-
bouring voxels can be used to classify the amount of variability in a selected
voxel [109] or volume of interest. The results of these applications are highly
dependent on the choice of measure.

Alexander et al. [3] listed several measures and analysed their results for seg-
mentation. However, since then, various people have introduced new measures
for comparing DTs. These measures are of different nature and it is difficult to
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predict which measure will give better, or similar results. Numerous measures
exist, and there is a need for an overview that compares and classifies them in a
structured way. This comparison can help to support researchers in choosing an
appropriate measure, and being able to predict the behaviour of the measures for
their concrete application.

In this chapter, we provide this analysis and improve the intuition in the be-
haviour of the measures. The intrinsic characteristics of a measure are analysed
without having a specific application in mind. This allows an evaluation of the
nature of the measure in itself. It is beyond the scope of this chapter to make an
application-oriented analysis, (e.g., finding the best measure for DTI adult brain
registration). However, this chapter aims to help in making a first selection of
the possible measures that could be used for such applications by looking at the
characteristics of the problem and the characteristics of the measures. We expect
that it will also help to identify when a new measure is necessary, and compare
its behaviour with existing ones.

First, we present the notations used in this chapter. In section 4.4, we describe
the properties that will be used for the analysis of the measures. In Section 4.5, we
give an overview of existing measures from literature. In section 4.6, we explain
how we evaluate the properties of the measures and show some simple results
to illustrate our methods. Section 4.7 presents the results of the experiments.
Finally, in section 4.8, we summarize and discuss the results of this chapter.

4.3 Notation

In this chapter we often work with equations that include more than one diffusion
tensor. Therefore, we extend the previously defined notation. Diffusion tensors
are denoted by capital bold letters, for example, D,A,B ∈ Sym+

3 . Eigenvalues
of tensor D are λD

1 ≥ λD
2 ≥ λD

3 ≥ 0 and the corresponding eigenvectors are
eD

1 , e
D
2 and eD

3 . We will denote the trace (
∑3

i=1 Dii) = (
∑3

i=1 λ
D
i ) of D with

tr(D). The determinant of D will be denoted by |D|.
With measure we refer to a function m that has two tensors A, B as input, and

returns a non-negative scalar value:

m : Sym+
3 × Sym+

3 7→ R+
0 .

�� ��4.1

If a measure returns a larger value for more similar A and B, then we call the
measure a similarity measure. If it returns a larger value for less similar A and
B, we call it a distance measure. We will denote similarity measures with s and
distance measures with d.
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Figure 4.1: Ellipsoidal glyphs showing smoothly varying diffusion tensors (DTs). (a)
a DT with planar shape where the size is increased smoothly, i.e., MD increases; (b) a
DT with planar shape is rotated smoothly, until π, first around e1, then around e2 and
finally around e3; (c) a DT with elongated shape is rotated smoothly as in (b); (d) DTs
where the shape changes from elongated (L), to planar (P), to spherical (S) and back to
elongated (L).

4.4 Properties

In this section, we present a list of properties that can be evaluated for the dif-
ferent measures. Diffusion tensors can be classified by their size, orientation and
shape. We evaluate the measures according to their sensitivity to changes in these
properties. These changes are illustrated in figure 4.1. We also include as prop-
erties how robust the measures are to noise, and whether a measure is a metric or
not.

4.4.1 Size

We understand as the size of a DT the mean diffusivity MD = tr(D)/3. This
is illustrated in figure 4.1(a). We consider a measure to be size-invariant if it is
invariant to isotropic scaling, i.e., if it fulfils:

m(tA, uB) = m(A,B),
�� ��4.2

where t and u are positive scalar values.
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4.4.2 Orientation

A measure m is rotation invariant, if the value of m does not change when the
input tensors are rotated:

m(RTAR,P TBP ) = m(A,B),
�� ��4.3

whereR and P are rotation matrices. The orientation invariance can be divided in
two parts. One is whether the measure is sensitive, in general, to the difference in
orientation between tensors. Orientation changes are illustrated in figures 4.1(b)
and 4.1(c).

The other invariance, included in the previous, is invariance to image rotation.
If we define a DTI image as f : R3 7→ Sym+

3 in most of the cases we want
our measure to be invariant with respect to rigid body transformations of f (i.e.,
rotation and translation). In the case of DTI images, the image transformation
also has to be applied to the tensor. From these transformations the rotation is
the only one that affects the tensor. Being invariant to image rotation means that
we want to fulfil equation 4.3 when R = P . If the image f is transformed with
other non-orthogonal transformations (e.g., non-uniform scaling, skewing), it is
not clear how this should affect the tensor and, therefore, we do not consider this
further in this chapter.

4.4.3 Shape

The shape of a diffusion tensor can be defined as elongated, planar, spherical
(see figure 2.8) or as an interpolation between these types. The shape is given by
the ratio between the different eigenvalues. A graphical representation of inter-
polation between different tensor shapes is shown in figure 4.1(d). A measure m
is shape-invariant if the value of m(A,B) does not change when changing the
shape (i.e., the ratio between eigenvalues) of A, B, or both.

4.4.4 Robustness

Measures are never completely insensitive for noise, however, if small changes
in the input produce small changes in output, then we consider the measures to
be robust under noise. The measure m is robust under noise when:

|m(A + E1,B + E2)−m(A,B)| ≤ ε,
�� ��4.4

where ε is a very small scalar value and the components E{1, 2}ij of noise
tensors E1,E2 ∈ Sym+

3 have also very small values.
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4.4.5 Metric

A distance measure d is a semi-metric if, for two tensors A and B, it satisfies the
following conditions:

A = B ⇔ d(A,B) = 0,
�� ��4.5

d(A,B) = d(B,A).
�� ��4.6

Condition 4.5 is important because it allows us to distinguish between equal and
non-equal tensors. Condition 4.6 is necessary if we do not want the results to
depend on the order in which we deal with the DTs in a volume. If the measure
has to be a metric, it also has to fulfil:

d(A,B) ≤ d(A,C) + d(C,B).
�� ��4.7

Condition 4.7 is important in applications where, e.g., one needs to take the mean
or do interpolation between tensors [5, 108].

4.5 Measures

In this section, we present a classification of similarity and distance measures for
diffusion tensors that have been used in literature. This classification is based on
the nature of the derivation of the measure: measures based on scalar indices;
measures that make use of the angles between eigenvectors; measures based on
linear algebra; measures based on imposing the preservation of positive defin-
iteness of the tensor, i.e., Riemannian geometry; measures considering the DTs
as a representation of a probability density function; and, finally, measures that
combine different measures from the previous classes.

4.5.1 Scalar indices

Given a scalar index g : Sym+
3 7→ R+

0 , the simplest way to obtain a difference
between two DTs A and B is by using the absolute difference |g(A)− g(B)| of
the scalar index of the two tensors. There exist numerous scalar indices that can
be chosen for g. Two well-known examples are fractional anisotropy (FA) and
linear anisotropy (cl). For a selection of scalar indices, see table 4.1 and refer
to Westin et al. [143] and Vilanova et al. [134]. These indices reduce the 6D
information in a DT to a scalar value. In the computation of the scalar value, only
the eigenvalues, which are rotation invariant, are used, thus they do not depict
the directional variation of the diffusion anisotropy. The measures created from
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Name Abbrev. Equation
Mean diffusivity MD = tr(D)/3 = (λ1 + λ2 + λ3)/3

Fractional anisotropy FA =
√

(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2√
2(λ2

1+λ2
2+λ2

3)

Relative anisotropy RA =
√

(λ1−λ2)2+(λ2−λ3)2+(λ1−λ3)2√
2(λ1+λ2+λ3)

Linear anisotropy cl = (λ1 − λ2)/(λ1 + λ2 + λ3)
Planar anisotropy cp = 2(λ2 − λ3)/(λ1 + λ2 + λ3)
Isotropy cs = 3λ3/(λ1 + λ2 + λ3)
Volume ratio V R = λ1λ2λ3/MD3

Table 4.1: Scalar indices for diffusion tensors [134, 143].

scalar indices will be denoted by ds, with the short name of the index as subscript,
e.g. dsFA, dsCl , dsMD. Thus

dsFA(A,B) = |FA(A)− FA(B)|.
�� ��4.8

When using ds, most information is lost. Each DT is represented by one scalar
value, while six scalar values are needed to represent the full DT. Thus, the meas-
ures based on scalar indices can be rather limited.

More scalar indices can be derived from tensors. For example, several authors
in DTI literature recognized the benefit of tensor invariants as measures of the
diffusion tensor shape that do not require diagonalization. Kindlmann [73] used
these invariants, like the mean, variance and skewness, which are invariant to
rotation, to measure the shape gradients in tensor fields. However, using them
for constructing a distance measure will give similar results to ds and will not
solve the problem that just one aspect is being shown. Thus, we do not treat them
separately here.

4.5.2 Angular difference

Angular difference dangi , i ∈ {1, 2, 3} of the eigenvectors eD
i is often used as a

distance between tensors. It measures changes in orientation [152]:

dangi(A,B) = arccos(eA
i · eB

i ).
�� ��4.9

Using dang1 only makes sense for tensors where the diffusion is mainly linear.
If the tensors have a planar shape then dang3 can be used. For tensors with a
spherical shape, any dangi can be considered random and should not be used.
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4.5.3 Linear algebra

A class of measures deals with the diffusion tensor components as vectors ele-
ments. A typical distance measure is the Ln-norm of the component-wise differ-
ence of two vectors:

dLn(A,B) = n

√√√√
3∑

i=1

3∑

j=1

(Aij −Bij)n.
�� ��4.10

In DTI literature, the L2-norm, dL2, is most commonly used for computing a
distance measure (see Batchelor et al. [13]), therefore, we only treat dL2 in this
chapter. dL2 is the same as the Frobenius distance [152] which is computed by
dF (A,B) =

√
tr((A−B)2). One can also compute the scalar product of two

tensors by summing the products of components of the tensors [3]. The result
can be used as a similarity measure ssp:

ssp(A,B) =
3∑

i=1

3∑

j=1

AijBij .
�� ��4.11

Measures ssp and dLn treat the DTs as simple vectors and ignore the matrix
or tensor nature of them. Another class of measures use the fact that we have
matrices. Pierpaoli and Basser [109] propose to use the sum of the squared vector
dot products of the eigenvectors weighted by the product of the eigenvalues as a
tensor scalar product [66]: stsp includes the collinearity of the orientation of the
tensors weighted by their eigenvalues. The value is maximized if the tensors are
aligned.

stsp(A,B) =
3∑

i=1

3∑

j=1

λA
i λ

B
j (eA

i · eB
j )2.

�� ��4.12

where · indicates the dot product between vectors. This measure is also called
tensor dot product [12]. It is used to construct the lattice index, which we show in
section 4.5.6. Jonasson et al. [66] use the normalized tensor scalar product sntsp
in order to make it invariant to scaling of the tensors:

sntsp(A,B) =
stsp(A,B)
tr(A)tr(B)

.
�� ��4.13

Instead of applying the above mentioned measures to the tensors directly, they
can also be applied to the deviatoric of the DTs (see e.g. Alexander et al. [3]). The
deviatoric D̃ of tensor D represents the non-isotropic part of D. It expresses just
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the shape and orientation of the DT, independent of the size. It can be computed
as follows:

D̃ = D− 1
3

tr(D)I,
�� ��4.14

where I is the identity matrix. Note that D̃ is not always a positive definite tensor.
This means that it can have negative eigenvalues, and some of the measures will
also give negative values.

4.5.4 Riemannian geometry

If we constrain the matrices to positive definite matrices we get another class
of measures based on Riemannian geometry. Batchelor et al. [13] introduced a
geodesic-based distance dg that measures the distance between two tensors in the
space of positive definite tensors:

dg(A,B) = N(A−
1
2 BA−

1
2 ),

�� ��4.15

where

N(D) =

√√√√
3∑

i=1

(log(λD
i ))2.

�� ��4.16

This measures the distances along geodesics in the manifold of symmetric posit-
ive defined matrices. Pennec et al. [108] introduced a similar framework with the
same distance measure, and extended it with methods for filtering and regulariz-
ation of tensor fields. The disadvantage of this approach is that it is computation-
ally expensive.

Arsigny et al. [5] introduced a new Log-Euclidian framework. It has similar
theoretical properties as the framework by Pennec et al., but with simpler and
faster calculations. They derive the following Log-Euclididan distance measure
dLE :

dLE(A,B) =
√

tr((log(A)− log(B))2).
�� ��4.17

This measure is equivalent to the dL2 of the logarithm of the matrices. The details
of its computation and derivation can be found in Arsigny et al. [5].

4.5.5 Statistics

A diffusion tensor can be interpreted as the covariance matrix of a Gaussian dis-
tribution describing the local diffusion. Thus, a natural family of dissimilarity
measures between DTs would be the statistical divergence that measures the over-
lap of probability density functions. Given a diffusion tensor D, the displacement
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r of water molecules at time t is a random variable with the following probability
density function (PDF):

P (r|t,D) =
1√

(2π)n|2tD|
e−(rTD−1r)/(4t),

where || is the determinant and n is the dimensionality of the square matrix D.
Wang and Vemuri [138] proposed to use the square-root of the J-divergence

(symmetrized Kullback-Leibler) as a new definition of DT distance dKL:

dKL(A,B) =
1
2

√
tr(A−1B + B−1A)− 2n,

�� ��4.18

where the dimensionality n is 3 for DTs.
In probability theory, class separability can be measured by the overlap between

the corresponding PDFs. Therefore, the overlap of PDFs can also be used as
a similarity measure between tensors. The calculation of the overlap cannot
be done analytically and often approximations are being used. The Chernoff
bound [38] gives us the upper bound of the probability error, P (error), of a
Bayesian classifier for two classes, w1 and w2, given their PDFs P (w1) and
P (w2). For normal distributions we have:

P (error) ≤ P β(w1)P 1−β(w2)e−kβ,

where β is a parameter that needs to be optimized to find the Chernoff bound.
A special case is the Bhattacharyya bound where β = 1/2. This bound is never
looser than the optimal Chernoff bound and can be directly calculated. For DTs,
it becomes the following similarity measure:

sBhat(A,B) = e
− 1

2
ln
(

1
2
|A+B|/

√
|A||B|

) �� ��4.19

4.5.6 Composed

As mentioned in section 4.5.1, a scalar measure in itself can give very limited
information of the difference between DTs (e.g., FA just gives information about
the anisotropy). Usually, a measure that reflects the changes of a combination of
these properties is necessary. Therefore, several authors have tried to combine
simple measures to obtain a more complete measure. Often, the measures that
are combined have quite different natures and therefore ad-hoc normalizations
and weighting factors are needed.
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Pollari et al. [92] introduced shape-dependent similarity measures, sl, sp, ss,
which are used depending on the DT shape, linear, planar and spherical:

sl(A,B) = |eA
1 · eB

1 | = cos(dang1(A,B)),
sp(A,B) = |eA

3 · eB
3 | = cos(dang3(A,B)),

ss(A,B) = 1− |tr(A)−tr(B)|
max(tr(A),tr(B),1) ,

sT2(a, b) = 1− |ga−gb|
max(ga,gb,1)

,

where a and b are the voxels with tensors A and B. ga, gb are the grey-levels in
a, b in the T2 MRI data. Using sl, sp, ss and sT2 , Pollari et al. introduce a DT
distance measure for registration of DTI brain data sets that looks at the overlap
between diffusion shapes and weights this with the most reliable information for
that shape:

I(a, b) = ĉAl ĉ
B
l sl(A,B) + ĉAp ĉ

B
p sp(A,B)+

γ ∗ ĉAs ĉBs (ss(A,B) + sT2(a, b)) /2

�� ��4.20

where γ is 1
2 in all of their experiments because they want to give less weight

to isotropic voxels. The anisotropy measures are defined as: ĉl = λ1−λ2
λ1

, ĉp =
λ2−λ3
λ1

, ĉs = λ3
λ1

, which is a variation of the measures proposed by Westin [143]
listed in table 4.1. Because we are analyzing measures for DTs only, in section
4.7 we use a modified similarity measure spnl that disregards the sT2 term of
equation 4.20:

spnl(A,B) = ĉAl ĉ
B
l sl(A,B) + ĉAp ĉ

B
p sp(A,B)+

γ ∗ ĉAs ĉBs ss(A,B).

�� ��4.21

We also use γ = 1
2 , although a more precise analysis of the robustness of this

measure to the changes of γ would be needed.
Pierpaoli and Basser [109] introduced the lattice index as an intervoxel aniso-

tropy measure that takes the DTs in neighbouring voxels into account. For the
computation of the lattice index they defined a measure sLI that gives a similarity
between two tensors:

sLI(A,B) =
√

3√
8

√
stsp(Ã, B̃)

√
stsp(A,B)

+
3
4

stsp(Ã, B̃)√
stsp(A,A)

√
stsp(B,B)

,
�� ��4.22

with stsp as defined in equation 4.12 and Ã, B̃ as in equation 4.14. Because
stsp(Ã, B̃) can be negative, sLI can give negative or imaginary values which do
not fulfil the basic description of a measure as we defined it. Therefore, we do
not use sLI in the further analysis.



4.6. METHODS 63

(a) (b)

Figure 4.2: Size comparison plot of dsMD for tensors with planar shape. On the axes
from left to right, and from bottom to top, the size of the tensors increase while the shape
and orientation are invariant. See figure 4.1(a). (a) shows a grey-value plot; (b) shows
the height field.

4.6 Methods

For analysing the properties of the measures, we want to show the behaviour of
each measure for the different properties in a global way. So, we show the results
of each measure for sets of pairs of DTs where one property is changed. We
change each property gradually and analyse the behaviour of the measures.

In order to do this analysis, we use plots as shown in figure 4.2. The axes of
the plots have smoothly varying DTs and in the plot we show the similarity or
difference of corresponding DTs. In figure 4.2(a) the results of the measure are
shown as a grey-scale image. Figure 4.2(b) shows the same results as a height
field, which gives a more clear impression about the evolution of the measure.

Furthermore, we compared the different measures by means of the root mean
square difference (RMSD) of their normalized results. This allows us to grasp
the similarities between the measures.

4.6.1 Size

Size is simple to evaluate because it can be captured with only one scalar value
(mean diffusivityMD, see table 4.1). Figure 4.2 shows a size comparison plot for
dsMD. From left to right and bottom to top, we increase the size of the tensor by
multiplying the eigenvalues of a base tensor with linearly increasing values. The
size experiments use the an elongated tensor (with [λ1, λ2, λ3] = [1, 0.1, 0.1])
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(a) (b)

Figure 4.3: (a) Comparison plot for tensor with elongated shape rotated around e1, e2

and e3 showing dang1 . See figure 4.1(c); (b) dsFA comparison plot for tensors with
shape changing from elongated (L) to planar (P) to spherical (S) to elongated (L). See
figure 4.1(d).

which is enlarged by multiplying all components of the tensor with values from 0
to 60. This is illustrated in figure 4.1(a). It can be seen from figure 4.2 that tensors
with the same size (on the diagonal of the plot) have zero distance, and tensors
of which the sizes differ have larger distances. Some measures (e.g., dsFA) are
invariant to scaling. So this plot will not be used for those measures.

4.6.2 Orientation

For orientation, we consider the sensitivity of the measure to rotation of the
tensors, i.e. rotation around any axis. For tensors with an elongated shape, the
measure should be invariant to rotations around e1. For tensors with a planar
shape, the measure should be invariant to rotations around e3. For tensors with a
spherical shape, the measure should be invariant to any rotation. We created plots
for multiple types of tensors (representing linear, planar or spherical diffusion),
where on both axes we gradually rotate the tensor around e1 until π. Then, on
the middle part of the horizontal and vertical axes of the plots, we rotate around
e2 until π. Finally, in the top and right of the two axes we rotate around e3 until
π. The tensors on the axes of the plots are illustrated in figures 4.1(b) and 4.1(c).
Figure 4.3(a) shows results for dang1 .

The orientation experiments were done with an elongated tensor with eigen-
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values [λ1, λ2, λ3] = [1, 0.1, 0.1]. Thus, for rotation around e1, the distance does
not change. This can be seen in the image because in the lower-left part, the dis-
tances stay zero. When rotating the tensor around e2 and e3, it can be seen that
the distance between measures gradually increases for a rotation up to π/2 and
then decreases again until it is zero at π.

Furthermore, we tested the rotation invariance of the measures to the situation
when we rotate the volume. We did this by applying the same rotation to every
tensor in a set, and then computing the root mean square difference (RMSD) of
these results to the corresponding ones without rotation.

4.6.3 Shape

We consider that DTs can have elongated, planar or spherical shape or a shape
that is an interpolation of these shapes. In order to study the behaviour of the
measure under changes in shape, we start with DTs with elongated shape (λ1 �
λ2 ' λ3 with [λ1, λ2, λ3] = [5/2, 1/4, 1/4] mm2/s), and then gradually change
the shape to planar (λ1 ' λ2 � λ3 with [λ1, λ2, λ3] = [10/7, 10/7, 1/7] mm2/s),
spherical (λ1 ' λ2 ' λ3 with [λ1, λ2, λ3] = [1, 1, 1] mm2/s), and back to elong-
ated. This is illustrated in figure 4.1(d). In order to make sure that we are only
evaluating shape, we do not change the size (MD = 1) and orientation of the
tensors in the same plot. Results for dsFA are shown in figure 4.3(b). As can be
seen from the black areas in the plot which are not in the diagonal, tensors with
different shapes can have the same value for FA. This is a known property of FA.

4.6.4 Robustness

From the results of the previous methods, we can deduce whether a measure is
sensitive to small changes for one of the properties. In addition, we introduce a
small variation to the set of tensors in our experiments. To each component of the
input tensors (on both axes) for making the size, shape and orientation plots, we
add a uniformly distributed random value. Then we analyse this robustness by
computing the root mean square difference between the plots with and without
the added noise. We consider the measures robust to noise if its plots do not show
sharp changes or discontinuities, and the computed root mean square differences
are relatively small.

4.6.5 Metric

The conditions that need to be fulfilled for a measure to be a metric can be derived
from its definition. Thus, no experiments are needed in order to evaluate this
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property. However, we will summarize whether the properties in equations 4.5–
4.7 are fulfilled for each of the measures.

4.7 Experiments

In this section, we analyse and categorize behaviour of the different measures us-
ing the methods described in the previous section. The behaviour of the measures
is summarized in table 4.2.

4.7.1 Size

We can observe four different behaviours for the measures with respect to the
relation between the sizes of the tensors and the respective change in the measure
output.

In table 4.2, we list these behaviours as invariant or variant in three different
ways: proportional, multiplicative and fractional .

All scalar measures listed in table 4.1, except MD, are invariant to scaling of
one or both input tensors with a positive scalar µ. dangi , sntsp, and sLI are also
invariant to scaling.

Measures dsMD and dL2 show a behaviour as illustrated in figure 4.2. Scaling
A and B will proportionally change the outcome of dsMD and dL2. In case the
scaling factor is the same:

m(µA, µB) = (µr)×m(A,B)
�� ��4.23

where r is a scalar proportion ratio related to the measure m. This behaviour is
listed as proportional in table 4.2.

Measures ssp and stsp have behaviour as shown in figure 4.4(a). They return
bigger values as the size of the tensors is bigger:

m(µ1A, µ2B) = µ1µ2m(A,B)
�� ��4.24

As a consequence of this multiplicative behaviour, m(µA, µA) is not constant
but depends on µ, therefore there is no upper limit for the value of these measures.
We list this behaviour as mult in table 4.2.

The remaining measures are listed as frac. This means that they behave as
shown in figure 4.4(b). The relation between the output of the measure and the
ratio of the size of the two tensors is proportional, and it is invariant to equal
scaling of both tensors with scalar µ:

m(µA, µB) = m(A,B).
�� ��4.25
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(a) Linear tensors with measure stsp. (b) Planar tensors with measure dg .

Figure 4.4: Comparison plots with tensors changing size.

4.7.2 Orientation

Measure dang1 only works well for tensors with elongated shape. All scalar-
index based measures (ds) are invariant to rotation. All measures except ds and
dangi have similar behaviour under rotation, which we list as smooth. For tensors
with elongated shape, they have the same behaviour as dang1 , which is shown in
figure 4.3(a). Results for dKL for tensors with planar shape is shown in figure 4.5.
It is similar to that in figure 4.3(a). Except for dangi , all measures are invariant to
rotations if at least one of the two tensors that are being compared to has spherical
shape, i.e.:

m(S,A) = m(S, RTAR)
�� ��4.26

for spherical tensor S, and A ∈ Sym+(3), and rotation R. For tensors whose
shape is not purely elongated, planar or spherical, the resulting plots are a weighted
average of the plots of the respective tensor types. This is shown in figure 4.6 for
dLE . All measures, except dangi are invariant to rotations of both tensors, thus,
for any rotation R:

m(A,B) = m(RTAR,RTBR).
�� ��4.27

In order to refine the classification of these measures, we compared their results
by computing the root mean square difference (RMSD) between them. Meas-
ures dL2, dg, dLE , dKL and dBhat (since sBhat it is not a distance, we inverted
the result, dBhat = 1 − sBhat, before the comparison) are similar to each other
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Figure 4.5: Comparison plot of planar tensors rotated around e1, e2 and e3 for dKL. See
figure 4.1(b).

(RMSD ≈ 0). We can define another subgroup with the measures ssp, stsp and
sntsp. These measures give the same result, RMSD = 0.

4.7.3 Shape

Of the measures that we analysed, only dsMD is invariant to shape changes. The
behaviour for dsFA is shown in figure 4.3(b). We list it as non descriptive in
table 4.2 because tensors with different shape can have a distance of zero, al-
though it is meant to characterize tensor’s shape. The other ds measures show
similar behaviour where tensors that differ can have a distance of zero depending
on which anisotropy measure is used. dangi can give random values depending
on the shape of the diffusion. This measure should only be applied to tensors
that represent anisotropic diffusion. Thus, we list elongated in table 4.2. The
behaviour of dL2 is shown in figure 4.7. The diagonal is black, and the greatest
distance occurs between elongated and spherical tensors. We consider this beha-
viour as good and therefore we list ok in table 4.2.

Measures ssp, stsp and sntsp all behave similar to what is shown in figure 4.8.
These measures give a high similarity when comparing a tensor with elongated

shape to itself. However, tensors with planar or spherical shapes are less self-
similar, i.e. have a lower value for m(A,A). Thus, the similarity between a
tensor and itself depends on its shape. Because of this behaviour, we cannot con-
vert these similarity measures to distance measures which fulfil metric condition
cf. equation 4.5. We list this in table 4.2 as not self-similar (1).

The behaviour under shape changes for spnl is shown in figure 4.9. The values
on the diagonal are higher than the values next to it because tensors are self-
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Figure 4.6: Comparison plot for tensors rotated around e1, e2 and e3 for dLE . The
tensors do not have pure elongated, planar or spherical shape, but eigenvalues λ1 =
1.0, λ2 = 0.5, λ3 = 0.1.

Figure 4.7: Comparison plot of dL2 for shapes changing from elongated to planar to
spherical to elongated.
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ĉ
Bp
s
p (A

,B
)

4.21
[92]

frac
sm

ooth
notself-sim

ilar(2)
shape/orientation

no
+
γ
∗
ĉ
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Figure 4.8: Comparison plot for changing shapes for stsp.

Figure 4.9: Comparison plot for changing shapes for Spnl.
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Figure 4.10: Comparison plot for shapes changing from elongated (L) to planar (P) to
spherical (S) to elongated (L). The plot shows dKL. λ1/λ3 = 100 for tensors with “pure”
elongated and planar shape.

similar. However, the actual values on the diagonal are not all the same. Thus,
for spnl the similarity between a tensor D and itself also depends on the shape of
D. We list this in table 4.2 as not self-similar (2).

The plots for measures based on Riemannian geometry and statistics (see sec-
tions 4.5.4 and 4.5.5) show steep edges in areas where at least one of the eigen-
values is very small. This is shown for dKL in figure 4.10 where λ1/λ3 = 100 for
tensors with “pure” elongated and planar shape. This behaviour is listed as sens-
itive in table 4.2. In medical data, the chance to be exactly on the very steep part
is small because the fractions between eigenvalues are not that large. However,
it is always possible that two similar tensors are on opposite sides of this edge,
which will result in a large difference. Also, noise in medical data can change the
fractions of the eigenvalues in such a way that the tensors come closer to the steep
edges, i.e., small variations in the shape results in large variation in the measures.

4.7.4 Robustness

We repeated the experiments of the previous sections after adding noise as de-
scribed in section 4.6.4 to the input tensors. The noise consists of uniformly dis-
tributed random values ε ∈ [−0.01, 0.01], which are added independently to the
components of the tensors, and independently for each tensor. We then compare
the root mean square difference (RMSD) between the output of the normalized
plots with and without noise. The results are shown in table 4.3. The more robust
the measures are to noise, the lower the values in the table.

In table 4.2, the robustness of the measures is summarized. Some measures
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Eqn shape orientation size
dsFA 4.8 0.007 0.372 0.279
dsMD 4.8 0.316 0.332 0.002
dang1 4.9 0.409 0.006 0.338
dL2 4.10 0.005 0.013 0.002
ssp 4.11 0.009 0.024 0.002
stsp 4.12 0.009 0.024 0.002
sntsp 4.13 0.003 0.024 0.246
spnl 4.21 0.008 0.018 0.237
dg 4.15 0.012 0.044 0.007
dLE 6.3 0.012 0.042 0.007
dKL 4.18 0.013 0.056 0.007
sBhat 4.19 0.014 0.048 0.006

Table 4.3: Root mean square difference between the sets of tensors with and without
small variations.

prove to be robust within only one or two of the properties (shape, orientation
and size), i.e. they have one or two relatively low values in table 4.3. We classify
them as such. For example measure dsFA is robust to changes in shape only.
If the plots do not have steep parts, i.e. high discontinuities, thus the values in
table 4.3 are small, we consider the noise robustness of the measures to be good
for all.

Measure dL2 proves to be the most robust measure. Measure dang1 only takes
the main diffusion direction into account. If the shape of the tensor is not elong-
ated, this direction can change randomly when small changes are made to the
tensors. Thus, dang1 does not behave well under noise. From the other meas-
ures, only the shape plots for dg, dLE , dKL, and sBhat show steep edges. These
edges appear where the shapes of the tensors are very elongated or planar. Thus,
in these areas the measures are very sensitive to noise. Figure 4.11 shows this
behaviour for dKL.

4.7.5 Metric

All measures are symmetric, this can be also seen in the plots, since they are
symmetric by the diagonal.

We have converted the similarity measures into distance measures and evalu-
ate whether those distance measures can be metrics. Similarity measures with
multiplicative as size change behaviour or not self-similar as shape change be-
haviour have a similarity s(A,A) that depends on the size or shape of tensor
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Figure 4.11: Comparison plot showing the difference between the response of dKL to a
set with and without random noise. RMSD = 0.013

A. Thus they cannot directly be translated into a distance measure that always
fulfils equation 4.5. Measures ds, dangi and sntsp are invariant to one or more
of the properties of section 4.4. Thus, there are many tensors A 6= B for which
d(A,B) = 0 which invalidates metric condition 4.5.

It is clear that distance measures dL2, dg, dLE , dKL fulfil equations 4.5 and
4.6. They also fulfil the triangle inequality of equation 4.7 if the tensors A and B
are infinitesimally close [5, 108, 138]. Therefore they are metrics. Because this
is sufficient for those applications that need the distances to be a metric, we list
them as yes for the metric property in table 4.2. sBhat is a similarity measure, so
it cannot be a metric. However, it can be used to construct a metric, as is shown
by Comaniciu and Meer [25].
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4.8 Discussion

Depending on the application, different distance or similarity measures can be
used. Using the previous analysis of properties we can identify from a practical
point of view the differences and similarities between the different measures. It
turns out that the behaviour of ssp and stsp is similar, even though ssp deals with
the tensor as if it is a vector. The L2 norm distance dL2 is relatively simple, but
shows good behaviour. Also, all measures listed in sections 4.5.4 and 4.5.5 give
practically the same results. Except for sBhat, the similarity measures S cannot
easily be converted into metrics. Thus if that is a requirement for the application
those measures are ruled out. This also rules out the ds measures and dangi .
Measure dL2 can be a good measure in that case. When using measures dg, dLE ,
dKL and sBhat one has to be aware that the measures are sensitive to small shape
changes close to the degenerate cases.

Throughout a full brain, all diffusion properties vary. In order to take all prop-
erties into account when registering brains, no measure should be chosen that is
invariant to any of them. Also, if the weighting for all DTs used in the registration
must be the same, the similarity measures that list multiplicative for size or not
self-similar for shape should not be used because, even for equal DTs, the com-
puted similarities vary depending on size and shape. For interpolation of DTs
the triangle inequality condition must be satisfied, therefore only measures that
are metrics can be used. Work has been done in the comparison of the different
interpolation methods as in Arsigny et al. [5], Pennec et al. [108] and Kindlmann
et al. [76].

We created an overview of existing distance and similarity measures for match-
ing diffusion tensors and classified the measures. Such an overview, including
introduced measures, was not previously available. We evaluated the properties
of these measures and summed them up in table 4.2. When researchers want
to use a similarity or distance measure for their concrete application, they can
define which properties their measure should have to and then study the meas-
ures that fulfil their requirements. When new measures are introduced, it will be
beneficial to classify them and see for which properties they differ from already
existing measures, and how they differ. So in which sense they improve existing
measures.

This chapter aims to help in making the first selection of these measures. The
next step is to test what measure performs better in a concrete application, e.g.,
white matter segmentation. If the goal is to segment the brain using DTs, the
choice of measure depends on which properties are of importance for a given
area. For example, segmenting the thalamic nuclei requires dependency of ori-
entation for the measure used [152], while white and grey matter can be distin-
guished using the tensor shape.
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5A distance learning scheme for DTI
segmentation

”If you hold a cat by the tail you learn things you cannot learn any
other way.”
Mark Twain
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5.1 Overview

In this chapter we discuss segmentation techniques for diffusion tensor imaging
data. In particular, we partition the data into regions which are homogeneous in
terms of tensor characteristics. Various distance measures have been proposed in
literature for analysing the similarity between diffusion tensors, but selecting a
measure suitable for the task at hand is difficult and often done by trial-and-error.
In this chapter, we propose a novel approach to semi-automatically select the
similarity measure or combination of measures that better suit the data. We use
a linear combination of known distance measures, jointly capturing multiple as-
pects of tensor characteristics, for comparing DTs with the purpose of image seg-
mentation. The parameters of our adaptive distance measure are tuned for each
individual segmentation task on the basis of user-selected ROIs using the concept
of kernel target alignment (KTA). Experimental results support the validity of the
proposed method.

5.2 Introduction

As we saw in section 2.5, many applications, such as neurological disorder stud-
ies or surgical planning, involve the virtual dissection of white matter fiber tracts
(e.g., the corticospinal tract). Fiber clustering techniques can be used for this
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purpose, however, not without a caveat for its sensitivity to the underlying fiber
tracking parameters. The direct segmentation of the tensor field into volumetric
regions stands as an interesting alternative to fiber clustering to avoid this prob-
lem.

Inherent to segmentation methods is the notion of (in)homogeneity among the
tensor field, i.e. tensors that belong to the same tract will be similar to each
other. These techniques require then the notion of (dis)similarity of two DTs,
i.e. a measure that indicates when tensors are considered to be similar enough to
belong to the same region.

In chapter 4 we extensively analysed the different (dis)similarity measures and
we observed that different measures capture different tensor characteristics, and
thus the segmentation results are, clearly, dependent on the choice of measure.
This choice depends on the application at hand. Furthermore, these measures
are of different nature and sometimes lack physiological significance, afflicting
even more the problem of measure selection. Usually an ad-hoc definition of
parameter values and choice of similarity measures is used.

The contribution presented in this chapter lies in the semi automatic assess-
ment of tensor similarity based on the data and segmentation task. The resulting
measure is a suitable parametrised measure. The results of the presented method
can then be used in any segmentation algorithm where homogeneity properties
are used, e.g., region growing.

This problem of metric learning and parameter estimation has been addressed
before in the machine learning and pattern recognition literature [61,120]. We ex-
tended these methods for the particular problem of diffusion tensor segmentation.
With the proposed preprocessing distance learning algorithm, the parameters for
a region-based segmentation algorithm are inferred from the data. A seeding
region is selected (by the user) and the algorithm will segment the spatially con-
nected 3D section with the diffusion tensors that are similar to the initial chosen
region and dissimilar to the rest. The initially flexible learning scheme adapts
itself to the task at hand. This technique can be used for different (region-based)
segmentation algorithms. For illustration purposes, we present the results using
a region growing based segmentation.

5.3 Methods

The main goal of this work is to assess what distance better expresses the ho-
mogeneity characteristics of a structure defined in a tensor field, e.g., DTI of the
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Figure 5.1: Global gist of the distance/parameter learning and segmentation

white matter. We consider a linear combination of distances also as a distance.

d(A,B) =
l∑

i=1

wimi(A,B), and
l∑

i=1

wi = 1, w = (w1, ..., wl), ∀mwm ≥ 0�� ��5.1
where d is the distance resulting of l combined distancesmi, whose contributions
are defined by parameter wi. We describe the general framework in section 5.3.1.

We define a distance/parameter learning scheme, whose results are then used
to drive a region growing segmentation algorithm (see figure 5.1). This distance
learning algorithm infers the distance(s) that best discriminates a selected region
of interest (ROI) from the entire image volume represented by a random sample
of DTs. The optimal combination of distances will then be used in the segmenta-
tion algorithm and a spatially connected volume of tensors will be obtained. Then
the user will be able to further improve the process by adding additional negat-
ive ROIs, i.e. examples of tensors that are different from the target region and
provide complementary information.

Figure 5.2 shows the details of the distance learning algorithm. From the tensor
field volume data we define a labelled set S = (Di, li) of n DTs D with a label l.
The set S is defined as the union of two subsets of DTs: P , a set of representative
DTs from a user defined ROI (positive ROI), where l = +1; and N , a set of
representative DTs for the whole volume (negative ROI), where l = −1.

Distance matrices are constructed by calculating the distance between all pairs
of tensors in the set S. Each row, and column, is considered as a feature vector
with the distance from a tensor to all others in the training set. From these feature
vectors, symmetric matrices, referred to as kernel matrices (i.e. Gram matrices),
are calculated. For a uniform behaviour of the algorithm, without minding the
scale, a normalisation of the individual kernel matrices is performed. Then, with
a linear combination of the different kernel matrices, one per considered distance,
we define a new kernel matrix K with a set of unknown parameters (the weights).

Using a gradient descent based method, the weights are estimated in order to
maximize the kernel target alignment measure described in section 5.3.3. This
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Figure 5.2: Detailed scheme of the distance learning algorithm

maximum gives the best alignment between the kernel matrix K and an equally
sized label matrix, i.e. which combination of distances provides the best discrim-
ination for the considered data.

In the following, we describe the optimization of the kernel target alignment
for the distance learning. In section 5.4 results and evaluation of the distance
learning algorithm are presented.

5.3.1 Distances

Distance measures convey different aspects of a diffusion tensor. While some
capture changes in individual degrees of freedom (e.g., difference in anisotropy),
others use the full tensor information. Thus their use is sometimes redundant,
i.e. different measures describe common tensor attributes. There are measures
that use the full tensor, like Riemannian based measures, that have a mathemat-
ical nature which does not have a direct intuition of the physiological meaning.
Thus, the results are not predictable. Other measures like the ones presented by
Kindlmann et al [74] decompose tensor variations into changes in shape and ori-
entation, covered by three invariant gradients and three rotation tangents. In this
work, a tunable difference measure between two DTs is introduced. This measure
uses a weighted sum of the individual measures, however, the definition of these
weights depends on the task at hand. The method presented in this chapter would
be able to help in this definition. Notwithstanding, this measure is only good
for very small differences, since the invariant gradient and rotation tangent co-
ordinate frame are not accurately defined for a large difference between tensors.
Therefore, we do not use these measures.

In order to show the flexibility of our framework, we evaluate the following set
of different distances (chapter 4): difference of fractional anisotropy FA (dsFA),
difference of mean diffusivity MD dsMD, angular difference dang1, Frobenius
distance dL2, geometric distance dg, Log-Euclidean distance dLE and the sym-
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metrized Kullback-Leibler distance dKL.
These measures are chosen because they fulfil d(D1,D1) = 0, and are sym-

metric and positive. Other similarity measures presented in chapter 4 could be
used, however they must be converted into a distance measure, see Haasdonk et
al [55]. The distance learning algorithm does not require the distance to be a true
metric - the triangle inequality is not a prerequisite.

5.3.2 Empirical kernel matrices

The main idea of kernel methods is to map the input data (here the input data is
the distance between tensors) to a feature space provided with a dot product. The
mapped data is then dichotomized.

Let’s define a feature vector representing a single object, in our case a DTI
voxel. For a set S = P ∪ N of L objects oj , the feature vector representing oi,
fi = [d(oi, o1), ..., d(oi, oL)], is computed by evaluating a distance measure m
between oi and all other objects in S. For measure m, a kernel matrix K for a set
of L feature vectors can be regarded as a matrix of pairwise similarity, measured
by their pairwise inner-product.

As presented in Pekalska et al. [107], a kernel K can be defined as a mapping
of the feature vectors fi. The kernel matrix is then the inner-product between the
feature vectors

Kij ≡ < fi, fj > =
∑

k

d(Di,Dk)d(Dj ,Dk)
�� ��5.2

where Kij is the element in row i and column j of the kernel K.
Each element in the kernel matrix effectively depends on all tensors in the

labelled set S. The kernel has high values for similar classes, but close to 0 for
inter-class tensors. For geometric interpretation, consider that the inner product
is proportional to the angle between two vectors. Now we have a kernel matrix,
i.e. the set of all possible inner products, and it is symmetric and positive definite.

For a uniform behaviour of the algorithm, i.e. without minding the scale of
the used measures, a normalisation must be performed. We can normalise kernel
matrices in such a way that the features lie on the surface of a unit hypersphere.
This normalisation [53] can be done directly in the kernel as follows:

K̃ij =
Kij√
KiiKjj

�� ��5.3

Henceforth, a normalised kernel K̃ from a distance measurem will be referred
as Km.
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5.3.3 Alignment

Christiani et al. [29] proposed a method to assess the quality of a binary clus-
tering. This measure, referred to as kernel target alignment (KTA), depicts how
good a kernel is with respect to a given set of labelled objects (the target) with
the notion of good clustering, i.e. high similarity within clusters and low simil-
arity between clusters. This notion is captured using the Frobenius inner product
between these matrices.

The Frobenius product between two matrices V, P is defined as

< V,P >F=
∑

ij

vijpij

The alignment between two arbitrary kernels K1 and K2 is

A(K1,K2) =
< K1,K2 >F√

< K1,K1 >F< K2,K2 >F

�� ��5.4

A target matrix is constructed from the set of n tensors S. We define a vector of
labels y ∈ {−1,+1}n where 1 is the label for the positive set P , and −1 for the
negative set N . The target is then calculated using the matrix product T = yTy
and the alignment can now be expressed as

A(K,T) =
< K,T >F

n
√
< K,K >F

, since < T,T >F= n2
�� ��5.5

5.3.3.1 Linear combination of kernels

In machine learning, the problem of learning an adequate distance metric for the
input space of data from a set of similar/dissimilar objects has been addressed in
many studies in recent years like Igel et al. [61].

So far, we have a set of normalized kernels Km, one for each m measure.
However, some kernels, i.e. some measures, may be more discriminative than
others. Therefore, we introduce new weight parameters wm,m = 1, .., l, with l
as the number of distances to evaluate, associated to each measure m, and a new
kernel will be constructed from the linear combination of the individual kernels:

K(w) =
l∑

m=1

wmKm, and
l∑

m=1

wm = 1, w = (w1, ..., wl), ∀m wm ≥ 0�� ��5.6
We use the A measure defined in equation 5.5 with kernel K(w). We want

to find the weights w that maximize A(K(w),T), i.e. the w that gives the best
discrimination between P andN . If the measures are not orthogonal to each other
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and do not represent specific characteristics of the tensor, a clear interpretation of
the resulting weights cannot be given. Furthermore there is not a unique solution.
However, we still expect that the method will give a good balance of the measures
and they will give good results although we cannot associate a clear interpretation
to the measures.

5.3.4 Parameter tuning using a gradient-descent based method

The selection of weights is achieved by maximizing the alignment between the
linear combination of kernels K(w) and the target matrix T

argmaxw(A(K(w),T)) = argmaxw

(
< K(w),T >F

n
√
< K(w),K(w) >F

) �� ��5.7

Expressing K(w) as a linear combination of the individual kernels Km

argmaxwA(K(w), T ) =

<
l∑

m=0

wmKm, T >F

n

√√√√<
l∑

m=0

wmKm,
l∑

m=0

wmKm >F

�� ��5.8

For the gradient-based adaptation of the kernel weights, the partial derivatives
of the weighted kernel are computed with respect to the weights w.

Rewriting A(w) (equation 5.5) as

A(w) =
f(w)

n
√
h(w)

�� ��5.9

with

f(w) = f =< K(w),T >F=
n∑

ij

l∑

m=0

wmK
m
ij Tij

h(w) = h =< K,K >F=
n∑

ij

l∑

m=0

wmK
m
ij

l∑

m=0

wmK
m
ij

The partial derivative of the kernel alignment A with respect to the weights wm
is given by:



5.3. METHODS 85

∂A(w)
∂wm

=
2hf ′ − fh′

2nh
√
h

�� ��5.10

where

f ′ =
∂f(w)
∂wm

, h′ =
∂h(w)
∂wm

The derivative of the Frobenius product of the weighted kernel is

∂f(w)
∂wm

=
∂ < K,T >F

∂wm

=

∂ <
∑

k

wkKk,T >F

∂wm

=

∂
∑

k

wk < Kk,T >F

∂wm
= < Km,T >F

∂h(w)
∂wm

=
∂ < K,K >F

∂wm

=

∂ <
∑

k

wkKk,
∑

l

wlKl >F

∂wm

=

∂
∑

k

wk
∑

l

wl < Kk,Kl >F

∂wm

=
∑

k

∑

l

wl
∂wk
∂wm

< Kk,Kl >F +wk
∂wl
∂wm

< Kk,Kl >F

=
∑

k

∑

l

wlδ
k
m < Kk,Kl >F +wkδlm < Kk,Kl >F

=
∑

k

wk < Kk,Km >F +
∑

l

wl < Kl,Km >F

= 2
∑

k

wk < Kk,Km >F

where δij is the Kronecker delta function
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δij =
{

1, if i = j
0, if i 6= j

The following parametrization takes care of the boundaries of the weights wm,
as expressed in equation 5.6, ensuring positiveness and normalization with the
introduction of new parameters vm:

wm =
exp(vm)∑

l

exp(vl)

�� ��5.11

Taking into account this parametrization, the partial derivatives are now com-
puted with respect to the parameters vm. Using the chain rule:

∂A(v)
∂vm

=
∂A(v)
∂wm

∂wm
∂vm

=
∂A(v)
∂wm

exp(vm)
∑

l 6=m
exp(vl)

(
∑

l

exp(vl))2

�� ��5.12

With the gradient descent based method we can estimate the maximum of our
alignment function with respect to the parameters v. The weights associated to
the measures w can be easily calculated following equation 5.11.

5.3.5 Region Growing

We apply our method to region growing segmentation as a proof of concept of the
presented distance learning method. The weights w that result from the previous
distance learning method are used to define the distance that will drive the region
growing segmentation algorithm. The algorithm starts growing from the initially
selected ROI. During the growing process, the assignment of voxels is controlled
by a homogeneity predicate based on the KTA obtained distance.

One class classifier

We define a predicate based on the One Class Classifier (OCC) methodology
[126], normally used to distinguish a single class of ’normal’ data points, from
’abnormal’ ones: the outlier class. In our case, the normal class consists of all
tensors belonging to the structure of interest to be segmented, and the outlier class
consists of all the other DTs.
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We start by defining two distance sample sets: a positive setDP and a negative
set DN . DP is the pairwise distances between the DTs from the positive set P
(equation 5.13), while the negative distance set DN is defined by the distances
between the positive DT set P and the negative set N (equation 5.14).

DP = {d(A,B) | A,B ∈ P ∧A 6= B}
�� ��5.13

DN = {d(A,B) | A ∈ P ∧B ∈ N}
�� ��5.14

Once the distance sample sets are defined, two histograms HP (d) and HN (d)
are created for each distance set respectively. The optimal distance threshold t
is then estimated by minimizing the miss-classification error of both positive and
negative distances, as illustrated in figure 5.3.
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Figure 5.3: Example of the positive and negative distance histograms, for measure an-
gular distance dang , with 256 sample distances, and the estimated optimal distance
threshold.

The miss-classification error of the positive distancesRP is defined as the total
area under HP (d) above threshold t (equation 5.15), which is equal to 1 minus
the total area under HP (d) below t (equation 5.16). The miss classification error
of the negative samples RN is defined as the total area under HN (d) below t
(equation 5.17):
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RP (t) =
inf∑

i>t

HP [i]
�� ��5.15

=
t∑

i=0

1−HP [i]
�� ��5.16

RN (t) =
t∑

i=0

HN [i]
�� ��5.17

Assuming an equal cost for miss-classification of both classes, adding equation
5.16 and equation 5.17 yields total miss-classification error RT (equation 5.18).
The optimal upper distance threshold t is obtained through the minimization of
this RT .

RT (t) =
t∑

i=0

(1 +HN [i]−HP [i])
�� ��5.18

The predicate is based on a voting system. Given a candidate DT Oi, M(Oi)
is defined by the elements of P whose distance to Oi is smaller or equal to t. The
candidate is accepted if the relative amount of these distances is greater or equal
to the defined quantile α:

PR(Oi) =
{
true if 1

|P | |M(Oi)| ≥ α
false otherwise

�� ��5.19

where M(Oi) = {X | X ∈ P ∧ d(X,Oi ≤ t)}, and |P | denotes the number of
elements in the set P .

In our experiments we use a majority vote, i.e. α = 0.5.
The region growing algorithm, starting from the initially selected ROI, accepts

the spatially connected voxels, whose respective tensors satisfy the predicate PR.

5.4 Results

The synthetic image shown in figure 5.4 was designed so that the regions, despite
having distinct DTs, share some properties with other regions also. E.g., R1 has
the same anisotropy as R2 and R3. With this synthetic data, we intent to illustrate
the behaviour of the presented algorithm. To segment R1 an adequate distance
must be chosen, for example dFA would segment R1, R2 and R3 together.
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Figure 5.4: Superquadric glyphs [75] showing the five distinct regions in a 30 × 30
tensor synthetic image. DTs have λ as eigenvalues and the main eigenvector is rotated
with angle θ (in the plane of the image depicted).

Choosing a ROI in R1, and randomly sampling 45 DTs, our algorithm es-
timates wdL2

= 1.0 as the best discriminating distance. With these parameters,
the region growing algorithm successfully segments only R1. Choosing a ROI
between R1 and R2, the algorithm estimates a combination of two distances,
wdFA = 0.3 and wdang1 = 0.7. As we can reason, what discriminates these two
regions from the rest is their coherent orientation (45 degrees), distinct to R3, and
FA, distinct to R4 and R5. The distance learning algorithm took about 1 second
per example. All results were computed in a AMD Athlon 64 X2 Dual Core
Processor 4800+ 2.41 GHz, with 3GB of RAM.

Figure 5.5 shows the algorithm applied to a DTI brain dataset. Two positive
ROIs were selected within the corpus callosum. Because the random sampling of
the brain selected several DTs in the gray matter, the algorithm infers dFA as the
most suitable measure. This results in the segmentation of the white matter. In
order to improve this, a white matter masking is done by sampling of DTs with
a FA threshold, i.e., 50 DTs are used as negative examples if FA > 0.70. Then,
the algorithm estimates wdFA = 0.5 and dang1 = 0.5 as the best discriminating
combination of measures. The obtained result does not capture entirely the cor-
pus callosum, as can be seen by the commissural fibers manually clustered by
physicians. The result is not surprising since the defined region of interest does
not represent the span of DTs orientations. The distance learning algorithm took
4 seconds to compute, with 50 negative samples and 40 positive samples.

In Figure 5.6 a positive ROI was selected within the right cingulum. With 30
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Figure 5.5: Right: Fusion of the segmented corpus callosum, in a 128 × 128 × 30 DT
volume, and the commissural fibers, colored using the typical RGB mapping of the main
eigenvector. The estimated combination of distances is dFA = 0.5 and dang1 = 0.5.
Left: P1 and P2 were used as positive ROIs.

random DTs taken with anisotropy FA > 0.65, the algorithm took 3 seconds to
estimate wdang1 = 1.0 as the best measure, since the cingulum is a cylinder-like
bundle with DTs coherently aligned.

5.5 Robustness analysis

The proposed distance learning algorithm is aimed at improving the segmentation
of brain structures by semi-automatically finding the most appropriate measure
for the task. Therefore it is important to evaluate the algorithm’s robustness with
respect to the user parameters: number of negative samples; initial ROI defini-
tion. Since the acquisition of a ground-truth for DT volumes is problematic, an
objective quantitative evaluation of the segmentation quality is not possible.

For this evaluation we performed several repetitions of the algorithm with vary-
ing number of negative samples and with increasing seeding region sizes. To
evaluate the consistency of the different resulting segmentations we used the Dice
coefficient [22]. The Dice coefficient s is defined as the relative spatial overlap
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Figure 5.6: Right: Right cingulum segmented with estimated wdang1 = 1.0, in a 231
× 172 × 131 DT volume, with p (yellow) as positive ROI, as seen in the Left. The
sagittal plane, on the right, shows the FA map while the plane on the left shows the RGB
color coding of the main eigenvector (red: sagittal plane; green: transverse plane; blue:
coronal plane).

of two volumes X and Y :

s =
2|X ∩ Y |
|X|+ |Y |

�� ��5.20

The performance of the proposed distance learning algorithm is evaluated on
two different real DT volumes of the brain. The first data set has a relatively low
resolution of 128×128×30 (figure 5.7(a)), while the second data set has a higher
resolution of 231× 172× 131 (figure 5.7(b)). Prior to the segmentation, the DT
volumes were masked by a lower FA limit of 0.6, preventing the segmentation of
the gray matter.

5.5.1 Robustness to negative sample size

For different sizes of the negative DT set N , the distance learning and region
growing algorithms were executed five times with increasing number of random
negative samples. The overall robustness with respect to the random negative
DT selection is then measured as the average of the pairwise Dice coefficients
between these five segmentations.
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Figure 5.7: Sagittal cross-section of the (left) low and (right) high resolution DT volume
used for the robustness analysis of the distance learning algorithm, using RGB color
coding of the main eigenvector.
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Figure 5.8: Robustness to negative sample size for low resolution cingulum segmenta-
tion: a) average Dice coefficient versus negative sample size; b) average segmentation
size versus negative sample size; c) average weight distribution versus negative sample
size.
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Figure 5.9: Robustness to negative sample size for high resolution corona radiata seg-
mentation: a) average Dice coefficient versus negative sample size; b) average segment-
ation size versus negative sample size; c) average weight distribution versus negative
sample size.

The segmentation of the cingulum, in the low resolution dataset, using a seed-
ing region of about 20 voxels, shows a representative behaviour for the other
segmentations in the same dataset. Figure 5.8(a) shows the average pairwise
Dice coefficient, indicating the consistency of the segmentations with respect to
the negative sample size. Two general local optima can be observed; one at 20
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samples and another at 80 samples. However, figure 5.8(b) shows that the aver-
age segmentation size, using 80 negative samples approaches zero, indicating a
low quality segmentation. The average weight distribution as returned by the dis-
tance learning algorithm is shown in figure 5.8(c). A general observation was that
the distance learning algorithm returned one single dominant distance measure in
most cases. In the case of 5 negative samples, the dominant distance was dg, with
four out of five runs of the algorithm, instead of dang with only one occurrence.
The consistency of the segmentations appears to be significantly lower, when a
variation in the distance measures is observed. Generally, the optimal amount
of negative samples with respect to segmentation quality and consistency is 20.
In this case, the dominant distance measure returned by the distance learning
algorithm was dang1.

A similar behaviour can be observed in the segmentation of the corona radiata
in the high resolution dataset, where a seeding region of about 50 voxels is used.
The maximum average Dice coefficient, shown in figure 5.9(a), is achieved when
using 40 negative samples. Contrary to the observations for the low resolution
dataset, increasing the amount of negative samples does not effect the average
segmentation size significantly as shown in figure 5.9(b). Figure 5.9(c) shows
that the dominant distance weight returned by the distance learning algorithm, is
dang1 when using 40 negative samples.

5.5.2 Robustness to seeding region size

To illustrate the robustness of the segmentation methods with respect to the seed-
ing region size again the cingulum in the low resolution dataset and the corona ra-
diata for the high resolution dataset are used. All segmentations were performed
using 20 negative samples. Seeding regions with increasing size were defined,
keeping their location and homogeneity as constant as possible. Per seeding re-
gion, the distance learning and region growing algorithms were executed 5 times.
For the low resolution cingulum segmentation, figure 5.10(a) shows that the av-
erage Dice coefficient appears to stabilize at a seeding region size of 20 voxels.
Increasing the seeding region yields a slightly higher consistency for the one class
classifier based predicate.

The segmentation sizes, shown in figure 5.10(b), yield realistic values for seed-
ing region sizes of 20 and 40 voxels. Increasing the seeding region size to 80
voxels does not seem to lead to leaking of the segmented volume into other struc-
tures. For both seeding region sizes of 20 and 40 voxels, the dominant distance
measure returned by the distance learning algorithm is dang1, as shown in figure
5.10(c).

The consistency of the corona radiata segmentation in the high resolution data-
set also stabilizes at a seeding region of 20 voxels, as shown in figure 5.11(a). The
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Figure 5.10: Robustness to seeding region size for low resolution cingulum segmenta-
tion: a) average Dice coefficient versus seeding region size; b) average segmentation size
versus seeding region size; c) average weight distribution versus seeding region size.
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Figure 5.11: Robustness to seeding region size for high resolution corona radiata seg-
mentation: a) average Dice coefficient versus seeding region size; b) average segmenta-
tion size versus seeding region size; c) average weight distribution versus seeding region
size.

size of the segmentations, figure 5.11(b), again yields realistic values for seeding
regions of 20 and 40 voxels. Increasing the seeding region to 80 voxels the seg-
mentation size does not seem to lead to leaking into other structures, as expected
from the FA masking. The dominant distance measure for seeding region sizes
with most consistent segmentation results (20 and 40 voxels) is dang1 as shown
by figure 5.11(c).

Summary

Our experiments indicate that the method can be sensitive to the choice of size
of the positive and negative DT samples. In our examples stable results were
achieved with 20 samples for a low resolution dataset, and 40 samples for a higher
resolution image.
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5.6 Conclusions and future work

We proposed a novel distance learning method, based on kernel target align-
ment, for diffusion tensor imaging segmentation algorithms. As demonstrated,
the method infers the most suitable distance(s) and parameters for the selected
segmentation problem from the homogeneity/inhomogeneity characteristics of
the data.

The used measures are of different nature and capture different aspects of the
tensor data. Some measures isolate changes in individual degrees of freedom in
the tensor data (e.g., difference in anisotropy). However, other measures, e.g.,
Log-Euclidean distance, dLE , have no physiological significance and yield no
clear intuition of distance between tensors. We present a flexible learning scheme
that infers the combination of measures that better fit the data and object to be
segmented. However, the resulting similarity measure will not be necessarily
intuitive.

Furthermore the developed methods can be applied in other segmentation prob-
lems. For instance, Schultz [121] extended the use of structure tensors to diffu-
sion tensor fields by combining Kindlmann’s invariant gradients and rotation tan-
gents [74, 76]. The invariant’s weights used to define the distance measure are
set in an ad-hoc way. Our framework could help in the definition of the weights
needed to tune the segmentation, based on the specific problem at hand.

With different sizes of the positive and negative DT sample sizes, the distance
learning algorithm returned inconsistent choices of measures. A probable reason
is the fact that the distance learning algorithm optimizes the selected distance
measure such that the distances between DTs from the positive set is minimized
(intra positive class), the distance between the positive and negative DTs is max-
imized (inter classes), but also the distance between the negative DTs is minimal
(intra negative class). This can lead to erratic results since the negative DTs are
chosen randomly, and therefore can be very diverse. A possible improvement of
the algorithm is to ignore the distance between DTs from set N and it will be
addressed in future work.

In this chapter, we presented a proof of concept with synthetic data and real
data showing the potential of the presented method. A robustness study was also
performed to evaluate the quality of the results. However, doing an evaluation is
a challenging problem, starting with the definition of a good ground truth.

The present algorithm could also be extended to HARDI (high angular res-
olution diffusion imaging) approaches to diffusion. Similarly, several distances
between two spherical functions, such as DOT and Q-ball, can be defined [36,
140].
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6A Multi-resolution watershed-based
approach for the segmentation of diffusion

tensor images

”I am satisfied with the mystery of the eternity of life and with the
awareness and a glimpse of the marvelous structure of the existing
world, together with the devoted striving to comprehend a portion, be it
ever so tiny, of the Reason that manifest.”
Albert Einstein
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6.1 Overview

The analysis and visualisation of diffusion tensor images is still a challenge since
it is complex and exploratory in nature: we estimate tensors from the acquired
images, trace fiber bundles, and analyse tracts. This quickly leads to clutter prob-
lems in visualisation but also in analysis. Furthermore, as we saw in the previous
chapter 5, different tracts have different sizes, with different homogeneity char-
acteristics.

In this chapter we therefore explore the intrinsic hierarchical nature of the brain
tissue (recall chapter 2). A new framework for the multi-resolution segmentation
of DTI is proposed. Based on fast and greedy watersheds operating on a multi-
scale representation of a DTI image, a hierarchical depiction of a DTI image is
determined conveying a global-to-local view of the fibrous structure of the ana-
lysed tissue. The multi-resolution watershed transform provides a coarse to fine
partitioning of the data based on the (in)homogeneity of the gradient field. With
a transversal cross scale linking of the basins (regions), a hierarchical represent-
ation is established.

This framework allows for a simple and interactive segmentation tool where
different tracts can be segmented at different resolutions. Furthermore, it provides
a novel hierarchical way to analyse DTI data.

We also present preliminary experimental results supporting the validity of the
proposed method.
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6.2 Introduction

Through chapter 2 we discussed the hierarchical nature of the brain tissue, ran-
ging from the axons, organized in fiber bundles, and together forming coherent
fiber tracts interconnecting different regions of the cortex, with different cognit-
ive functions. This range of scales is also perceived in diffusion tensor images:
the diffusion of water molecules is represented with tensors; fiber bundles are
tracked from the tensor field; and bundles are grouped together into tracts. This
hierarchical composition of the information drives the inspection of the data to
be exploratory in essence.

Image segmentation is necessary to determine regions of interest where sub-
sequent quantitative analysis and visualisation is performed. It provides tools to
extract shape, appearance and other structural features than can then be used for
the analysis of pathologies such as Parkinson’s disease (Brunenberg et al. [17])
or, for instance, to identify the cognitive development of different types of pop-
ulation such as neonates (van Pul et al. [133]), the alterations in an aging brain
(Salat et al. [119], Catani [19]).

Scalar image segmentation has been widely studied and different algorithms
have been proposed through the years. However, DTI segmentation is still a
challenging task. Some approaches have been proposed [118, 138, 141, 151],
though, apart from the problem of defining a good distance as shown in chapter
4 and chapter 5, they often do not allow a full segmentation of the data, they
segment one object at a time, have a multitude of parameters that must be set to
achieve the desired result and have limited user interaction, preventing the added
value of clinical users’ expert knowledge in the segmentation.

In this chapter, we use a multi-scale watershed algorithm for the segmentation
of DTI structures. The driving idea behind our framework is to help the user focus
on accomplishing a given analysis task, by first presenting a simplified view of
the data, while still maintaining a global one (i.e. context).

Given an input DTI, a scale-space representation is constructed [48]. The main
motivation is that when increasing the scale, small details due to noise disappear,
while main fibrous tissue structures (having predominant orientations) can still be
reliably recovered. At each scale a watershed transform [91] is applied. Ideally,
a structure would be outlined by a single region, however, in many situations,
specially given the anisotropic nature of the involved tissues, the watersheds do
not directly resolve to the anatomical structures. By linking several regions across
scales, we infer a meaningful hierarchical representation of the data allowing
novel ways to analyse and visualise diffusion tensor fields.

The main contributions of this chapter are:
• a hierarchical representation of the diffusion tensor field, which allows for

interactive grouping, in an exploratory manner;
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• a method for linking several interest regions across scales, such that one
can infer a meaningful hierarchical representation of the data;

• a multi-resolution segmentation method, presented as a proof of concept of
the proposed framework.

The multi-resolution watershed segmentation method is presented in section
6.4. In section 6.5, experimental results are presented supporting the validity of
the methods.

6.3 Background

Different algorithms have been proposed for the segmentation of tensor fields.
Zhukov et al. [151] proposed a level-set method over a scalar field derived from
anisotropy measures. However this method fails to distinguish between regions
with the same anisotropy but different direction.

Level-set methods using the full tensor information have been proposed by
Zhizhou and Vemuri [138] and Rousson et al. [118], however, these iterative
gradient descent based solutions seek a local solution and therefore are highly
sensitive to initialization and parameter settings.

Watershed based methods, such as proposed by Rittner and Lotufo [91], are
well known by their over-segmentation results. More recent and more efficient
methods like the globally optimal graph-cuts have been applied to DTI by Welde-
selassie and Hanarneh [141], however they provide a binary partition of the data,
into one object and the background. Armstrong et al. [?] uses a livesurface ap-
proach for the segmentation of scalar volumes by establishing a 3D hierarchy of
toboganned regions. This work provides an interactive segmentation tool, how-
ever, again, partitioning the data into one object and the background.

More recent work, such as Niethammer et al. [98], focus on the specific prob-
lem of segmenting a tubular structure such as the cingulum.

The concept of scale space has been widely studied in the image analysis field
[49, 124]. An extra dimension is added to an image, representing the scale. It
derives from the observation that objects are composed of different structures
at different scales and therefore may appear different at different scales. The
attractiveness of the method lies also in the link between scale-space theory and
the biological process of vision.

Scale-space theory has been widely explored in many medical imaging prob-
lems [51]. Erik Dam and Ole Olsen’s∇V ision1 [30,31] tool, provides the multi-
scale segmentation of 3D scalar volumes, such as Computed tomography (CT)
images. A volume is partitioned in several regions and it is up to the user to

1http://www.itu.dk/image/appl/nablavision/index.html
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sculpt his desired object by selecting the appropriate ’building blocks’ in dif-
ferent scales. Although a somewhat cumbersome practice, this work has been
used in clinical setup with promising results, given the gain in speed by orders of
magnitude compared to manual segmentation.

Following the definition of a consistent multi-scale space for semi positive
definite tensors by Florack and Astola [48], we extend those multi-resolution
geometric studies to diffusion tensor fields. We present a multi-resolution seg-
mentation algorithm that operates by applying the watershed transform to the
different images in a generated DTI scale-space. The well-known watershed’s
over-segmentation, a shortcoming in most cases, is actually a core element of the
presented framework.

This fast and simple partitioning of the tensor image, applied to each level
in the scale-space, allows for the creation of the hierarchical representation of
the data. This establishes an automated, general and interactive segmentation
framework that equips the user with tools to explore and quickly segment these
complex 3D tensor images.

6.4 Multi-resolution watershed segmentation

Applications

Region
Grouping

Scale-space

scale space
imagesDTI image

Watershed

partitioned 
images

Gradient:
Log-Euclidean

Hierarchical Linking

gradient 
magnitude

Simplified Data Visualization ...

Figure 6.1: Global gist of the hierarchical segmentation.

In the following, we describe the different stages involved in the creation of a
hierarchical representation of the data, see figure 6.1 for a global gist of the pro-
cess. A scale-space stack of tensor field images is created by successively blur-
ring the acquired DTI images. To each of these images, we calculate its tensor
gradient magnitude, as a measure of homogeneity. The watershed transform is
applied, thus obtaining a partitioning of the structures at each scale. Next, the sev-
eral basins are linked to each other in a bottom-to-top manner. With this pipeline
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a hierarchical representation of the data is obtained allowing further visualisation
and interaction possibilities.

6.4.1 Scale-space representation of DTI

Florack and Astola [48] formulated a consistent scale-space representation for
symmetric positive definite tensors. This follows the work proposed by Arsigny
et al. [5] , Pennec et al. [45], and Fillard et al. [45], e.g. the so-called log-
Euclidean framework.

To a tensor D is associated a unique logarithm map Log( · ), and its unique
inverse the exponential map, Exp( · ). In practice, this framework consists in
taking the matrix logarithm of tensors (by taking the scalar logarithm of D ei-
genvalues), running computations in this vector space, and mapping the result
back to the tensor space with the matrix exponential.

The multi-scale representation for a tensor field f , at scale σ is achieved by the
blurring operator

F (f, σ) = Exp(Log(f) ∗ φσ),
�� ��6.1

where φσ is the isotropic Gaussian scale-space kernel in n dimensions, i.e.

φσ(x) =
1√

2πσ2
n exp(−1

2
‖x‖2
σ2

).
�� ��6.2

Since in a multi-scale representation all scales are equivalent, a natural way to
probe the archetype of DTI data is provided, resulting in a coarse-to-fine ap-
proach, see figure 6.2.

6.4.2 Watershed representation

The watershed method regards an image as a topological map, a landscape. As
rain falls, water gathers in pools from the lowest points in the landscape. The
landscape defines these pools, the catchment basins. As the water level rises,
dams are built to prevent the merging of the pools. These boundaries constitute
the watersheds. This concept was introduced by Maxwell (a Scottish theoret-
ical physicist and mathematician) in [87]. Often the watershed provides a simple
partitioning of the image based not on the original image, but based on a dissim-
ilarity image. The gradient magnitude is a typical, simple and general measure
defining region borders from the image edges. For this purpose we used the Log-
Euclidean gradient.
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Figure 6.2: Superquadric glyphs [75] illustrating eq. (6.1) for three exponentially in-
creasing scales σi. The synthetic DTI shows two fiber bundles crossing at a 65◦ angle.

Log-Euclidean gradient

At each scale, the Log-Euclidean gradient [5]

dLE(A,B) =
√

tr((Log(A)− Log(B))2)
�� ��6.3

is applied, hence objects are outlined with respect to the scale at which the gradi-
ent is calculated. Naturally, different object sizes require different scales.

Other dissimilarity measures for DTI watershed segmentation have been pro-
posed such as in Rittner and Lotufo [116]. However, many different distance
measures have been proposed, as mentioned in chapter 4. Which one to use is a
problem per se. For consistency with the scale-space representation of the DTI
data, we used the Log-Euclidean gradient as a common and generic dissimilarity
measure. Other measures could be tested and might be more adequate for some
problems, as investigated in chapter 5.

6.4.3 Cross-scale linking

Well-known scale-space theory [124] studies the progression of basins across
scales. Because each basin is intrinsically related to the local minimum of the
gradient magnitude, succinctly, basins can be afflicted by annihilation, creation,
merge and split events. As the scale increases, the number of catchment basins
decrease - they gradually merge into larger basins. These minima can be tracked
by a linking process, forming a singularity string, across scales. With this process,
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we combine the simplification provided by the (high level) selection scale with
the fine scale basins in the (low level) representation scale (see figure 6.3). This
method has been implemented, for clinical use, for scalar medical images with
promising results [31].

Conceptually, in an iterative process, a region in a given scale is linked to the
region at the next scale with maximum spatial overlap. From this linking process,
a hierarchical representation of the data results, where each basin is linked to
exactly one region at the next higher scale level, see also figure 6.5. This linking
tree can be used for a ”region focusing” process, where a simplified region at a
selection scale is substituted by the regions at the lower representation scale. This
selection scale determines the abstraction level that the user chooses to inspect the
data, i.e. how simplified the data is.

Figure 6.3: Region focusing across scales. Following the linking tree from the selection
scale to the representation scale, fine detail is obtained; last image shows the regions at
the selection scale represented with basins of the lower, representation scale.

The stack of scale-space images is produced by blurring the data-scale DTI
image with increasing σ. In order to obtain a sufficiently fine space, considering
its exponential nature, σ is changed per scale i

σi = σ0 exp(λi) , λi = i
− ln(∆λ)

3
,

�� ��6.4

where parameter ∆λ indicates the ratio at which the number of basins decrease,
see figure 6.4.

6.4.4 Region grouping

With a partitioned selection scale, given by applying the watershed transform to
the selected scale, a connected graphG(ni, ej) is built where: each node ni holds
the Log-Euclidean mean tensor [5], representing the corresponding basin; each
edge ej holds the Log-Euclidean distance [5] between each neighbouring basin.
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Figure 6.4: Graph plot showing the relation between increasing the scale-space parameter
σ, in red, and the (decreasing) number of basins, in dashed blue, using ∆λ = 0.5.

The average weight of all the edges within users’ selected basins (sample seeding
basins) µ is taken as predicate to a simple region growing algorithm operating
on the edges of graph G. A new, spatially connected, basin is added if the edge
connecting it to the growing region is less than the average µ×r, where r is a user
defined ratio. This algorithm quickly groups similar connected basins. These can
then be ’focussed’ to the lowest representation scale, as illustrated in figure 6.5.

6.5 Results

We start by utilizing the synthetic image described before in chapter 5, section
5.4, shown in figure 6.5. This image has five distinct regions, with different DT
populations. Despite having distinct DTs, some properties are shared between
regions but are different to others, e.g., R4 has the same anisotropy as R3 and
R5, but different main diffusivity direction to R3. With this synthetic data we
illustrate the hierarchical nature of the proposed segmentation.

The DTs in the five regions have realistic eigenvalues: λR1 = [3, 10, 10] ×
10−3 mm2/s, λR2 = [5, 5, 5] × 10−3 mm2/s, λR3 = [14, 2, 2] × 10−3 mm2/s,
λR4 = [17, 3, 3]× 10−3 mm2/s and λR5 = [17, 3, 3]× 10−3 mm2/s. In order to
mimic a real DTI acquisition, noise was added to the 128× 128 synthetic image.
From the noiseless DTs, using the inverse Stejskal and Tanner [125] relation,
the signal attenuations were obtained. To each direction value Rician noise was
added with SNR = 15.3, and the tensors re-estimated.

Figure 6.5 shows the obtained basins for the computed scale-space. We can
see the segmentation consequences of choosing appropriate selection scales and
automatically tracking down objects to the lowest representation scale. As the
selection scale decreases, we clearly see the hierarchical segmentation occurring.
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Figure 6.5: The hierarchical nature of the watershed scale-space segmentation. Different
basins are linked to the ones above. Colours indicate different regions. Red outline
indicates the original five regions.

At scale σ3 we obtain regions R4 and R5 as a unique object, since they are very
similar, whereas at scale σ2 these two regions constitute different segmentation
objects.

Figure 6.6 shows the results of the semi-automatic segmentation tool provided
by the presented watershed based method. In a 30 × 30 × 20 volume, two fiber
bundles forming ’tubes’ with radii of 2 voxels intersect each other. Here, the
tensors, with eigenvalues λ = [17, 3, 3]× 10−3 mm2/s and oriented tangentially
to the centre line of the tube, are estimated using a mixed tensor model (chapter
3, section 3.3.1.1). Rician noise is added with SNR = 15.3. In this experiment,
due to the use of an isotropic Gaussian scale-space kernel, no appropriate selec-
tion scale is found in order to achieve the desired segmentation: automatically
distinguish the two tubes. Users’ input is here necessary. An appropriate selec-
tion scale is chosen by the user, i.e. an appropriate simplification of the data is
selected. Then, in a typical visualisation such as FA map, the user interactively
picks some points in the structure of interest (see figure 6.6). These points select
the correspondent basins, at the simplified selection scale, which are then linked
down to the representation scale aggregating the corresponding voxels forming
the final segmentation.

A qualitative evaluation is performed on a real 128×64×64 DTI brain image.
Employing an isotropic Gaussian kernel in a brain dataset, as in figure 6.7, fails to
deliver an appropriate high level selection scale for the automatic segmentation
of the larger structures. Brain tissue and white matter manifest itself in DTI
images as anisotropic structures. In the isotropic scale-space these structures of
interest successively disappear. Nevertheless, the semi-automatic segmentation
still provides the desired segmentation result.

A typical user interaction follows, as illustrated in figure 6.7:

1. An appropriate selection scale is chosen, by inspection of the level of sim-
plification provided by a scale, with a view of the corresponding basins;
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Figure 6.6: Synthetic image with two crossing tubes. User’s interactive picking are rep-
resented by the white lines. Three segmentation results arise depending on the stroke
selection: crossing region, tube one or tube two.

2. In a typical main eigenvector RGB colour mapping (figure 6.7(left)), by
stroking some points in the image, seeding basins at the chosen scale are
selected (figure 6.7(middle));

3. The region grouping algorithm collects similar connected basins, which are
then ’focussed’ into the representation scale.

Figure 6.7 (right) shows two tracts segmented in two different scales: the cor-
pus callosum in red, visible in a higher scale σ4; and the cingulum in green,
visible in a lower, more detailed scale σ2.

6.6 Conclusions

In this chapter we presented a hierarchical segmentation algorithm, using wa-
tersheds, for diffusion tensor fields. In a semi automatic manner a hierarchical
representation of the data is assembled providing a new way to visualize and in-
teract with this type of data. A multitude of possibilities arise. The automatic
partitioning of the data can be used to assess statistical properties of the data.
Combined with other typical uses of DTI like fiber tracking, this can be used to
study the connectivity of the different regions of the brain. This framework is
general and can be used for other medical purposes.

6.7 Discussion

However, we are not there yet. In the following we discuss some issues for im-
provement and suggestions for future work.
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Figure 6.7: A 128×64×64 DTI brain image. The user selects points in his segmentation
task (Left), the corresponding basins in the respective Selection scale are highlighted
(Middle) and a smooth isosurface wraps the grouped similar connected regions (Right).

The use of Log-Euclidean gradient embodies the watershed segmentation with
an unclear intuition. It expresses dissimilarity between the diffusion tensors,
however its connection to the underlying tissue structure is not clear. The use
of other gradient alternatives, such as the tensorial morphological gradient [116]
allowing the use of known distance measures (chapter 4), or Schultz’s struc-
ture tensor [121] combining the intuitive Kindlmann’s [76] decomposition of the
tensor changes into six different gradients will be subject of future study.

Given the anisotropic nature of the brain tissue (as for muscle fibers), the use
of a Gaussian isotropic kernel hinders the creation of an adequate scale space,
preventing the hierarchical linking to give the desired results. However, the pro-
posed tool is versatile enough to allow the semi-automatic segmentation of the
structures of interest by combining the several building blocks. Future work will
study the use of anisotropic kernels based on the diffusion tensor at each voxel as
in Chung et al. [24] so to improve the inference of tissue archetype.

A more robust and anatomically significant improvement to the hierarchical
linking lies on the use of tensor measures, with an underlying intuition, in ad-
dition to the spatial overlap between adjacent scales, since a tract, by definition,
groups together similar DTs.

Recent research has been exploiting MRI techniques in order to obtain micro-
structural information of the brain tissue (Alexander et al. [4], Assaf et al. [6])
such as axon diameter and axon density, as to provide more specific biomark-
ers than standard indices from diffusion tensor imaging. The goal is to provide
a non-invasive live in-situ histology, replacing tissue biopsy. The incorporation
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of these indices in the presented hierarchical framework would compliment the
available information, specially at a lower scale.

The creation of a meaningful hierarchical representation of the data unravels
new visualisation and interaction possibilities and thus novel ways to study dif-
fusion tensor fields. One can use well-established techniques for graph visualiz-
ation and interaction, to directly manipulate the data. Illustrative rendering [101]
may as well be used to augment the more abstract graph visualization. Jianu et
al. [65] proposed a visual exploration paradigm to navigate through the complex
3D fiber tracts using 2D linked representations. Their results suggest that this
combination of traditional 3D model viewing with lower dimensional informa-
tion visualisation techniques can improve the exploration of the connectivity of
the brain.

The proposed hierarchical methodology is also relevant for high angular resol-
ution diffusion imaging (HARDI) given its close analytical connection to DTI.

Artificial and real data show the potential of the presented method. However,
doing a more elaborated evaluation would be necessary, and a comparison to
other methods should also be performed.
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7Accelerated diffusion operators for
enhancing DW-MRI

”The principle of generating small amounts of finite improbability by
simply hooking the logic circuits of a Bambleweeny 57 Sub-Meson
Brain to an atomic vector plotter suspended in a strong Brownian Mo-
tion producer (say a nice hot cup of tea) were of course well under-
stood.”
Douglas Adams
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7.1 Overview

As we saw in chapter 2, in particular section 2.4.2, high angular resolution diffu-
sion imaging (HARDI) is an MRI imaging technique that is better able to capture
the intra-voxel diffusion pattern than its simpler predecessor diffusion tensor ima-
ging (DTI). However, HARDI in general produces very noisy diffusion patterns
and it still exhibits limitations in areas where the diffusion pattern is asymmet-
rical (bifurcations, splaying fibers, etc.). Enhancement and denoising of the data
based on context information would help to minimize these problems. In order to
achieve it, convolutions are performed in the coupled spatial and angular domain.
However, these approaches have high computational complexity of an already
complex HARDI data processing.

In this chapter, we present an accelerated framework for HARDI data regu-
larization and enhancement. The convolution operators are optimized by pre-
calculating the kernels, analysing kernels shape and utilizing look-up-tables. We
provide an increase of speed, compared to previous brute-force approaches of
simpler kernels. These methods can be used as a preprocessing for tractography
and can lead to new ways for investigation of brain white matter.
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7.2 Introduction

In diffusion tensor imaging (DTI), the prominent local orientation of the fiber
bundles can be estimated. In DTI the local diffusivity pattern is approximated
by a 2nd-order diffusion tensor (DT). Although simple analysis is possible with
established mathematical frameworks, these DTs fail to capture more complex
fiber configurations than a single fiber bundle, such as crossings, bifurcations and
splaying configurations.

To solve this problem, as we described earlier in chapter 2, section 2.4.2, new
approaches based on high angular resolution diffusion imaging (HARDI) were
pioneered by Tuch [130]. In HARDI more sophisticated models are employed
to reconstruct more complex fiber structures and to better capture the intra-voxel
diffusion pattern.

It is important to note that all of the diffusion weighted MRI modelling tech-
niques ( [?,35,64,102,104,128,130,131]) model functions that reside on a sphere.
For simplicity we will refer to them as spherical distribution functions (SDF).
Whereas the physical meaning of these SDFs can be different (a probability dens-
ity function (PDF), iso-surface of a PDF, orientation distribution function (ODF),
fiber orientation distribution (FOD), etc.), in all cases they characterize the intra-
voxel diffusion process, i.e. the underlying fiber distribution within a voxel. Due
to the limitations in acquisition, the SDF is always antipodally symmetric and
therefore can only model single fiber tracts or symmetric fiber crossing configur-
ations. However, this can not be assumed everywhere in the white matter of the
brain, especially in structures as optic chiasm, the hippocampus, the brain stem
and others.

In HARDI, high b-values are needed to be able to capture the more complex
profiles. Therefore, HARDI produces, in general, noisy diffusion patterns due
to the low SNR. To overcome these limitations, post-processing of the data is
crucial. As commonly done in image processing, the noise can be reduced and the
data enhanced by taking into account the information in a close neighbourhood
(i.e. the context).

Previous research has been done on smoothing and regularization of DTI and
HARDI images [46, 47, 59, 72], however, these approaches do so by considering
the spatial and orientational domains separately. In these approaches diffusion
is only performed over the spherical function per voxel (i.e. the angular part).
By not considering the neighbourhood information, these methods often fail at
interesting locations with composite structure, since locally a peak in the profile
can be interpreted as noise and therefore it can be smoothed out.

In recent work the diffusion process is done by considering the full domain, i.e.
considering both spatial and orientational neighbourhood information. In Barm-
poutis et al. [8] the estimated asymmetric spherical functions, called tractosemas,
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are able to model local complex fiber structures using inter-voxel information.
Duits and Franken [39] proposed a useful framework for the cross-preserving
smoothing of HARDI images by closely modelling the stochastic processes of
water molecules (i.e. diffusion) in oriented fibrous structures. These approaches
increase the complexity of already complex and computationally heavy processing
of HARDI data. These processes require 5D convolutions, thus a great deal of
computation time.

In the work presented in this chapter, we establish a faster framework for noise
removal and enhancement of HARDI datasets. We optimize the convolution op-
erators by pre-calculating the kernels, analysing kernel’s shape and accelerating
convolution using the look-up-tables concept. Compared to previous brute-force
approaches, we provide a significant increase of speed, enabling a contextual
processing framework of HARDI data.

In Section 7.3, we start by establishing the mathematical basis on which the
HARDI convolution method lives. The accelerated convolution framework is
presented in Section 7.4. Subsequently, in section 7.5, we present experimental
results, both in artificial and real HARDI data, supporting the validity and im-
provements of the method.

7.3 Background

In this section we will provide a self-contained introduction to the convolution of
HARDI data over the joint domain of positions and orientations. Several kernels
for these convolutions will also be exemplified as illustration of the presented
method.

7.3.1 Theory

Diffusion weighted MRI modelling techniques estimate functions that reside on
a sphere, the spherical distribution functions (SDF). Therefore, a HARDI image
is a function not only on positions but also on orientations:

U : R3 o S2 → R+ : U(y, ñ(β̃, γ̃))
�� ��7.1

Meaning that at every position y ∈ R3, the probability of finding a water particle
moving in a certain direction

ñ(β̃, γ̃) = (sin β̃,− sin γ̃ cos β̃, cos γ̃ cos β̃)T ∈ S2,
�� ��7.2

is given as a positive scalar. Here, ñ(β̃, γ̃) is a point on the unit sphere paramet-
rized by β̃ ∈ [−π, π) and γ̃ ∈ [−π

2 ,
π
2 ) (see figure 7.1).
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To stress the coupling between orientation and positions we write R3 o S2

rather than R3×S2. Note that only 2 angles (β̃, γ̃) suffice, as rotation around the
directional axis α̃ is irrelevant.
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Figure 4: The two charts which together appropriately parameterize the sphere S2 ≡ SO(3)/SO(2) where the
rotation-parameters α and α̃ are free. The first chart (left-image) is the common Euler-angle parametrization (1),
the second chart is given by (4). The first chart has singularities at north and south-pole (inducing ill-defined
parametrization of the left-invariant vector fields (26) at the unity element) whereas the second chart has singular-
ities at (±1, 0, 0).

3 Tools From Group Theory
In this article we will consider convection-diffusion operators on the space of HARDI images. We shall model
the space of HARDI images by the space of quadratic integrable functions on the coupled space of positions and
orientations, i.e. L2(R3 � S2). We will first show that such operators should be left-invariant with respect to the
left-action of SE(3) onto the space of HARDI images. This left-action of SE(3) onto R3 � S2 is given by

g · (y, n) = (Ry + x, Rn), g = (x, R) ∈ SE(3), x, y ∈ R3, n ∈ S2, R ∈ SO(3)

and it induces the so-called left-regular action of the same group on the space of HARDI images similar to the
left-regular action on 3D images (for example orientation-marginals of HARDI images):

Definition 2 The left-regular actions of SE(3) onto L2(R3 � S2) respectively L2(R3) are given by

(Lg=(x,R)U)(y, n) = U(g−1 · (y, n)) = U(R−1(y− x), R−1n), x, y ∈ R3, n ∈ S2, U ∈ L2(R3 � S2),
(Ug=(x,R)f)(y) = f(R−1(y− x)) , R ∈ SO(3), x, y ∈ R3, f ∈ L2(R3).

Intuitively, Ug=(x,R) represents a rigid motion operator on images, whereas Lg=(x,R) represents a rigid motion on
HARDI images.

In order to explain the importance of left-invariance of processing HARDI images in general we need to define
the following operator.

Definition 3 We define the operator M which maps a HARDI image U : R3 � S2 → R+ to its orientation
marginalMU : R3 → R+ as follows (where σ denotes the usual surface measure on S2):

(MU)(y) =
�

S2
U(y, n)dσ(n).

If U : R3 � S2 → R+ is a probability density on positions and orientations then MU : R3 → R+ denotes the
corresponding probability density on position space only.

The marginal gives us an ordinary 3D image that is a “simplified” version of the HARDI image, containing less
information on the orientational structure. This is analogue to taking the trace of a DTI image. The following
theorem tells us that we get a Euclidean invariant operator on the marginal of HARDI images if the operator on
the HARDI image is left-invariant. This motivates our restriction to left-invariant operators, akin to our framework
of invertible orientation scores [2, 17, 18, 20–22, 25, 26].

6

Figure 7.1: The chart on the left shows the common Euler-angle parametrization of the
sphere S2, while we use the parametrization on the right using β̃ and γ̃. Note that the
first parametrization has singularities at the north and south-pole, while the second has
singularities at (±1, 0, 0), for more convenient use in eq. 7.9.

7.3.2 Convolutions

An operator U 7→ Φ(U) on an SDF should be Euclidean invariant, i.e. inde-
pendent on the choice of orthonormal coordinate system. In other words rotating
and translating HARDI input Ucorresponds to rotating and translating the output
Φ(U). If such operators, designed for smoothing and enhancement of HARDI
data, are linear then these operators can be written as a HARDI-convolution:

(Φ(U))(y,n)

=
∫

R3

∫

S2

p(RTn′(y− y′), RTn′(n))U(y′,n′) dy′ dσ(n′)

=
∫

R3

∫

S2

k(y,n; y′,n′)U(y′,n′) dy′ dσ(n′)

�� ��7.3

where

• U denotes the input HARDI dataset

• Φ(U) denotes the output HARDI dataset (obtained by applying a convolu-
tion operation to the input with p)
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• k(y,n; y′,n′) is the full kernel in the kernel operator

• p(y,n) is the convolution kernel related to k(y,n; y′,n′) by means of

p(y,n) = k(y,n; 0, ez), with ez = (0, 0, 1)T

From this moment, kernels will be noted as p(y,n), i.e. the a priori prob-
ability density of finding a fiber fragment at position y with orientation n,
(y,n), given that there is a fiber fragment at (0, ez)

• Rn is any rotation such that Rnez = n. The choice of Rn does not matter
as long as p has a symmetry with respect to rotations around ez [39, Corr.1]

• σ denotes the surface measure on the sphere.

As mentioned previously, convolutions can operate over different domains, ob-
viously with different outcomes. Next we consider the special cases of eq. 7.3.

Spatial domain filtering can be applied to each of the directions without relat-
ing the directions between each other:

(Φ(U))(y,n) =
∫

R3

q(y− y′)U(y′,n) dy′
�� ��7.4

This relates to eq. 7.3, if p is set as a product of a spatial kernel q with a delta-
spike in orientation space.

Orientational domain filtering can be applied to each voxel independently, i.e.
considering each SDF independently from each other. In this way, each voxel is
smoothed locally:

(Φ(U))(y,n) =
∫

S2

r(RTn′n)U(y,n′) dσ(n′)
�� ��7.5

Similarly, this relates to eq. 7.3 where p is a product of an angular kernel q with
a delta-spike in position space.

However, appropriate treatment of crossings and bifurcations requires regu-
larization along oriented fibers (where position and orientation are coupled) and
consequently our a priori fiber extension probabilities p : R3 oS2 → R+ should
not consist of a delta-spike in position space nor in orientation space. This means
we should not restrict ourselves to eq. 7.4 or 7.5. Next we explain how to dis-
cretize full convolutions (eq. 7.3) on positions and orientations.
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7.3.3 Discretization

For computational purposes, these functions are usually discretized. For the ori-
entation domain this is done by nearly uniform sampling on the sphere using a
method such as tessellation of an icosahedron (see figure 7.2).

In[167]:= GraphicsRow��g1, g2, g3�, ImageSize � 500�

Out[167]=

Use ListHardiPlot to  draw  a  complete  HARDI  data  set.  The  parameter  Μ is  a  scale  parameter  and
can  be  given  as  an  option  to  scale  the  size  of  the  individual  glyphs,  and  NormalizeData  is  an  option
that  specifies  wether  the  data  should  be  normalized  before  display.

Options�ListHardiPlot� � �Μ � 1, NormalizeData � True,
ViewPoint � �1.3, �2.4, 2.�, PlotLabel � "HARDI Visualization"�;

ListHardiPlot�U_, OptionsPattern��� :�
Graphics3D�MapIndexed��EdgeForm�None�, FaceForm��Lighting � "Neutral"��, Translate�

Glyph3D��1, OptionValue�Μ, If�OptionValue�NormalizeData, Max�U, 1��, �2�� &,
U, �3��, Axes � True, Ticks � None, PlotLabel � OptionValue�PlotLabel,

AxesLabel � �"x", "y", "z"�, LabelStyle � �FontFamily � "Palatino", Bold, 16�,
ViewPoint � OptionValue�ViewPoint�;

� Convolution Algorithm with Kernel Lookup Table

This  routine  can  be  used  to  convolve  a  HARDI  data  set  U  with  some  ('inverse')  kernel  p.  Use  Λ to
set  a  threshold,  which  means  that  indices  in  the  kernel  with  a  kernel  value  lower  than  Λ are  not
considered,  speeding  up  the  algorithm.

LutConvolve�U_, pcheck_, pchecksort_, Λ_� :� Module��Unew, positions, kernelsort, neededKernel,
indicesNeededKernel, indicesNeededU, kernelValues, oriId, posId�,

Unew � Array�0 &, �Dimensions�U � Append��Dimensions�pcheck��2 ;; 4� � 1, 0���;
positions � Tuples�Range��Dimensions�Unew��1 ;; 3�;
kernelsort�dumori_, Τ_� :� ��2 ;; 6� & �� Extract�pchecksort, Position�

pchecksort�Range�Position�pchecksort�All, 6�, _?�� � Τ &�, �1�, 1��1, 1� � 1���
All, 1�, _?�� � dumori &���;

Print�ProgressIndicator�Dynamic�oriId, �1, Length�orientations��;
For�oriId � 1, oriId � Length�orientations, oriId��,
neededKernel � kernelsort�oriId, Λ�;�indicesNeededKernel, kernelValues� ��neededKernel�All, 1 ;; 4�, neededKernel�All, 5��;
For�posId � 1, posId � Length�positions, posId��,
indicesNeededU � Append�positions�posId� � 1, 0� � � & �� indicesNeededKernel;
Unew�Sequence �� positions�posId�, oriId� �
Total�Extract�U, indicesNeededU� � kernelValues�;�;�;

Return�Unew;�;
A much  faster  way  for  the  colvolution  is  using  the  built-in  Mathem at ica  function.  Because  we  do
not  want  Mathem at ica  to  mirror  in  the  spatial  domain,  we  use   ListCorrelation  instead  of
ListConvolution.

4   HARDI Visualization and Convolution in Mathematica.nb

Figure 7.2: Discrete samplings of the sphere corresponding to order 1, 2 and 3 of tes-
sellation of an icosahedron, with correspondent |T1| = 12, |T2| = 42 and |T3| = 162
points.

Having a discrete lattice of SDFs (the HARDI image U), the integral over
R3 in eq. 7.3 becomes a summation over the lattice. Since, typically, a kernel
is stronger around its center (at position y), a set of voxels P can be defined
containing the lattice positions neighbour of y. Additionally, since the SDFs
are discretized over the sphere (see figure 7.2), the integral over S2 becomes a
summation over tessellation’s vectors, the set T . Using these discretizations, eq.
7.3 becomes:

Φ(U)[y,nk] =
∑

y′∈P

∑

n′∈T
qy,nk [y′,n′]U [y′,n′] ∆y′∆n′

�� ��7.6

where ∆y′ is the discrete volume measure and ∆n′ the discrete surface measure,
which in the case of (nearly) uniform sampling of the sphere can reasonably be
approximated by 4π

|T | . Kernel qy,nk is the rotated and translated correlation kernel,
such that it is aligned with (y,nk), associated with p as later explained in section
7.4.

One should notice the complexity involved in HARDI convolution. Given:

• |P |: number of points in kernel’s lattice

• |T |: number of vectors in kernel’s tessellation (and SDFs of the input
HARDI data)

The discretized convolution expressed in eq. 7.6, per voxel of the input data, has
complexity of O(|T | |P | |T |). For instance, consider the convolution with a
kernel discretized in a 3 × 3 × 3 lattice, for 2nd order tessellation (|T | = 42
directions). The discrete convolution in eq. 7.6, per voxel in the lattice of the
input HARDI image, involves 42× 27× 42 = 47628 multiplications.
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7.3.4 Tractosemas

In the work of Barmpoutis et al. [8], a field of asymmetric spherical functions,
called tractosemas, is extracted from a field of SDFs. The kernel that governs
the smoothing process is defined as a function over space and orientation, as de-
scribed before. The proposed kernel intuitively describes when a structure should
be enhanced. It is constructed as a direct product of three parts involving von
Mises (circular normal distribution) and Gaussian probability distributions :

k(y,n; y′,n′) = kdist(‖y− y′‖) · korient(n · n′) ·

kfiber

(
n

‖y−y′‖ · (−(y− y′))
)
,

�� ��7.7

where the different factors are given by

kdist(‖y− y′‖) = 1

(2πσ)
3
2
e−
‖y−y′‖2

2σ3 ,

korient(cosφ) = kfiber(cosφ) = κeκ cos(φ)

4π sinh(κ) ,

with φ ∈ (−π, π] being the angle, respectively, between the vectors n and n′ and
the angle between the vectors n and (y − y′). The two scale parameters σ and
κ control kernel’s sharpness. Figure 7.3 shows an example of the tractosemas
kernel pσ,κ : R3 o S2 → R+ given by

pσ,κ(y,n) =
1

4π
kdist(‖y‖)korient(ez · n)kfiber(−‖y‖−1n · y).

�� ��7.8

7.3.5 Diffusion Kernels

Duits et al. [39,40] proposed a kernel based on solving the diffusion equation for
HARDI images. The full derivation is out of the scope of this manuscript. This
kernel represents the Brownian motion kernel, on the coupled space R3 o S2 of
positions and orientations. This kernel satisfies the two important requirements
for a diffusion kernel:

1. left-invariant The kernel satisfies the right symmetry constraints, [39, Corr.1].
Thereby rotation and translation of the input U corresponds to rotation and
translation of the output Φ(U).

2. fulfill the semigroup property When the operator is applied iteratively,
the scales can be added. This allows us to simply add the kernels and
process once, than to process them multiple times.
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Figure 7.3: Example of the tractosemas kernel (7.8) [8]. Computed with scale parameters
σ = 1.3 and κ = 4, for orientation ez .

The diffusion equation is solved by convolution (eq. 7.3) with the Green’s func-
tion for the diffusion equation on the coupled space R3 o S2 of positions and
orientations. It describes Brownian motion on positions and orientations, where
the angular part of a random walk prescribes the tangent vector to the spatial part
of the trajectory. Next we present the close analytic approximation of the Green’s
function as discussed in [39]. This approximation is a product of two 2D kernels
on the coupled space p2D : R2 o S1 → R+ of 2D-positions and orientations:

pD33,D44,t
3D ((x, y, z)T , ñ(β̃, γ̃)) ≈
N(D33, D44, t) · pD33,D44,t

2D ((z/2, x), β̃) ·

pD33,D44,t
2D ((z/2,−y), γ̃) ,

�� ��7.9

we recall eq. 7.1 and eq. 7.2, where y = (x, y, z)T , and where

N(D33, D44, t) ≈
8√
2

√
πt
√
tD33

√
D33D44
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ensures that the total integral over positions and orientations is 1. The 2D kernel
is given by:

pD33,D44,t
2D (x, y, θ) ≡ 1

32πt2c4D44D33
e−
√

EN((x,y),θ)

4c2t

�� ��7.10

where we use short notation

EN((x, y), θ) =
(

θ2

D44
+ ( θy2 + θ/2

tan(θ/2) x)
2

D33

)2

+ 1
D44D33

(
−xθ

2 + θ/2
tan(θ/2) y

)2

where one can use the estimate θ/2
tan(θ/2) ≈

cos(θ/2)
1−(θ2/24)

for |θ| < π
10 to avoid nu-

merical errors. c is a positive constant for rescaling the diffusion time t.
The diffusion parametersD33 andD44 and stopping time t allow the adaptation

of the kernels to different purposes:

1. t > 0 determines the overall size of the kernel, i.e. how relevant the neigh-
bourhood is

2. D33 > 0, the diffusion along the principal axis, determines how wide the
kernel is

3. D44 > 0 determines the angular diffusion, so the quotient D44/D33, mod-
els the bending of the fibers along which diffusion takes place

7.4 Accelerated convolution

A convolution in the full HARDI domain, as addressed in section 7.3.2, is a com-
plex task, dependent on the number of points in the kernel’s lattice and number
of vectors in the tessellation of the sphere, the same for both kernel and the input
SDF. Applying these operations in a real dataset and for smoother (higher) orders
of tessellation quickly escalates into a time consuming process.

How can this process be accelerated?

• Pre-computing - One immediate optimization is to pre-calculate and store
the kernel for every direction nk, instead of calculating on-the-fly the re-
spective kernel qy,nk per position y and direction nk. This is allowed, as
the kernels are not adaptive to the data, i.e. they do not change depending
on each voxel.
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Figure 7.4: Diffusion kernel proposed in [39] computed with parameters D33 = 1.0,
D44 = 0.04 and t = 1.4, for principal axis orientation ez .

• Truncation - As we can see in figure 7.5, these kernels typically exhibit an
interesting characteristic: the probability of diffusion is larger at the loca-
tions around the starting direction ez , and quite small at locations further
from it depending on the values of the parameters D33 and D44. We trun-
cate the kernel such that only the meaningful directions are considered in
the convolution.

Next, we explain the details of these procedures.

7.4.1 Pre-computing

Recall that in convolutions one shifts over a dummy variable y′ whereas in cor-
relations one shifts over the outcome variable y. Consequently, convolutions with
k(x) are the same as correlations with ǩ(x) = k(−x). Next we apply the same
idea to convolutions on HARDI.

The check convolution kernel p̌ : R3 o S2 → R+ is basically the correlation
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kernel related to the convolution kernel p : R3 o S2 → R+:

p(y,n) = k(y,n; 0, ez) whereas
p̌(y,n) = k(0, ez; y,n)

where we recall from eq. 7.3 that

k(y,n; y′,n′) = p(RTn′(y− y′), RTn′n).

To align the correlation kernel with each position y and orientation nk, we define
the pre-computed aligned check kernel q as:

qy,nk(y′,n′) = p̌(RTnk(y′ − y), RTnkn′) ,

which we use in our discrete convolution scheme, eq. 7.6, where we stress that

p(RTn′(y− y′), RTn′nk) = p̌(R−1
nk (y′ − y), R−1

nk n′).

which explains why we must use qy,nk rather than the original kernel p in eq. 7.6.
In this step, we compute the set

K(y,nk) = {qy,nk(y′,n′) : y′ ∈ P, n′ ∈ T}
�� ��7.11

nk ∈ T , where T are the orientations in the tessellation and P is the kernel’s
lattice.

7.4.2 Truncation

For all positions in the pre-computed kernel set K(nk) we truncate the kernel
where the probability of diffusion is small enough (here ”small enough” is defined
by a user chosen threshold ε). The new truncated kernel set is then:

Kε(y,nk) = {(y′,n′, qy,nk(y′,n′)) | qy,nk(y′,n′) > ε}
�� ��7.12

containing the orientations with the largest probabilities. One could simply it-
erate through all directions and verify the above condition 7.12. Another option
would be to set all directions that do not satisfy the condition to zero, and then
simply convolve with all directions. These options would then imply unneces-
sary iterations. To improve the truncation scheme, the probabilities are sorted,
thus ensuring that only the directions corresponding to the larger probabilities
are iterated. Since only a subset of all directions n′ ∈ T is used, some book-
keeping is required in order to keep track of which directions should be iterated,
making sure that the kernel and the input HARDI data U indices match.
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Figure 7.5: Sample discretized kernel qy,nk(y′,n′), for nk = (0, 0, 1), y′ ∈ P (0) =
{(−1, 0, 0), (0, 0, 0), (1, 0, 0)}, where |T | = 252 orientations. For most of the orient-
ations (the ones further from nk), the probability of diffusion is quite small. If, for
example, we truncate the kernel at 1

20 of the maximum value, by the red circle, 212
orientations are actually ignored in the convolution.

7.4.3 Look-up-table (LUT) convolution

Since the kernels are truncated and sorted, the convolution must now take care
of matching the correct values per kernel direction to the corresponding HARDI
image directions.

Figure 7.6 illustrates a simple 2D LUT convolution. Here, the kernel is dis-
cretized in |T | = 12 directions, and we restrict ourselves to 1 point in the spatial
lattice. The top row of the figure shows k0 and k1 from the set ki(y) = Kε(y,ni),
i.e. the kernels for the first two directions. The two tables hold the corresponding
index tables needed for the sorted and truncated kernels. Each row in the table
(v,n′) holds the probability density value v and the respective direction n′.

Figure 7.6’s bottom row illustrates the LUT convolution of the input HARDI
image U with the pre-computed kernel ki(y), resulting in the output HARDI
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image O. In the middle, we can see how eq. 7.6 is resolved. Each position y and
direction i in the output O[y, i] is the result of the product of the corresponding
kernel ki with the matching directions in the input image U:

O[y, i] =
∑

y′∈P (y)

|Tε(d,i)|∑

a=0

ki[d, a].v × U[y′,ki[d, a].n′]
�� ��7.13

where a = 0, . . . |Tε(d, i)| is the index of the sorted and truncated tessellation
corresponding to the kernel at position d = y-y’, i = 0, . . . |T |, and .v corres-
ponds to the value and respective direction .n′. In Figure 7.6 we removed all
position dependencies for clarity. It only describes for a fixed position, the gain
in the angular part of the convolution (a = 0, . . . 4).

∑
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2 0.5 2
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4 0.3 3
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6 0.1 4
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O[0] =

k0[0].v U[0].n’

+ k0[1].v U[11].n’

+ k0[2].v U[1].n’

+ k0[3].v U[10].n’

+ k0[4].v U[2].n’ 

O[1] =

k1[0].v U[1].n’

+ k1[1].v U[0].n’

+ k1[2].v U[2].n’

+ k1[3].v U[11].n’

+ k1[4].v U[3].n’
 

O[i] = ki[a].v U[ki[a].n’]

a

Figure 7.6: The optimized convolution illustrated. The pre-computed kernels, k0 and k1,
are sorted and the pairs value/index are stored. With a threshold t = 0.1, only 5 out of
12 directions are used in the convolution. In the LUT convolution, each direction in the
resulting image Oi is equal to the inner product between the corresponding kernel ki and
the matching values in the input image U.

7.5 Results

In this section we present the experiments conducted in order to analyse the
performance of the proposed optimization using the methodology described in
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chapter 3: a synthetic DW-MRI dataset, the FiberCup’s hardware phantom [112]
and a real HARDI data set from a healthy brain. In all presented experiments,
Q-Balls of 4th order spherical harmonics (SH) were fitted to the (simulated or
acquired) signal, and the resulting SDF was sampled on a tessellated icosahedron
(3rd order, 162 points). The choices for SH and tessellation orders were taken
since 4th order of SH is the first to convey crossing information, and 3rd order of
tessellated icosahedron is a good balance between number of points and discret-
ization error. Before convolution, we preprocess these SDF images by min-max
normalization and squaring them. We visualize the squared output of the convo-
lution algorithm.

For validation and illustration of the method, we generated a synthetic dataset
with an underlying splaying fibers configuration. The fiber orientations follow the
tangent of two ellipsoids centred in the bottom corners of the image. Using the
multi-tensor model as described in chapter 3, we constructed a dataset with size
20×28, with eigenvalues for each simulated tensor to be λi = [300, 300, 1700]×
10−6 mm2/s, b-value of 1000 s/mm2 and added Rician noise with realistic SNR
of 15.3. Figure 7.7(a) shows this data and the result of the convolution with the
tractosemas kernel in figure 7.7(b) (σ = 1, κ = 10 and 3 iterations). We can
observe the resulting asymmetric profile in the center region corresponding to the
splaying fiber configuration.

Figure 7.7: Synthetic splaying fibers example: a) Simulated data; b) The computed con-
volution with Barmpoutis’ tractosemas.

The proposed framework was also applied to real DW-MRI datasets. For the
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next experiments, the diffusion kernel was used with diffusion parametersD33 =
0.4, D44 = 0.02, t = 1.4. From FiberCup’s data, with b-value 1500 s/mm2

and 3×3×3 mm voxel size, we estimated Q-Balls as described above. Figure 7.8
shows a region of interest (ROI) in the full dataset, where two fiber bundles cross.
As we can observe, the Q-Ball model expresses a complex fiber structure in the
crossing region, however, due to the low b-value, few voxels actually show the
2 expected maxima. Additionally, we can also observe the perturbation caused
by noise. After convolving this dataset with the diffusion kernel, we obtain a
regularized image where the crossing voxels are clearly enhanced, with evident
maxima matching the underlying crossing bundles.

Applying the optimized convolution, again with the diffusion kernel, to a healthy
brain from a volunteer, acquired with b-value 4000 s/mm2, clearly illustrates the
benefits of such convolution. Figure 7.9 shows a region where two major white
matter structures intersect: the corpus callosum from the left, and the corona ra-
diata from down-right. We can observe the effect of the low SNR, due to the
high b-value, causing clear perturbations in the profiles, specially in the crossing
voxels. After convolving this data, we obtain the expected coherency between
voxels. Using the neighbourhood information allows the regularization of the
data, specially in the more linear areas, and the enhancement of the crossing pro-
files.

7.5.1 Performance

In figure 7.10 we present a time comparison between the different convolution
methods. We show the time realizations for 4 datasets (as previously described):

• Y synthetic - software simulated dataset (chapter 3), where the tractosemas
kernel was applied

• FiberCup - FiberCup dataset [112], with b-value 1500 s/mm2 and 3 ×
3× 3 mm voxel size

• Brain slate - one coronal slate from a healthy brain’s volunteer, with b-
value 4000 s/mm2

• Brainvisa’s brain - brain dataset [111], with b-value 700 s/mm2

Precomputing the kernels for 3rd order tessellation, takes 47 seconds. This
calculation, of course, is only needed once per set of parameters. To evaluate the
quality of the proposed method, we quantify the difference between the image
result from using the full kernel and the image result from our accelerated con-
volution. To quantify the differences we calculate the root mean square differ-
ence normalized by the range of the values in the accelerated convolution image
(NRMSD).
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Applying the proposed optimization (described in section 7.4), by truncating
the kernels at ε = 0.003 (meaning 90% of its total sum), we obtain very similar
results as to using the full kernel, however 8 times faster. Figure 7.11 shows
the relation between truncation and the quality of the resulting image (in our
experiments, less than 1% difference).

The used threshold was chosen by analysing visually the resulting output that
differs minimally from the result using the full kernel. Since no difference can
be evaluated qualitatively, no image is shown. Further work will investigate the
influence of the threshold on the resulting smoothed image, but our initial res-
ults show that a substantial time improvement can be obtained at a small loss in
accuracy.

7.6 Conclusions and future work

There are two key limitations inherent to DW-MRI acquisition: images can be
very noisy, especially at high b-values; spherical distribution functions are sym-
metric, which does not always correctly express the underlying fiber structure.
Processing of the data on the full domain (spatial and orientational), where con-
textual information plays an important role, is therefore of the utmost import-
ance. The complexity of the involved operators is, however, a limiting factor for
their use. The proposed framework allows the addition of these methods to the
DW-MRI processing/visualization pipeline, with much improved computational
costs. The framework’s kernel independence enables the use of different ker-
nels, for different purposes (e.g., smoothing, enhancing, completion), but still at
optimized costs. Fiber tracking applications, for example, can be significantly
improved with the use of a processing method such as tractosemas, resolving the
problem of splaying fibers.

Further work will analyse the optimal balance between optimization (i.e. which
threshold value) and accuracy. Further improvements can be achieved by mak-
ing use of multiple processors or GPUs (common in today’s computers) as the
processing algorithm can be easily atomized to voxel level, thus becoming easily
parallelized.
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Figure 7.8: Crossing bundles example, within the FiberCup dataset [112], with b-value
1500 s/mm2 and 3×3×3 mm voxel size. a) Q-Ball’s 4th order of SH, sampled on a 3rd

order tessellation; b) After convolving with the diffusion kernel. Note the regularization
of the result.
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Figure 7.9: Coronal ROI (in yellow top image) of a healthy brain volunteer, acquired
with b-value 4000 s/mm2. Convolving the 4th order SH Q-Ball’s (a) with the diffusion
kernel results in a regularized field of SDFs where the corpus callosum and the corona
radiata clearly cross in the centrum semiovale.
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Figure 7.10: Table a - Time performance comparison between applying the convolution
with full kernel or with accelerated LUT convolution (ε = 0.003). All computations
were conducted on a AMD Athlon X2 Dual 2.41GHz, with 3GB of RAM.
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Figure 7.11: Quality comparison between applying the convolution with full kernel or
with accelerated LUT convolution. In red (continuous) the NRMSD between full and
accelerated convolutions. In blue (dashed) the corresponding decrease of used kernel’s
mass.



8Extrapolating fiber crossings from DTI
data.

Can we gain similar information as HARDI?

”A new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents eventu-
ally die, and a new generation grows up that is familiar with it.”
Max Planck
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8.1 Overview

High angular resolution diffusion imaging (HARDI) has proven to better charac-
terize complex intra-voxel structures compared to its predecessor diffusion tensor
imaging (DTI). Increasing the b-value on one hand improves the angular resolu-
tion and sharpness of the profiles in the HARDI modelling techniques, but on the
other hand contributes to the decrease in the SNR. Additionally, for good quality
data, the total scanning time must be considerably longer than the one required
for the DTI data. Therefore, the benefits from the modest acquisition costs and
significantly higher signal-to-noise ratios (SNRs) of DTI make it more attractive
for use in clinical setting.

In this chapter we use contextual information derived from DTI data to obtain
similar crossing information as from the HARDI data, utilizing the accelerated
framework described previously in chapter 7. We conduct a synthetic phantom
study under different angles of crossing and different SNRs, and compare the
extrapolated crossings with the crossings obtained from the HARDI data. We
qualitatively corroborate our findings from the phantom study to real human data
showing that with extrapolation of the contextual information, the obtained cross-
ings are similar to the ones from the HARDI data, and the robustness to noise is
significantly better.
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8.2 Introduction

By now, we are familiar with the benefits and drawbacks of both DTI and HARDI.
As we previously discussed in chapter 2 and chapter 7, there are two key limita-
tions in HARDI: generally, it produces images with lower SNR than in DTI; and
the phase of the MRI signal is commonly discarded, thus resulting in anti-podally
symmetric profiles, that can only model single fiber or symmetric crossings of
multiple fibers.

In the previous chapter 7, we presented an accelerated convolution framework
for noise removal, regularization and enhancement of HARDI datasets. Until
now, contextual processing as described above has been applied only on HARDI
models, due to the natural coupling of the space of positions and orientations that
describe the diffusion process.

In this chapter, we address some of the above mentioned issues. We use data
from typical clinically obtained DTI acquisitions to build orientation distribu-
tion functions (ODF) that can be used for contextual processing of the data. The
data initially comes with high SNR values making the local reconstruction of the
ODFs reliable. The context information of well defined single direction fibers is
extrapolated to areas where the fiber structure is considerably complex and there-
fore ill defined by the DTI model. We analyse the differences of the contextually
modified ODFs comparing it to the Q-Ball reconstructions [35] without any reg-
ularization from the same data as the estimated extrapolated ODFs (E-ODFs).
To be fair, we extend this comparison to the Q-Ball’s “best scenario” at high
b-value (3000 s/mm2) and dense gradient sampling (121 number of gradients)
regularized with Laplace-Beltrami (LB) smoothing as proposed by Descoteaux
et al. [35]. We do quantitative analysis on synthetic crossings of two fibers at dif-
ferent angles and qualitative analysis on in-vivo data with the same acquisition as
in the synthetic data. We come to a few interesting conclusions, suggesting that
E-ODFs contain similar information, concerning the amount of fiber populations
and their orientations, as Q-Ball’s “best scenario” case. The E-ODFs could bring
great improvement to the DTI data, helping to overcome the limitations in cross-
ing regions and enabling also in these regions streamline-based tractography.

8.3 Methods

In this section we present our method for creating extrapolated ODFs (E-ODFs)
from diffusion tensors (DT) estimated from our DW-MRI data. We additionally
give details on the contextual image processing and perform an evaluation.
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8.3.1 Creating spherical diffusion functions from diffusion tensors

As we discussed in chapter 2 of this thesis, in DTI the signal decay is assumed to
be mono-exponential [125], and yields the equation:

Sg = S0 exp(−bgTDg)
�� ��8.1

where Sg is the signal in the presence of the diffusion sensitizing gradient,
and S0 is the zero-weighted baseline signal, b is the well known b-value, g are
the diffusion gradient unit vectors, and D is the 2nd order symmetric, positive
definite, diffusion tensor. Once the DT is calculated per voxel, the orientation
distribution function (ODF) can be reconstructed and sampled on the sphere

ODF (n) = nTDn
�� ��8.2

where n is the direction vector defined by the tessellation. Figure 8.1 shows a
typical linear DT and the corresponding diffusivity profile sampled on a sphere
(in our case icosahedron of order 4, 642 points on a sphere). Note that this ODF,
since it is derived from the DT, does not hold any crossing information and should
not be confused with the apparent diffusion coefficient (ADC) whose crossing
information does not necessarily coincide with the underlying fiber population as
pointed out by Özarslan et al. [104].

Figure 8.1: A linear diffusion tensor (left) and the corresponding tessellated ODF (right).

From a tensor field we create an ODF field, i.e. a spherical diffusion function
(SDF), in other words a HARDI-like dataset U defined on the coupled space
of positions and orientations [39], as previously defined in equation 7.1, section
7.3.1. These DTI derived ODF images U can now be enhanced. Throughout this
chapter we consider DTI-data as the initial condition, which means that we set
U(y,n) = nTD(y)n.

8.3.2 Kernels for contextual enhancing of orientation distribution
functions

To extrapolate the desired crossing information from the context provided by the
estimated ODF, we use Duits et al. [39, 40] diffusion kernels, presented in the
previous section 7.3.5.
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We now convolve this kernel with the ODF image U , using the HARDI con-
volution (chapter 7) method, as expressed in equation 7.6. For our purposes,
we chose the parameters for the kernel in order to give a high relevance to the
diffusion along the principal axis D33 = 0.6, D44 = 0.01 and t = 1.4. The con-
volution with such a kernel will result on the extrapolation of crossing profiles
where the neighbourhood information so indicates, i.e. the E-ODFs.

In order to achieve the desired results, care should be taken on the sharpness
of the input image U . Before applying the convolution, the ODFs are min-max
normalized and sharpening is applied by a nonlinear transformation (i.e. power
of 2) of the ODFs.

8.3.3 Data

Synthetic Data - To validate and analyse our methodology artificial datasets were
generated. DT datasets were created where two fiber bundles forming “tubes”
with radii of 2 voxels intersect each other. Here, the tensors, with eigenvalues
λ = [17, 3, 3]× 10−3 mm2/s and eigenvector oriented tangentially to the center
line of the tube, are estimated using a mixed tensor model [2] previously dis-
cussed in chapter 3. Gaussian noise with different SNRs is added to the real and
complex part of the signal reconstructed from equation 8.1. In order to evaluate
the angular resolution we vary the angle between the two fiber tubes θ ∈ {50◦,
60◦, 70◦}. We made a choice for these angles, given that the accuracy of Q-Ball
to detect multiple fiber orientations is around 60◦ [35, 113]. With these angle
configurations we create two sets of data, with different acquisition parameters.

1. To evaluate the accuracy of E-ODFs we create datasets with b = 1000 s/mm2

and 49 gradient directions. We add Rician noise with SNR=20, given that
this is the SNR found in literature for DTI acquisitions [69,78]. From these
datasets we estimate E-ODFs and Q-Balls without regularization.

2. To compare with the Qball’s “best case scenario”, as reported by Descoteaux
et al. [35], we create datasets at b = 3000 s/mm2 and 121 gradient direc-
tion. Since this kind of data is expected to have a lower SNR, we add
Rician noise with SNR= 10 as calculated in our in-vivo data at the same b-
value. We estimate Q-Balls for these datasets and regularize with Laplace-
Beltrami (LB) smoothing with λ = 0.006. This choice for the regu-
larization parameter λ was made, since it was found to be the best at
b = 3000 s/mm2 [35].

3. In order to evaluate the robustness to noise, we fix the angle to θ=70◦, and
we vary the SNR∈ {5, 10, 20}. We make the same choices for b-values and
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number of gradients as previously described, and apply Laplace-Beltrami
(LB) smoothing for the Q-Balls at b = 3000 s/mm2

Real Human Data - Diffusion acquisitions were performed using a twice fo-
cused spin-echo echo-planar imaging sequence on a Siemens Allegra 3T scan-
ner, with FOV 208 × 208 mm, isotropic voxels of 2 mm. 10 horizontal slices
were positioned through the body of the corpus callosum and centrum semiovale.
A uniform gradient direction scheme with 49 and 121 directions were gener-
ated with the electrostatic repulsion algorithm [67] and the diffusion-weighted
volumes were interleaved with b0 volumes every 12th scanned gradient direction.
Datasets were acquired at b-values of 1000 s/mm2 and 3000 s/mm2.

8.3.4 Analysis of synthetic data

To analyse the accuracy of the E-ODFs compared to the Q-Balls in the synthetic
data sets, we calculate the angular error and standard deviation of the voxels in
the crossing region. We do not expect to obtain exactly the same profile, notwith-
standing it should contain the same information concerning the amount of fiber
populations and their angle. To do so, we use a simple scheme for determining
the error between the detected maxima, and then report the angular difference
between these maxima and the simulated (true) fiber directions as explained in
detail in chapter 3. We detect the maxima as the local maxima of the normal-
ized [0,1] profiles where the function surpasses a certain threshold (here, we use
0.5). To minimize the error related to the sphere tessellation, we use 4th order of
tessellation of an icosahedron.

8.3.5 Analysis of human data

For qualitative analysis of the real data, we select an interesting region, the
centrum semiovale (CS), where crossings are to be expected. This is a challen-
ging region for DW-MRI analysis techniques, since fibers of the corpus callosum
(CC), corona radiata (CR), and superior longitudinal fasciculus (SLF) form a
three-fold crossing. A region-of-interest (ROI) was defined on a coronal slice
(see figure 8.5(a)). We only do qualitative analysis for the real data, as we do not
know the ground truth there.

8.4 Results

8.4.1 Phantom data results

The quantitative results of the found angular error and standard deviation of the
different profiles in the crossing area from the synthetic data are presented in
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Table 8.1: Results of the angular error and standard deviation from the different profiles
in the crossing area of the synthetic data.

table 8.1. In the following paragraphs we relate them to some figures of interest-
ing parameter configurations and discuss the results. In figure 8.2, we present the
results of the performance of the proposed E-ODFs compared to the Q-Balls [35]
for different angles of crossings, and different simulation parameters: 49 gradi-
ent directions, b-value 1000 s/mm2 and SNR 20, (figure 8.2 middle row) ; 121
gradient directions, b-value 3000 s/mm2, LB smoothing with λ = 0.006 (as in
[35]) and SNR 10 (figure 8.2 third row).

We observe that for the angle of 50◦, E-ODFs and un-regularized Q-Balls fail
to find multiple maxima in the crossing areas. Only regularized Q-Ball at high
b = 3000 s/mm2 and high order ` = 8 detects multiple maxima. For the angle of
60◦ the performance of E-ODFs (angular error of 55◦ with standard deviation of
12◦) is similar to the un-regularized Q-Ball at b = 1000 s/mm2 and truncated at
order of spherical harmonics l = 6 (angular error of 54.3◦ with standard deviation
of 15◦). Regularized Q-Balls at b = 3000 s/mm2 outperform in this scenario. At
an angle of 70◦, the E-ODFs (angular error of 12◦ with standard deviation of 5◦)
outperform the best (un-regularized ) Q-Ball scenario at order ` = 8 (angular
error of 24.4◦ with standard deviation of 7.5◦). Only regularized Q-Ball at ` = 6
outperforms E-ODFs in this scenario (see table 8.1).

The plots in figure 8.3 report the relation between the angular error and change
in SNR. We observe that the E-ODFs are more stable, regardless the noise level,
whereas the regularized Q-Balls improve significantly at higher SNRs. However,
it is important to note that in real data at high b-value ≈ 3000 s/mm2 the SNR
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Figure 8.2: E-ODFs and Q-Balls for different angles of crossing at fixed SNR = 20 for
b = 1000 s/mm2, and SNR=10 for b = 3000 s/mm2. The Q-Balls at b = 3000 s/mm2

are regularized with LB smoothing with λ = 0.006.The truncation SH order ` = 6.

significantly drops. Moreover, the SNR is highly dependent on the type of scan-
ner and imaging parameters in the acquisition. In our data for b = 3000 s/mm2

the SNR in the unweighed image was calculated as 10, by taking a region for
computing the mean signal (from the region of interest in the corpus callosum)
and an air region for computing the standard deviation of the noise. Figure 8.4
illustrates the previous conclusions. At higher order of truncation un-regularized
Q-Ball performs much worse, giving many false positives in the linear areas
where the SNR is low.

We observe that regardless the SNR, the E-ODFs preserve the coherence of
the linear and crossing regions, and preserve the angular error, to almost constant
value (see figure 8.3(a)). We also compared the E-ODFs, to Q-Ball’s “best case
scenario” with LB regularization [35]. Here, for SNR 5, the regularized Q-
Ball performs worse (angular error of 14.9◦ and standard deviation 8.4◦) than
the E-ODFs (angular error 6◦ with standard deviation 7◦). As noise decreases,
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(a) (b)

Figure 8.3: Angular error and standard deviation for angle of 70◦ (a) E-ODFs at b =
1000 s/mm2 and 49 gradient directions (b) Regularized Q-Ball with λ = 0.006, b =
3000 s/mm2 and 121 gradient directions

E-ODFs’ performance is similar to the regularized Q-Balls at b = 3000 s/mm2.
Regularized Q-Ball outperforms E-ODFs for SNR 20, with an angular error of 5◦

and standard deviation of 3.2◦. However, this SNR is not realistic given nowadays
acquisition protocols and machinery at b-values as high as 3000 s/mm2.

8.4.2 Real data results

Interestingly, even though crossing information is missing in the original DTI
data, as well as in the created ODFs (as can be seen in figure 8.5(a) and fig-
ure 8.5(b)), we observe that after processing it, crossing information can be found
by extrapolation (see figure 8.6(c)). The obtained information is comparable to
the Q-Ball reconstructions of l = 6, at b = 3000 s/mm2 and 121 gradient dir-
ections and regularized with LB smoothing of λ = 0.006 (figure 8.6(b)). The
crossings in the centrum semiovale are extrapolated and appear to correspond to
the known anatomy. Additionally the spurious peaks of the data are removed,
while producing a more coherent field of E-ODFs that contain peaks in the ex-
pected directions where the fibers should cross. The un-regularized Q-Balls at
low b-value of 1000 s/mm2 and low gradient sampling of 49 gradient directions
present less obvious structures of the CC and CR, and have more chaotically
oriented crossings, as observed in figure 8.6(a).

All computations were conducted in an AMD Athlon X2 Dual 2.41GHz, with
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Figure 8.4: E-ODFs and Q-Balls for different SNRs, and different b-value, at fixed angle
of 70◦.

3GB of RAM, taking 0.5 minutes per artificial tube dataset, and about 13 minutes
for the real human brain dataset for estimating the E-ODFs.

8.5 Conclusions

In this chapter we presented a new method for extrapolating crossing information
using image processing of the coupled space of positions and orientations in DTI
data.

We show that with typical acquisition schemes for DTI, the inferred fiber cross-
ings are similar as 6th order un-regularized Q-Ball estimated from the same data.
Furthermore we compare the E-ODFs to the “best scenario” of Q-Ball at typical
HARDI acquisition schemes, and we conclude that the information gain from the
regularized Q-Ball is similar at low SNR, but the Q-Balls improve when increas-
ing the SNR. However, in practice HARDI acquisitions at high b-values result
in rather noisy datasets, and Q-Ball reconstructions of poor quality including LB
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Figure 8.5: The centrum semiovale. Left: the original DTI data, color coded by FA.
Right: the ODFs from the DTI data, RGB color coded by orientation and min-max nor-
malized.

regularization and therefore this advantage of Q-Ball is not realistic in practice.
The robustness to noise of the presented method is significantly better than from
the un-regularized Q-Balls reconstructed from the same data, and comparable to
the Q-Ball “best scenario”. However, at very low SNRs the E-ODFs outperform
both regularized and un-regularized Q-Ball.

The main contribution from this work lies on demonstrating that modest ac-
quisitions modelled by DTI, through the use of the contextual information can
result in the same information gain, with respect to number of fiber populations
and their orientations, as in some of the popular HARDI reconstruction tech-
niques that require more expensive acquisitions. The chosen kernel sets a global
reasonable probabilistic model that governs how the context of a fiber fragment is
taken into account. Consequently, our framework lacks adaptivity, meaning that
the probabilistic model is adapted to the data. Future work will address more ad-
aptive fiber context models to the data, such that context is only included where
it is required by the data.

The proposed method has its limitations, it assumes that enough context is
available for a correct extrapolation. The possible implications of this limitations
for concrete brain structures should be studied. Future work should include more
extensive validation to assess the exact differences between HARDI models and
E-ODFs concerning acquisition parameters and anatomical areas of the brain.
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Figure 8.6: Different profiles in the centrum semiovale a) un-regularized Q-Ball of order
4 b) Regularized Q-Ball with λ = 0.006 of order 6 from similar region as (a) c) E-ODFs
of the same region as (a)

This includes synthetic data experiments with fibers of different configurations
(e.g. curved bundles) and multiple crossings.

The final message from this chapter lies in the fact that contextual processing
of DTI data allows overcoming one of the main drawbacks of this model. The
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crossing information can be recovered, and with acquisitions that typically take
3-6 minutes and modest post-processing (13 minutes for 10 slices of a human
brain on a standard PC) more accurate stream-based tractography can be applied
for plain DTI data.
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9Conclusions and future work

”The most exciting phrase to hear in science, the one that heralds the
most discoveries, is not ”Eureka!” (I found it!) but ”That’s funny...”
Isaac Asimov
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9.1 Summary of contributions

Central to this thesis is the question ”how can we virtually dissect white mat-
ter structures?”. Our work focussed in research and development of new post-
processing and segmentation methods for the automatic identification of white
matter structures of interest. These methods are based on using diffusion weighted
MRI (DW-MRI) imaging techniques.

We started with a brief survey of neuroscience’s history, with particular interest
in neuroimaging. In chapter 2, we laid down the necessary background common
to our methods. We studied the brain anatomy with focus on its tissue complexity
specially the white matter. These are the basis to understand the imaging modality
central to this thesis, diffusion weighted imaging.

The main contributions of the subsequent chapters can be summarized as fol-
lows:

• As a technical need for the different investigated algorithms, we studied the
diverse techniques for creating artificial datasets (chapter 3), which are es-
sential for the validation of the developed algorithms. Validation is still an
issue of utmost importance in the DW-MRI field, and a crucial step towards
clinical applications. This survey sheds some light over this problem. The
multi-tensor model can be used for validation of DTI based techniques,
since it exhibits similar behaviour as the in-vivo data, whereas the Söder-
man and Jönsson’s model is more appropriate to studies with high b-values,
such as in animal scanners. However, these approaches are in general too
simplistic, and care should be taken when applying the methods to real
data.

• Throughout the first chapters, the concept of tensor homogeneity, in terms
of tensor characteristics, is explored in order to achieve new methods for
segmenting, filtering and enhancing diffusion images.

In chapter 4, we studied the diffusion tensor space, with special focus on
the different measures of similarity/dissimilarity that can be used to assess
the homogeneity of a tensor field. Several measures have been proposed
in literature, from different natures, with different meanings, but their be-
haviour was not well defined and categorized. In this 4th chapter we de-
veloped an overview of the existing distance and similarity measures that
can be used to discriminate diffusion tensors. We realized that depending
on the application, different measures can be used.

• This lead to the development of a distance learning scheme, chapter 5,
where the choice of measure (or combination of measures) is adapted to



9.2. FUTURE WORK 147

the task at hand. Inspired by well-known methods from the fields of ma-
chine learning, pattern recognition and image processing, new segment-
ation techniques were investigated and explored. A semi-automatic seg-
mentation algorithm is proposed, based on homogeneity definition and
region-based growing.

• Exploiting the inherent hierarchical nature of brain’s tissue, we used the
well known scale-space theory to depict an equivalent hierarchical rep-
resentation, starting with the measured diffusion tensors. The developed
framework, discussed in chapter 6, establishes a multi-resolution segment-
ation tool permitting the simultaneous segmentation of different structures,
of different sizes.

• In chapter 7 we explored diffusion operators with two important charac-
teristics: they operate over the coupled space of positions and orienta-
tions; and they consider the contextual information. Although with clear
benefits for processing of these types of images (denoising, smoothing,
enhancement), its added complexity binds these algorithms to a theoret-
ical research, with few practical uses, and limited clinical interest. The
developed accelerated framework permits the usage of these powerful pro-
cessing tools in today’s typical computers, with lower time costs, and there-
fore of great interest for real clinical uses.

• In chapter 8, we studied the use of diffusion operators, presented in chapter
7, to overcome the limitations of DTI, namely its failure in depicting com-
plex crossing structures (crossing, splaying, diverging). By considering the
contextual information, these diffusion operators were able to extrapolate
crossing information from a typical and fast DTI acquisition. The results
are comparable to HARDI reconstruction techniques, whose usage is lim-
ited in a clinical setting due to its complexity, increased time costs and
lower image quality.

9.2 Future work

The techniques presented in this thesis have shown promising results, although,
an important next step should be taken: their true value should be fully evaluated.
The main problem with validation if the lack of a ”gold standard”. The used arti-
ficial and phantom methods (studied in chapter 3) provided the means to perform
some basic quantitative analysis. However, these datasets hold a too simplified
version of the true neuronal tissue, thus they are more of a ”silver standard”.

Many aspects of the presented work can be further investigated and extended.
In this section we depict different possibilities that arise from this research.
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Our work was centred mainly around processing diffusion tensors images. The
developed methods, such as distance learning, can be naturally extended into high
angular resolution diffusion images, where there is also the problem of finding a
good measure. A survey such as the one in chapter 4 would be of great interest,
since it is not clear which measures are useful to compare the complex spher-
ical functions on HARDI methods, such as Q-Ball or DOT. The segmentation
of HARDI images could also benefit from the extension of the distance learning
method, from chapter 5.

The high level information obtained from the investigated segmentation meth-
ods, i.e. white matter tracts and brain partitioning into homogeneous regions
(chapter 6), can be used in new forms of visualisation and exploration of DW-
MRI data. The obtained hierarchical structure can be exploited to provide new
ways to explore this type of data. Navigating through the different levels in the
hierarchy can give a focus-and-context paradigm, thus diminishing clutter prob-
lems. The most important data can be shown at full detail and size at the focal
point, while the area around the focal point can be simplified to help making
sense of the context. Illustrative rendering techniques [101] can be used here to
simplify the display of the contextual fiber tracts, around a tumour area, for in-
stance. Furthermore, the hierarchical depiction of the data, can be visualised and
explored using information visualisation methodologies. With this hierarchical
representation, the complex 3D structures in the brain can be abstracted into 2D
depictions such as dendograms, and the different partitioned regions can be inter-
connected with the fiber tracking information, as proposed by Jianu et al. [65].

The creation of a meaningful hierarchical representation of the data can be
used to map the global architecture of the brain, the so called connectome [57].
This structural network of the brain can be mapped at different scales: from the
scale of interconnected neurons; through cortical columns linking hundreds or
thousands of individual neurons; and to large brain systems responsible for spe-
cific interconnectivity patterns, as the corticospinal tract for example. This thesis
focussed mainly on algorithms for the latter, i.e. segmenting white matter tracts,
notwithstanding, the scale-space framework, explored in chapter 6 can provide
valuable insight on the estimation of the full brain connectome. By virtue of the
scale-space of an DW-MRI image, one can investigate the ”deep structure” of the
brain, i.e. the structure at all levels of resolution simultaneously. Future lines
of research can investigate questions such as how fiber tractography relates to
changes in resolution, which tracts remain stable across scale?

Besides knowing more about the connections within the brain, it is interest-
ing to know more about their susceptibility to change across time and across
populations. This would give more information about brain development, brain
dysfunction in ageing, addiction and neurological disorders. The different pro-
cessing tools developed in this thesis can improve the different stages in such
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analysis: pre-processing, explorative visualisation, tract extraction, and features
estimation. Additionally, the hierarchical representation can be used to build an
invariant representation of the brain, and then define atlases, or statistical com-
parative studies.

Lastly, we would like to point out the need of knowledge transfer into and from
end-users, in particular clinicians, neurologists and neurosurgeons. Both worlds,
technological and clinical, each have different perspectives on the same subject:
the brain. On the clinical side there are experts in acquiring and interpreting the
images, i.e. begin and end of the analysis cycle, whereas in the technological side
there are experts in developing tools to automate complicated and time consum-
ing tasks, and to extract complex relations amid the data. The synergy between
these two worlds can greatly increase the understanding of the human brain. The
clinical world can ask the important questions, focus on real problems, while the
technological world can provide the tools to foster the resolution of these prob-
lems. However, not many results are transferred back to the clinicians. In our
perspective, there are two main problems. First, there is a lack of standardization
technologically and acquisition wise, creating difficulties for effective collabor-
ations between the different institutes. Second, the new technological methods
should be made convenient and accessible to the clinical users, reaching out for
a common language and presenting information in a meaningful way. The devel-
opment of the DTITool [117] aims at exactly this point, to share our knowledge,
our ideas, our methods to anyone, and in this way enable a pragmatic voice in the
research process.

A next, valuable step, is wider application in a clinical setting, learning from
the feedback and being confronted with further challenges.

”The limits of the possible can only be defined by going beyond them into the
impossible.” Arthur C. Clarke
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Summary

Homogeneity based segmentation and enhancement of Diffusion Tensor
Images
A white matter processing framework

In diffusion weighted magnetic resonance imaging (DW-MRI) the Brownian mo-
tion of the water molecules, within biological tissue, is measured through a series
of images. In diffusion tensor imaging (DTI) this diffusion is represented using
tensors. DTI describes, in a non-invasive way, the local anisotropy pattern en-
abling the reconstruction of the nervous fibers - dubbed tractography. DW-MRI
constitutes a powerful tool to analyse the structure of the white matter within
a voxel, but also to investigate the anatomy of the brain and its connectivity.
DW-MRI has been proved useful to characterize brain disorders, to analyse the
differences on white matter and consequences in brain function. These proced-
ures usually involve the virtual dissection of white matters tracts of interest. The
manual isolation of these bundles requires a great deal of neuroanatomical know-
ledge and can take up to several hours of work.

This thesis focuses on the development of techniques able to automatically per-
form the virtual dissection of white matter structures. To segment such structures
in a tensor field, the similarity of diffusion tensors must be assessed for partition-
ing data into regions, which are homogeneous in terms of tensor characteristics.
This concept of tensor homogeneity is explored in order to achieve new methods
for segmenting, filtering and enhancing diffusion images.

First, this thesis presents a novel approach to semi-automatically define the
similarity measures that better suit the data. Following, a multi-resolution wa-
tershed framework is presented, where the tensor field’s homogeneity is used to
automatically achieve a hierarchical representation of white matter structures in
the brain, allowing the simultaneous segmentation of different structures, with
different sizes. The successor of DTI, high angular resolution diffusion imaging
(HARDI), is also approached in this thesis. An accelerated convolution method
of HARDI images is presented, where the stochastic process of water diffusion
is modeled, enabling the contextual processing of diffusion images for noise re-
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duction, regularization and enhancement of white matter structures. This thesis
finishes by exploring the use of this contextual processing techniques to enhance
DTI data, in order to obtain similar crossing information as from HARDI data.

These new methods are analysed on the basis of their accuracy, robustness,
speed and usability - key points for their application in a clinical setting. The
described methods enrich the analysis of white matter structures, fostering the
exploration and understanding of the human brain.
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